Prime Gamma-Near-Rings with σ-Derivations

K. K. Dey ${ }^{*}$ and A. C. Paul
Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh

Received 28 November 2013, accepted in revised form 26 June 2014

Abstract

Let N be a prime Γ-near-ring and σ be an automorphism on N. In this paper, we prove that if d is a σ-derivation of N such that $\sigma d=d \sigma$ with $d^{2}=0$, then $d=0$. The composition of two derivations σ and τ are considered and investigated the conditions that the derivation is a $\sigma \tau$-derivation.

Keywords: Γ-near-ring; Prime Γ-near-ring; Derivation; σ-derivation; Automorphism.
© 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.
doi: http://dx.doi.org/10.3329/jsr.v6i3.17158 J. Sci. Res. 6 (3), 467-473 (2014)

1. Introduction

A Γ-near-ring is a triple $(N,+, \Gamma)$, where:
(i) $(N,+)$ is a group (not necessarily abelian),
(ii) Γ is a non-empty set of binary operations on N such that for each $\alpha \in \Gamma,(N,+, \alpha)$ is a left near-ring.
(iii) $x \alpha(y \beta z)=(x \alpha y) \beta z$, for all $x, y, z \in N$ and $\alpha, \beta \in \Gamma$.

Exactly speaking, it is a left Γ-near-ring because it satisfies the left distributive law. We will use the word Γ-near-ring to mean left Γ-near-ring. For a Γ-near-ring N, the set N_{0} $=\{\mathrm{x} \in N: 0 \alpha \mathrm{x}=0, \alpha \in \Gamma\}$ is called the zero-symmetric part of N. A Γ-near-ring N is said to be zero-symmetric if $N=N_{0}$. Throughout this paper, we consider N to be a zero symmetric left Γ-near-ring with center $Z(N)$. The Γ-near-ring N is called a prime Γ-nearring if $x \Gamma N \Gamma y=\{0\}$ with $x, y \in N$ implies $x=0$ or $y=0$. An additive mapping d: $N \rightarrow N$ is called a derivation if $d(x \alpha y)=x \alpha d(y)+d(x) \alpha y$ holds for all $x, y \in N, \alpha \in \Gamma$.

In ref. [1], Bell and Mason introduced the notion of derivations in near-ring and obtained basic properties of derivations in near-rings. They also studied some remarkable results [2]. Afterwards Cho [3] worked on derivations in prime near-rings. In ref. [4], Kamal studied the characterizations of σ-derivations on prime near-rings. Kazaz and Alkan [5] introduced the notion of two sided α-derivations of a Γ-near-ring and obtained

[^0]some generalizations of the works of Argac [6, 7]. Samman [8] studied on an α derivations of prime Γ-near-rings. He also obtained the composition for α-derivation and a Posner-type result with this. In refs. [9-11], Dey et. al. worked on derivations and generalized derivations of Γ-rings and Γ-near-rings and obtained some important properties of these rings. Also Dey and Paul [12] extended the results of near-rings to Γ -near-rings.

In this paper, we define a σ-derivation in Γ-near-rings. An example of this type of this derivation is given to ensure its existence. We generalize the results of ref. [13] in Γ-nearrings. One of our results in Γ-rings is an analogous version of a well-known result of Posner for the composition of derivation of rings and near-rings.

2. Prime Γ-Near-Rings with σ-Derivations

Let N be a Γ-near-ring and let σ be an automorphism of N. An additive mapping $d: N \rightarrow N$ is called a right σ-derivation (simply we call σ-derivation) if $d(x \alpha y)=\sigma(x) \alpha d(y)+d(x) \alpha y$ for all $x, y \in N, \alpha \in \Gamma$. The composition of derivations of Γ-rings is obtained for the case of Γ-near-rings. The existence of such a derivation is ensured by the following example.

Example 2.1. Let J be a Γ-near-ring satisfying the condition $a \alpha b \beta c=a \beta b \alpha c$ which is not a Γ-ring such that $(J,+)$ is abelian. Let M be commutative Γ-ring satisfying the condition as in J. Take $N=J \oplus M$. Then it is clear that N is a Γ-near-ring but not a Γ-ring. It is seen that M is an ideal of N and its elements commute with all elements of N. Let σ be a nontrivial automorphism of N and take $m \in M$. Define $d^{\alpha}{ }_{m}: N \rightarrow N$ by $d^{\alpha}{ }_{m}(x)=\sigma(x) \alpha m-$ $x \alpha m$ for all $x \in N, \alpha \in \Gamma$. Then we shall show that $d^{\alpha}{ }_{m}$ is a σ-derivation. For all x, $y \in N, \beta \in \Gamma$,
$d^{\alpha}{ }_{m}(x \beta y)=\sigma(x \beta y) \alpha m-x \beta y \alpha m=\sigma(x \beta y) \alpha m-\sigma(x) \beta y \alpha m+\sigma(x) \beta y \alpha m-x \beta y \alpha m$
$=\sigma(x) \beta \sigma(y) \alpha m-\sigma(x) \beta y \alpha m+y \beta[\sigma(x) \alpha m-m \alpha x]=\sigma(x) \beta[\sigma(y) \alpha m-y \alpha m]+[\sigma(x) \alpha m-$
$m \alpha x] \beta y$
$=\sigma(x) \beta d^{\alpha}{ }_{m}(y)+d^{\alpha}{ }_{m}(x) \beta y$
This shows that

$$
d^{\alpha}{ }_{m}(x \beta y)=\sigma(x) \beta d^{\alpha}{ }_{m}(y)+d^{\alpha}{ }_{m}(x) \beta y \text { for all } x, y \in N, \alpha, \beta \in \Gamma .
$$

Hence $d^{\alpha}{ }_{m}$ is a σ-derivation.
We begin with the following Lemmas which are more useful to develop our main results.

Lemma 2.2. Let d be an additive endomorphism of a 2 -torsion free Γ-near-ring N. Then d is a σ-derivation if and only if $d(x \alpha y)=d(x) \alpha y+\sigma(x) \alpha d(y)$ for all $x, y \in N, \alpha \in \Gamma$.

Proof. By definition, if d is a σ-derivation then for all $x, y \in N, \alpha \in \Gamma$,

$$
d(x \alpha y)=\sigma(x) \alpha d(y)+d(x) \alpha y . \text { Then } d(x \alpha(y+y))=\sigma(x) \alpha d(y+y)+d(x) \alpha(y+y)=
$$ $2 \sigma(x) \alpha d(y)+2 d(x) \alpha y$,

and

$$
d(x \alpha y+x \alpha y)=2 d(x \alpha y)=2(\sigma(x) \alpha d(y)+d(x) \alpha y),
$$

so that

$$
\sigma(x) \alpha d(y)+d(x) \alpha y=d(x) \alpha y+\sigma(x) \alpha d(y) .
$$

The proof of the converse statement is similar.
This Lemma indicates an equivalent definition of a σ-derivation.
Lemma 2.3. Let d be a σ-derivation on a 2 -torsion free Γ-near-ring N. Then for all x, y, $z \in N, \alpha, \beta \in \Gamma$,
(i) $(\sigma(x) \alpha d(y)+d(x) \alpha y) \beta z=\sigma(x) \alpha d(\mathrm{y}) \beta z+d(x) \alpha y \beta z$.
(ii) $(d(x) \alpha y+\sigma(x) \alpha d(y)) \beta z=d(x) \alpha y \beta z+\sigma(x) \alpha d(y) \beta z$.

Proof. (i) Let $x, y, z \in N, \alpha, \beta \in \Gamma$. Then

$$
\begin{align*}
& d(x \alpha(y \beta z))=\sigma(x) \alpha d(y \beta z)+d(x) \alpha(y \beta z) \\
& =\sigma(x) \alpha(\sigma(y) \beta d(\mathrm{z})+d(y) \beta z)+d(x) \alpha(y \beta z) \\
& =(\sigma(x) \alpha \sigma(y)) \beta d(\mathrm{z})+\sigma(x) \alpha d(y) \beta z+d(x) \alpha(y \beta z) \\
& =\sigma(x \alpha y) \beta d(z)+\sigma(x) \alpha d(y) \beta z+d(x) \alpha y \beta z . \tag{1}
\end{align*}
$$

Also,
$d((x \alpha y) \beta z)=\sigma(x \alpha y) \beta d(z)+d(x \alpha y) \beta z$
$=\sigma(x \alpha y) \beta d(z)+(\sigma(x) \alpha d(y)+d(x) \alpha y) \beta z$.
From (1) and (2), we get
$(\sigma(x) \alpha d(y)+d(x) \alpha y) \beta z=\sigma(x) \alpha d(y) \beta z+d(x) \alpha y \beta z$.
(ii) By using Lemma 2.2, we obtain (ii).

Lemma 2.4. Let d be a σ-derivation of a 2 -torsion free prime Γ-near-ring N and let $a \in N$ such that $a \Gamma d(x)=0($ or $d(x) \Gamma a=0)$ for all $x \in N$. Then $a=0$ or $d=0$.

Proof. For all $x, y \in N, \alpha, \beta \in \Gamma$,

$$
\begin{aligned}
& 0=a \beta d(x \alpha y)=a \beta(\sigma(x) \alpha d(y)+d(x) \alpha y)=a \beta \sigma(x) \alpha d(y)+a \beta d(x) \alpha y \\
& =a \beta \sigma(x) \alpha d(y)+0=a \beta \sigma(x) \alpha d(y)=a \beta \sigma(x) \alpha d(y),
\end{aligned}
$$

since σ is an automorphism. Thus $a \Gamma N \Gamma d(y)=0$. Since N is prime, we get $a=0$ or $d=0$.

To prove the case when $d(x) \Gamma a=0$, we need Lemma 2.2. So if $d(x) \Gamma a=0$ for all $x \in N$, then for all $x, y \in N, \alpha, \beta \in \Gamma$, we have

$$
\begin{aligned}
& 0=d(y \alpha x) \beta a=(\sigma(y) \alpha d(x)+d(y) \alpha x) \beta a=\sigma(y) \alpha d(x) \beta a+d(y) \alpha x \beta a, \text { by Lemma 2.2, } \\
& =0+d(y) \alpha x \beta a=d(y) \alpha x \beta a .
\end{aligned}
$$

Thus $d(y) \Gamma N \Gamma a=0$. By the primeness of N implies that $d=0$ or $a=0$.

Theorem 2.5. Let N be a 2-torsion-free prime Γ-near-ring. Let d be a σ-derivation on N such that $d \sigma=\sigma d$. Then $d^{2}=0$ implies $d=0$.

Proof. Suppose that $d^{2}=0$. Let $x, y \in N, \alpha \in \Gamma$. Then

$$
\begin{aligned}
& d^{2}(x \alpha y)=0=d(d(x \alpha y))=d(\sigma(x) \alpha d(y)+d(x) \alpha y) \\
& =d(\sigma(x) \alpha d(y))+d(d(x) \alpha y) \\
& =\sigma^{2}(x) \alpha d^{2}(y)+d(\sigma(x)) \alpha d(y)+\sigma(d(x)) \alpha d(y)+d^{2}(x) \alpha y \\
& =d(\sigma(x)) \alpha d(y)+\sigma(d(x)) \alpha d(y) \\
& =2 d(\sigma(x)) \alpha d(y) .
\end{aligned}
$$

Hence, $2 d(\sigma(x)) \alpha d(y)=0$. Since N is 2-torsion-free, we have $d(\sigma(x)) \alpha d(y)=0$. Since σ is onto, we get $d(x) \alpha d(y)=0$ and hence by Lemma 2.4, $d=0$.

The following theorem displays the commutativity of automorphisms of N and the derivation which we are considering on N.
Theorem 2.6. Let d be a σ-derivation on a Γ-near-ring N. Let τ be an automorphism of N which commutes with d. Then $(\sigma \tau)(x) \alpha(d \tau)(y)=(\tau \sigma)(x) \alpha(\tau d)(y)$ for all $x, y \in N, \alpha \in \Gamma$.

Proof. Let $x, y \in N, \alpha, \beta \in \Gamma$. Then

$$
\begin{equation*}
(\tau d)(x \alpha y)=\tau(\sigma(x) \alpha d(y)+d(x) \alpha y)=(\tau \sigma)(x) \alpha(\tau d)(y)+(\tau d)(x) \alpha \tau(y) . \tag{3}
\end{equation*}
$$

and,

$$
\begin{equation*}
(d \tau)(x \alpha y)=d(\tau(x) \alpha \tau(y))=(\sigma \tau)(x) \alpha d(\tau(y))+d(\tau(x)) \alpha \tau(y) . \tag{4}
\end{equation*}
$$

Since $d \tau=\tau d$, equations (3) and (4) imply that

$$
(\sigma \tau)(x) \alpha(d \tau)(y)=(\tau \sigma)(x) \alpha(\tau d)(y) .
$$

Theorem 2.7. Let d_{1} be a σ-derivation and d_{2} be a τ-derivation on a 2 -torsion free prime Γ-near-ring N such that $d_{1} \sigma=\sigma d_{1}$ and $d_{2} \tau=\tau d_{2}$. Then $d_{1} d_{2}$ is a $\sigma \tau$-derivation if and only if $d_{1}=0$ or $d_{2}=0$.

Proof. Let $d_{1} d_{2}$ be a $\sigma \tau$-derivation. For $x, y \in N, \alpha \in \Gamma$, we have
$\left(d_{1} d_{2}\right)(x \alpha y)=(\sigma \tau)(x) \alpha d_{1} d_{2}(\mathrm{y})+\left(d_{1} d_{2}\right)(x) \alpha y$.
Also,
$\left(d_{1} d_{2}\right)(x \alpha y)=d_{1}\left(d_{2}(x \alpha y)\right)$
$=d_{1}\left(\tau(x) \alpha d_{2}(y)+d_{2}(x) \alpha y\right)$
$=d_{1}\left(\tau(x) \alpha d_{2}(y)\right)+d_{1}\left(d_{2}(x) \alpha y\right)$
$=(\sigma \tau)(x) \alpha d_{1} d_{2}(y)+\left(d_{1} \tau\right)(x) \alpha d_{2}(y)+\left(\sigma d_{2}\right)(x) \alpha d_{1}(y)+d_{1} d_{2}(x) \alpha y$
From (5) and (6), we get
$\left(d_{1} \tau\right)(x) \alpha d_{2}(y)+\left(\sigma d_{2}\right)(x) \alpha d_{1}(y)=0$.
Replacing x by $x \beta d_{2}(z)$ in (7), we get
$\left(d_{1} \tau\right)\left(x \beta d_{2}(z)\right) \alpha d_{2}(y)+\left(\sigma d_{2}\right)\left(x \beta d_{2}(z)\right) \alpha d_{1}(y)=0$,
and so,
$\left(\tau d_{1}\right)\left(x \beta d_{2}(z)\right) \alpha d_{2}(y)+\left(\sigma d_{2}\right)\left(x \beta d_{2}(z)\right) \alpha d_{1}(y)=0$.
Using Lemma 2.2, Eq. (8) becomes
$\tau\left(d_{1}(x) \beta d_{2}(z)+\sigma(x) \beta d_{1} d_{2}(z)\right) \alpha d_{2}(y)+\sigma\left(\tau(x) \beta d_{2}^{2}(z)+d_{2}(x) \beta d_{2}(z)\right) \alpha d_{1}(y)=0$,
$\left(\tau d_{1}(x) \beta \tau d_{2}(z)+\tau \sigma(x) \beta \tau d_{1} d_{2}(z)\right) \alpha d_{2}(y)+\left(\sigma \tau(x) \beta \sigma d_{2}^{2}(\mathrm{z})+\sigma d_{2}(x) \beta \sigma d_{2}(z)\right) \alpha d_{1}(y)=0$

Using Theorem 2.5 and the hypothesis, equation (9) becomes
$\left(d_{1} \tau(x) \beta d_{2} \tau(z)+\sigma \tau(x) \beta d_{1}\left(\tau d_{2}(z)\right)\right) \alpha d_{2}(y)+\left(\sigma \tau(x) \beta d_{2}{ }^{2}\left(\sigma(z)+d_{2} \sigma(x) \beta d_{2}(\sigma(z))\right) \alpha d_{1}(y)=\right.$ 0 .
Using Lemma 2.2, Eq. (10) becomes
$d_{1} \tau(x) \beta d_{2} \tau(z) \alpha d_{2}(y)+\sigma \tau(x) \beta d_{1}\left(\tau d_{2}(z)\right) \alpha d_{2}(y)+\sigma \tau(x) \beta d_{2}^{2}(\sigma(z)) \alpha d_{1}(y)+$ $d_{2}(\sigma(x)) \beta d_{2}(\sigma(z)) \alpha d_{1}(y)=0$,
$d_{1} \tau(x) \beta d_{2} \tau(z) \alpha d_{2}(y)+(\sigma \tau)(x) \beta\left(d_{1}\left(\tau d_{2}(z)\right) \alpha d_{2}(y)+d_{2}^{2}(\sigma(z)) \alpha d_{1}(y)\right)+$
$d_{2}(\sigma(x)) \beta d_{2}(\sigma(z)) \alpha d_{1}(y)=0$.
Replacing x by $d_{2}(z)$ in (7), we get
$\left(d_{1} \tau\right)\left(d_{2}(z)\right) \alpha d_{2}(y)+\left(\sigma d_{2}\right)\left(d_{2}(z)\right) \alpha d_{1}(y)=0$,
or
$d_{1}\left(\tau d_{2}(z)\right) \alpha d_{2}(y)+d_{2}^{2}(\sigma(z)) \alpha d_{1}(y)=0$.
Since N is zero symmetric, Eqs. (11) and (12) imply that
$d_{1} \tau(x) \alpha d_{2} \tau(z) \beta d_{2}(y)+d_{2}(\sigma(x)) \alpha d_{2}(\sigma(z)) \beta d_{1}(y)=0$.
Replacing now x by z in (7), we get

$$
\left(d_{1} \tau\right)(z) \alpha d_{2}(y)+\left(\sigma d_{2}\right)(z) \alpha d_{1}(y)=0
$$

or
$\sigma d_{2}(z) \alpha d_{1}(y)=-d_{1}(\tau(z)) \alpha d_{2}(y)$.
Replacing y by $\tau(z)$ in (7), we get
$\left(d_{1} \tau\right)(x) \alpha d_{2}(\tau(z))+\left(\sigma d_{2}\right)(x) \alpha d_{1}(\tau(z))=0$.
So,
$d_{1}(\tau(x)) \alpha d_{2}(\tau(z))=-d_{2}(\sigma(x)) \alpha d_{1}(\tau(z))$.
Combining (13), (14) and (15) we get
$\left(-\left(d_{2}(\sigma(x)) \alpha d_{1}(\tau(z))\right)\right) \beta d_{2}(y)+d_{2}(\sigma(x)) \alpha\left(-\left(d_{1}(\tau(z)) \beta d_{2}(y)\right)\right)=0$.
To simplify notations, we put $u=d_{2}(\sigma(x)), v=d_{1}(\tau(z))$, and $w=d_{2}(y)$. Then
$-\quad(u \alpha v) \beta w+u \alpha(-v \beta w)=0$,
$\Rightarrow u \alpha(-v) \beta w+u \alpha(-v \beta w)=0$,
$\Rightarrow u \alpha(-v) \beta w-u \alpha(v \beta w)=0$,
$\Rightarrow-u \alpha v \beta w-u \alpha \nu \beta w=0$,
$\Rightarrow u \alpha v \beta w+u \alpha v \beta w=0$,
$\Rightarrow u \alpha(2 \nu \beta w)=0$.
If $u \neq 0$ (i.e. $d_{2} \neq 0$), then by Lemma $2.4,2 v \beta w=0$, that is, $v \beta(2 w)=0$. Again if $w \neq 0$ (i.e. $d_{2} \neq 0$), then by hypothesis $2 w \neq 0$, and then by Lemma 2.4 we have $v=0$, that is $d_{1}=$ 0 . This shows that if $d_{2} \neq 0$ then $d_{1}=0$ which completes the proof.

Remarks 2.8. In the above theorem, the composition that N is a 2 -torsion free may be weakened if we do not take the existence of an element y in N such that $2 d_{2}(\mathrm{y}) \neq 0$. The same proof will lead to the conclusion that $d_{1}=0$.

References

1. H. E. Bell and G. Mason, 137 (North-Holland, Amsterdam, 1987) pp. 31-36.
2. H. E. Bell and G. Mason, Math. J. Okayama Univ. 34, 135 (1992).
3. Y. U. Cho, J. Korean Soc. Math. Educ. Ser B Pure Appl. Math. 8 (2), 145 (2001).
4. A. A. Kamal, Tamkang J. Math. 32 (2) 89 (2001).
5. M. Kazaz and A. Alkan, Commun. Korean Math. Soc. 23 (4), 469 (2008).
http://dx.doi.org/10.4134/CKMS.2008.23.4.469
6. N. Argac, Turkish J. Math. 28, 195 (2004).
7. N. Argac, Int. J. Math. Math. Sci. 20 (4), 737 (1997).
http://dx.doi.org/10.1155/S0161171297001002
8. M. Samman, Acta Math. Univ. Comeiae, LXXVIII (1), 37 (2009).
9. K. K. Dey, A. C. Paul and I. S. Rakhimov, Int. J. Math. Math. Sci. 2012, http://dx.doi.org/10.1155/2012/270132
10. K. K. Dey, A. C. Paul and I. S. Rakhimov, Int. J. Math. Math. Sci., 2012, http://dx.doi.org/10.1155/2012/625968
11. K. K. Dey, A. C. Paul and I. S. Rakhimov, Int. J. Pure Appl. Math. 93 (5) 603 (2014). http://dx.doi.org/10.12732/ijpam.v93i5.1
12. K. K. Dey and A. C. Paul, J. Sci. Res. 4 (2), 349 (2012). http://dx.doi.org/10.3329/jsr.v4i2.8691
13. E. Posner, Proc. Amer. Math. Soc. 8, 1093 (1957). http://dx.doi.org/10.1090/S0002-9939-1957-0095863-0

[^0]: * Corresponding author: kkdmath@yahoo.com

