
 
 

Elastic Properties of α- and β-phases of Li3N  
 

M. A. Hossain1, A. K. M. A. Islam2, and F. N. Islam2 

 
1Mawlana Bhashani Science & Technology University, Santosh, Tangail-1902, Bangladesh 

 
2Department of Physics, Rajshahi University, Rajshahi-6205, Bangladesh 

 
Received 27 December 2008, accepted in revised form 20 March 2009 

Abstract 
 

Investigations of elastic properties of Li3N in both α- and β-phases have been made by first-
principles methods (HF-LCAO, DFT as implemented in CRYSTAL98 and in CASTEP). 
The theoretical equation of state of the β-phase (D4

6h structure) produced by our total-
energy calculations is compared with the experimental EOS. Five independent elastic 
constants are calculated for the first time for both the phases. These are compared with the 
available four elastic constants of α-Li3N estimated from the slopes of the acoustic branches 
in the long wavelength region of the measured phonon dispersion curves. The aggregate 
elastic moduli (B, G, E), the Poisson’s ratio ( ) and the Debye temperature ΘD as a function 
of pressure are also calculated and the results discussed. 
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1. Introduction 

Lithium nitride is a superionic conductor (high Li+ conductivity of 103 Ω-1cm-1 at room 
temperature and at zero pressure) with several interesting properties and potentials for 
uses [1-6]. It crystallizes in a hexagonal structure, α-Li3N, with four ions per unit cell at 
ambient conditions at equilibrium pressure. This layered structure consists of Li2N layers, 
widely separated by a pure Li layer which occupies a site between the nitrogen atoms in 
adjacent layers [1, 7]. In the Li2N layers each N3+ (0, 0, 0) is at the centre of a regular 
hexagon formed by the six neighbouring Li+ ions (1/3, 2/3, 0) and (2/3, 1/3, 0) in units of 
lattice vectors. Here N-3 ions, unstable as free ions, are stabilized by the electrostatic 
potential in the crystal environment - a hexagonal bipyramid of Li+ ions. The unit-cell 
dimensions are a = 3.648 Å and c = 3.875 Å with the symmetry point group of D1

6h (space 
group P6/mmm) [8].  

The existence of high-pressure β- and γ-phases was confirmed in experiments and 
their behaviour at high pressure studied by different workers [9-13]. At ~0.5-0.6 GPa α-
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Li3N was observed to transform into a layered hexagonal structure β-Li3N (P63/mmc). 
Several theoretical and experimental investigations have been undertaken [14-19] to 
reveal the interesting properties of this superionic compound at ambient condition.  All 
these works are followed by more recent study by Huq et al. [20] who investigated both α- 
and β-phases of commercial Li3N using neutron powder diffraction. 

The mechanical properties provide the knowledge of the practical applications of 
materials. Several fundamental solid-state properties, such as equation of state (EOS), 
specific heat, thermal expansion, Debye temperature, Grüneisen parameter, melting point 
and many others are closely related to elastic properties of solids, and are important in 
fields ranging from geophysics to materials research, chemistry and physics. The 
knowledge of elastic constants Cij is essential for many practical applications related to the 
mechanical properties of materials, e.g. load deflection, sound velocities, internal strain, 
thermo-elastic stress. These also offer important information regarding the degree of 
anisotropy which is known to correlate with a tendency to either ductility or brittleness. 
Further solid-state variables such as electric field, magnetic field, lattice defects, phase 
transformation, pressure, temperature etc change the values of elastic constants. 
Depending on the material, the largest change usually arises from phase transformation, 
the smallest from electrical and magnetic fields. Further the knowledge of the values of 
elastic constants helps us to analyse the thermodynamic and thermo-elastic properties of 
ionic solids at high temperatures.  

There are five independent elastic constants for hexagonal Li3N. But no direct 
measurement of these is available in literature. Only four out of five Cij have been 
determined from the slopes of the acoustic branches in the long-wavelength region 
obtained by the measured phonon dispersion curves [14]. The aim of the present report is 
to provide the ab initio calculations of elastic properties as well as first information on all 
the elastic constants of α- and β-phases of Li3N.  

 
2. Computational Methods 

 
We have carried out a first-principles total-energy calculation of the structural and the 
elastic properties for Li3N using two different methods. The first one is the ab initio 
CRYSTAL98 programme [21, 22] which performed Hartree-Fock, exact exchange, all 
electron calculations. The atomic orbitals obtained as a linear combination of s-, p-, and d 
GTO’s coupled with appropriate contraction coefficients constitute the basis functions. 
We have followed the arguments presented by Dovesi et al. [17]  for the use of extended 
and highly polarizable basis sets for the description of ionic systems. This ensures that 
Coulomb effects are taken into consideration accurately both in the calculation of the 
Fock matrix and in the evaluation of the total energy [17]. 25 k points in the irreducible 
part of the Brillouin zone were needed for accurately reconstructing the Fock matrix 
during the self-consistent iterative procedure. Details of density functional theory (DFT) 
method embodied in CRYSTAL98  are given elsewhere [22]. 
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The method CASTEP23 employs DFT and is based on the generalised-gradient 
approximation (GGA). Perdew-Burke-Ernzerhof (PBE) is used as exchange-correlation 
functional [24]. Non-local ultra-soft pseudopotentials generated by the method of 
Vanderbilt [25] are used to describe electron-ion interactions. The pseudo atomic 
calculations are performed for Li (1s2 2s1) and N (2s2 2p3). The valence electron 
wavefunctions are expanded in a plane wave basis set with a kinetic energy cut-off of 300 
eV. This converges the total energy of the system to better than 0.001eV/atom. Brillouin 
zone integrations are performed on a Monkhorst-Pack grid that is taken large enough to 
reach a similar level of convergence in total energy as the wavefunction cut-off.    

 
3. Calculations, Results and Discussions 

 
3.1.  Structural and elastic properties of α- and β-phases 

 
The total energy E of Li3N has been calculated at different primitive cell volume. The 
energy was minimized as a function of the c/a ratio for selected values of volume. The 
zero pressure bulk modulus B0 and its pressure derivative B0′  (=dB/dP) are determined by 
fitting the E ~ V curve (not shown) by the Murnaghan equation-of-state [26]. The 
optimized structural parameters, bulk modulus and its pressure derivative are given in 
Table 1, along with other theoretical results and available experimental measurements. It 
is seen that the calculated lattice parameters are better in the present study and agree well 
with experiments [8].  
 
Table 1.  Lattice constants, bulk modulus and pressure derivative of bulk modulus for Li3N  at  
 ambient conditions. 
 

Phase Method a (Å) c(Å) B0 (GPa)       B′0 Ref. 
 HF-CRYSTAL      3.61 3.84 - - [17]  
 HF-CRYSTAL98       3.6413 3.8751 63.9 4* This 
α−phase DFT-CRYSTAL98 3.6289 3.823 72.6 4* This 
 CASTEP 3.6643 3.9315 - - This 
 Q-ESPRESSO 3.534 3.772 58.9 3.8 [13] 
 LDA-Ultrasoft 3.508 3.745 61.0 3.7 [11]   
 Expt. 3.648 3.875 - -   [8] 
 DFT-CRYSTAL98 3.558 6.250 98 4.04 This 
β-phase CASTEP 3.5789 6.3602 - - This 
 Q-ESPRESSO 3.445 6.148 74.5 3.42 [13]  
 LDA-Ultrasoft 3.418 6.100 78.2 3.77 [11] 
 Expt. 3.552 6.31 - -   [8]  
       

 * Kept fixed during fitting.   
 

The normalized lattice constants a/a0 and c/c0 (where a0 and c0 are the zero-pressure 
equilibrium lattice constants) as a function of pressure up to 35 GPa are shown in Fig. 1.  
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Fig. 1. Lattice parameters a/ao and c/co as a 
function of pressure.                           
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By fitting these data to third order polynomials of pressure, we obtain the following 
relationships at T = 0: 

 

a/a0 = 1.0016 - 5.7×10-3P + 10-4P2 -1.41×10-6P3 
c/c0 = 1.0017 - 5.2×10-3P + 10-4P2 - 1.40×10-6P3 

 

It is obvious that, as the pressure increases, the compression along the c-axis is 
roughly of the same order as in the a-axis in the basal plane. Fig. 2 shows the normalized 
volume Vn  (=V/Vo, Vo= equilibrium volume) of β-phase (D4

6h structure) as a function of 
pressure up to P = 35 GPa. The equation of state EOS of the D6h

4 phase has been 
measured up to 35 GPa [11]. The experimental P-Vn data points8 are plotted in the same 
figure which shows nice agreement with our ab initio calculation. 

 
 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2 . Single crystal elastic constants of α- and β-phases 
 

The finite strain method is the most commonly used method for computation of stiffness 
coefficients and this one is used in the present work. We shall consider only small lattice 
distortions in order to remain within the elastic limit of the crystal. The internal energy of 
a crystal under strain δ can be expanded in powers of the strain tensor with respect to the 
initial internal energy of the unstrained crystal. The energy of a strained system [27, 28] 
can be expressed in terms of the elastic constants Cij as: 

                  











++= ∑∑ i
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jiiij

i
iii CVVEVE ξδξδδξτδ 2

1
00 0 ),(),(                                   (1) 

where E(V0,0) is the energy of the unstrained system with volume V0. τi is an element in 
the stress tensor, ξi is a factor to take care of Voigt index. 

There are five independent components of the elasticity tensor for the hexagonal Li3N, 
instead of three as in the cubic case. The energy corresponding to five distinct lattice 
deformations can now be obtained. The second order term in the expression of the strain 
energy as a function of deformation parameter δ is related to a particularly simple 

Fig. 2. The calculated EOS of Li3N. Solid 
squares and solid circles represent 
experiment [11].  
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condition of different elastic constants as shown Table 2. Stresses used to calculate the 
elastic constants at zero pressure are as listed in the table.    
 
  Table 2. Stresses for the calculation of elastic constants at P=0. 
 

 

Type of distortion 
 

Energy for the distorted crystal 
2

2

0

1
δ∂

∂ E
V  

Changes size of basal plane, z 
constant 

E(V0,0)+V0[(τ1 + τ2)δ + (C11 + C12)δ2] 2(C11 + C12) 

z-axis constant, x increases, y 
decreases by equal amount 

E(V0,0)+V0[(τ1 - τ2)δ + (C11 - C12)δ2] 2(C11 - C12) 

Stretches z-axis, other axes 
unchanged (maintains symmetry) 

E(V0,0)+V0[(τ3δ +½ C33δ2] C33 

Changes V, preserves symmetry E(Vo,0)+V0[(τ1 +τ2+τ3)δ + 

½ (2C11+2C12+4C13+C33)δ2] 

2C11+2C12+ 

4C13+C33 
V-conserving triclinic distortion E(V0,0)+V0[(τ4δ +2C44δ2] 4C44 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Strain energy of α-Li3N as 
a function of δ, for the five 
different strains. 
 

Fig. 4.  Calculated elastic constants of β-Li3N 
as a function of pressure.  The zero pressure 
data points are only for the α-phase. 
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The energy was calculated using the appropriate expression corresponding for 
each of the five distinct lattice distortions. The results of the dependence of [E (V, 
δ)-E (V0, δ)] on δ for α-Li3N using DFT-CRYSTAL98 calculations are shown in 
Fig. 3. In the second approach using CASTEP, the ground state structure is 
strained according to symmetry-dependent strain patterns with varying amplitudes 
and a subsequent computing of the stress tensor after a re-optimization of the 
internal structure parameters, i.e. after a geometry optimization with fixed cell 
parameters. The elastic stiffness coefficients are then the proportionality 
coefficients relating the applied strain to the computed stress. The calculation of the 
elastic constants involves second derivatives of the total energy with respect to lattice 
distortion. This implies a lowering of the crystal symmetry and because the strain energy 
is very small, the relative error will certainly be larger than for isotropic properties such as 
equilibrium volume which needs only the first derivatives of the total energy. From the 
precision of our total energy results and other calculations we consider the present 
approach is adequately precise which is necessary for the calculation of the elastic 
constants.  

 
Table 3.  Elastic constants Cij  (in GPa) of Li3N in α- and β-phases at ambient  
pressure. 

 

  Phase C11 C12 C13 C33 C44 Method 

α-phase 165.7 22.7 8.3 180.0 18.1 HF -CRYSTAL98 

 162.3 26.3 4.5 183.5 14.4 DFT-CRYSTAL98 
 122.8 24.6 5.4 129.5 16.6 CASTEP 

 114 38 - 118 17 Derived* 
β-phase 215 25.9 7.5 219.8 40.1 DFT-CRYSTAL98 

 131.8 28.8 8.7 180.4 37.1 CASTEP   
         

*Derived from measured phonon dispersion curves [14]. 
 

 
The calculated results of Cij for α- and β−Li3N at ambient conditions using different 

computational methods are shown in Table 3 along with those determined from the slopes 
of the acoustic branches in the long wavelength region of the measured phonon dispersion 
curves [14]. A comparison of the calculations with the derived quantities determined as 
above, the CASTEP-calculated elastic constants at ambient conditions seem to yield better 
results.  

The elastic constants Cij of β−Li3N are also calculated as a function of pressure using 
CASTEP and the results are shown in Fig. 4. The zero-pressure elastic constants are also 
plotted in the same figure. The figure shows that all the elastic constants of β−Li3N 
increase with pressure but by different rates. C12 steadily increases and then goes down 
after ~30 GPa. The same trend is also observed in the case of C13. C44  first increases and 
then the rate of its increase decreases. It may be mentioned here that a new γ−phase 
appears at ~ 28-40 GPa [12]. 
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3.3 .  Debye temperature and elastic properties of polycrystalline aggregate of α- and β-
phases 
 
The Debye temperature ΘD is an important quantity and closely related to many physical 
properties of solids, such as specific heat and melting temperature. For temperature less 
than ΘD quantum mechanical effects are very important in understanding the 
thermodynamic properties. The Debye temperature is also used to estimate the electron-
phonon coupling constant λ, which is proportional to the mean sound velocity vm [29]. 

 

                                  ,          ,  m 333
3 213
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3
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                                      (2) 

 
where h is Planck’s constant, kB is Boltzmann’s constant, n is the number of atoms 
per formula unit and Ω (= M/NAρ, M = molecular weight, NA = Avogadro’s number, ρ = 
density) is the mean atomic volume. νl and νs are the longitudinal and transverse sound 
velocities. 

The theoretical polycrystalline elastic moduli for Li3N may be calculated from the set 
of five independent elastic constants. Hill [30] proved that the Voigt and Reuss equations 
represent upper and lower limits of the true polycrystalline constants. He showed that the 
polycrystalline moduli are the arithmetic mean values of the Voigt and Reuss moduli, and 
are thus given by  BH ≡ B = ½(BR + BV) and GH ≡ G = ½(GR + GV). The Reuss and Voigt  
bulk moduli for hexagonal Li3N are given by (see [31]): 
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Similarly the shear moduli are given by 
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The probable values of the average shear and longitudinal sound velocities can be 
calculated from Hill’s equations as follows: 
     

      vs = (GH/ρ)1/2,   vl = [(BH + 4/3GH)/ρ]1/2                                                                                                               (8) 
 

The polycrystalline Young’s modulus (E) and the Poisson’s ratio (υ) are then 
calculated using the relationships (see [31]): E = 9BG/(3B + G)  and υ =  (3B - 2G)/(6 B + 
2G). 

Fig. 5 shows the variation of sound velocities of β-Li3N as a function of pressure. Both 
the longitudinal and transverse sound velocities increase as the pressure is increased. The 
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aggregate bulk, shear and Young’s moduli (B, G, E) and the Poisson’s ratio υ are shown 
in Fig. 6 as a function of pressure. In both the figures zero pressure values α-Li3N have 
also been plotted. It is seen that both the bulk and shear moduli increase as pressure is 
increased, but they do so in a different rate, particularly at higher pressure. We see that the 
Young’s modulus and the Poisson’s ratio also increase with the increase of pressure but 
certainly there are small behavioural changes for P ~30 GPa. It is to be noted here that a 
new phase has been predicted at P = 27.6 GPa [32]. But more recently Lazicki et al. [12] 
has shown that β-phase indeed transforms to γ-Li3N, but in the pressure range of 36-45 
GPa. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the single-crystal elastic constants of Li3N, we obtain Debye temperatures ΘD 

for α-Li3N at ambient conditions and for β-Li3N as a function of pressure (Fig. 7). The 
density ρ  has been assumed to be pressure dependent while calculating pressure 
dependent quantities mentioned above in Eqs. (2-8). The value of ΘD= 755 K for α-Li3N 
at P = 0 may be compared to 1016K for MgB2 [33] and 743K for TiB2 [34]. It is thus 

Fig. 5. Longitudinal and transverse sound velocities  
of Li3N as a function of pressure. The zero pressure 
data points (vl - solid circle, vm - inverted triangle, vs 
-  open square) are for the α-phase.      
 
 

Fig. 6. Bulk, shear, Young’s moduli and Poisson’s 
ratio of Li3N as a function of pressure. All the zero 
pressure data points (E- solid square, B - diamond, G -  
solid circle, ν - inverted triangle) are for the α-phase.        
 

Fig. 7. The Debye temperature ΘD as 
a function of pressure. The zero 
pressure point (solid square) is for α-
Li3N. 
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found that the value is closer to that of TiB2 than to MgB2.Further ΘD increases as 
pressure increases.   

We notice that the average values for anisotropy factor A (=C11/C33) at ambient 
condition are 0.93 and 0.85 for α-Li3N and β-Li3N, respectively. Although the anisotropy 
factor is by no means sufficient to confirm the anisotropy of the system, our results, 
however, do indicate a very small anisotropy. 

 
4. Conclusions 
 
We have investigated the equilibrium structure, elastic properties including five 
independent elastic constants and Debye temperature of Li3N using three different 
computational methods. Both the hexagonal D4

6h (P63/mmc) and the hexagonal D1
6h 

(P6/mmm) structures at ambient and higher pressures are considered. The equilibrium 
lattice parameters obtained are better than other theoretical results and in very good 
agreement with the available experimental data. No theoretical or experimental data for 
single crystal elastic constants, the aggregate elastic moduli (B, G, E), the Poisson’s ratio 
( ), and the Debye temperature ΘD are yet available for comparison. A comparison of the 
calculated single crystal elastic constants with the derived quantities determined from the 
slopes of the acoustic branches in the long wavelength region of the measured phonon 
dispersion curves show that the CASTEP-calculated elastic constants at ambient 
conditions seem to reproduce better results. It is found that the Debye temperature of α-
Li3N is closer to that of TiB2 than to MgB2. 
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