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Abstract 
 

The paper contains an order-level inventory model having the demand rate to be a function 
of time. Here shortages are allowed and completely backlogged. An optimal model is 
developed by considering exponential demand which minimizes the total average cost. 
Numerical examples are used to illustrate the developed model. Sensitivity analysis of the 
optimal solution with respect to major parameters is carried out.  
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1. Introduction  

Demand is the major factor in inventory management. In inventory models, four types of 
demand are basically assumed i.e. constant demand, time-dependent demand, probabilistic 
demand and stock-dependent demand. Inventory models with stock-dependent demand 
are getting more attracted in present situation. Therefore, many authors studied these 
models in depth. Gupta and Vrat [1] assumed demand to be dependent on initial stock 
levels. On the other hand, Baker and Urban [2] considered the on-hand inventory demand 
in polynomial form. The constant demand is valid only when the phase of the product life 
cycle is matured for finite periods of time. But the assumption of this constant demand 
rate is not always applicable to other inventory items like fashionable clothes, electronic 
equipments and delicious foods due to the reason of variation in demand rate.  

In the competitive market, the demand of some product may increase due to the 
consumer’s preference on some eye-catching product. Therefore, the demand of the 
product at the time of its growth and the phase of declination may be approached by 
continuous-time-dependent function. These continuous-time-dependent functions may be 
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a function of exponential or linear type. Ritchie [3] discussed the solution of a linear 
increasing time-dependent demand, which is obtained by Donaldson [4]. Silver and Meal 
[5] developed a model for deterministic time-varying demand, which also gives an 
approximate solution procedure termed as Silver-Meal Heuristic. Donaldson [4] discussed 
the policy for a linear, time-dependent demand with no shortages. Deb and Chaudhuri [6] 
reconsidered the extension of Donaldson [4] model. Dave [7] and Goyal et al. [8] derived 
the optimal method for different replenishment policy by allowing shortages. Goswami 
and Chaudhuri [9, 23] developed an EOQ model by assuming a linear trend demand, finite 
rate of replenishment with shortages. Another EOQ models for linear trend in demand was 
adopted by Dave and Patel [10] and Sachan [11]. Further, deteriorating items with 
exponential demand developed by Aggarwal and Bahari-Kashani [12] and Wee [13]. 
Raffat et al. [14] and Mak [15] considered EOQ models depending upon deterioration and 
other different assumptions like instantaneous or finite production rate. Ouyang et al. [20] 
proposed an EOQ model for deteriorating items with exponentially decreasing demand 
where shortages are allowed and partially backordered. Here, the backlogging rate is 
variable and dependent for the next replenishment on the waiting time. Bhunia and Maiti 
[22] developed the model in which the production rate is variable. They presented the 
model where shortages are not allowed and the production rate depends on either the on-
hand inventory or on the demand.  

Depending upon the production rate, Su et al. [19] presented a production inventory 
model for deteriorating items with an exponentially declining demand over a fixed time 
horizon. In this model, the production rate depends on demand. In that paper, shortages 
are allowed and completely backlogged. Ghosh et al. [16] developed a model with time-
dependent demand, finite production rate and shortages by assuming a two- parameter 
Weibull demand rate. Here shortages are allowed and completely backlogged. Balkhi and 
Benkeherouf [17] developed a model by taking the consideration of fixed production 
schedule for deteriorating items in which demand and the production are allowed to vary 
with time in an arbitrary way at a constant rate of deterioration. Other researchers like 
Wee and Law [18] assumed a deterministic model and considered deteriorating items with 
price-dependent demand rate, a time-varying deterioration rate and finite production rate 
with time value of money over a fix time horizon. Hollter and Mak [21] developed 
inventory replenishment policies for deteriorating items. They considered replenishment 
problems with declining demand. Again, Aggarwal and Bahari-Kashani [12] developed a 
model assuming flexible production rate for deteriorating items.  

In the present article, we have assumed an inventory model for items with exponential 
demand. The production rate is finite and proportional to the demand rate. The time-
dependent demand rate increases exponentially or decreases depending upon the shape 
parameter. Here shortages are allowed and completely backlogged. Numerical examples 
have considered for illustrating the developed model. The development of this model is to 
minimize the total average cost. Sensitivity analysis is carried out by taking the account of 
major parameters. Finally, the total average cost and some computational procedure of a 
few important results have been shown in Appendices A, B and C. 
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2. Assumptions and Notations 

The mathematical model of the inventory problem is developed on the following 
assumptions: 

(a) The demand rate R at any time is given by ( ) , , 0tR t eβα α β= >  
(b) The production rate )(tK , at any instant depends on the demand is a constant and is 

given by ( ) ( ) 1, >= λλ tR  and )()( tRtK > . tK
(c) The lead-time is zero. 
(d) The on-hand inventory does not deteriorate with time. 
(e) Shortages are allowed and backlogged completely. 

 
The notations used:  C1 is the carrying cost per unit time, C2 is the shortage cost per 

unit time, C3 is the set up cost per production and C is the total average cost for a 
production cycle. All these costs C1, C2, C3 are fixed and known at the time of production 
run.  

 
3. Mathematical Modeling and Solution 
 
Initially, the stock level is zero at time 0=t . Again at 0=t , the shortage starts and 
accumulates to the level P at 1tt = . The production inventory level starts at 1 . At the 
instant of time, the production starts to clear the backlog by the time 

tt =

2tt = . Then the 
production is stopped, the stock level attains a level S at 

3tt = . The inventory level 

becomes zero at time 4tt = . This decrease in level occurs due to the demand. After time 
t4, the repetition of the inventory cycle occurs. The aim is to find out the optimum values 
of  which minimize the total average cost c. 1 2 3 4, , , , ,t t t t S P

Let Q(t) represents the instantaneous inventory level at any time ( )40 ttt ≤≤

)4,0 t

. The 
differential equations governing the instantaneous states of Q(t) in the interval (  are as 
follows 

R
dt
dQ

−= ,   
10 tt ≤≤                                             (1) 

RK
dt
dQ

−= ,   
21 ttt ≤≤                                                           (2)  

RK
dt
dQ

−= ,   
32 ttt ≤≤                                            (3) 

R
dt
dQ

−= ,                                                             (4)  
43 ttt ≤≤

with the following boundary conditions 
 

( ) 00 =Q , ( ) PtQ −=1
, ( ) 02 =tQ , ( ) StQ =3

 and ( ) 04 =tQ  .                           (5) 
Using the value of ( ) tetR βα=  and ( ) (tRtK λ= ), the Eqs.(1)-(4) reduces to the form 

te
dt
dQ βα−= ,                                              (6) 10 tt ≤≤

      ( ) te
dt
dQ βαλ 1−= ,                                            (7) 21 ttt ≤≤
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 ( ) te
dt
dQ βαλ 1−= , 32 ttt ≤≤                                             (8) 

te
dt
dQ βα−= ,                                (9) 43 ttt ≤≤

and the boundary conditions are ( ) 00 =Q , ( ) PtQ −=1 , ( ) 02 =tQ , ( ) StQ =3  and . 
Solving the equations (6)-(9) and substituting the above boundary conditions, the 
solutions are as follows: 

( ) 04 =tQ

( ) [ ]tetQ β

β
α

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 1 , 10 tt ≤≤                                                                                      (10) 

 ( ) [ ]21 tt ee ββ

β
αλ −−= , 

21 ttt ≤≤                                          (11) 

 ( ) [ ]21 tt ee ββ

β
αλ −−= , 

32 ttt ≤≤                                           (12) 

 [ ]tt ee ββ

β
α

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 4 , 

43 ttt ≤≤                                           (13)  

Substituting the initial condition  in equation (10) and (11), we obtain (see 
Appendix A)  

( ) PtQ −=1

( )
⎥
⎦

⎤
⎢
⎣

⎡ −+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

λ
λ

β

β 211log1
1

tet               (14) 

Substituting the initial condition ( ) StQ =3  in equation (12) and (13), we obtain (see 
Appendix A) 

( )
⎥
⎦

⎤
⎢
⎣

⎡ −+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

λ
λ

β

ββ 24 1log1
3

tt eet                             (15) 

The total average cost of the system is (see Appendix B) 

[ ]3
4

1 cHCSC
t

C ++=  

( ) ( )

( ) ( ) ( ) ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧ −

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎭
⎬
⎫

⎩
⎨
⎧

−−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎭
⎬
⎫

⎩
⎨
⎧ −

−−

=

334231

1212

4 34
42

23

2
121

1

11

1

ceettetteeec

tteeeetc

t tt
tt

tt

t
ttt

ββ
α

ββ
αλ

ββ
αλ

ββ
α

ββ
ββ

ββ

β
βββ

  (16) 

 
Again substituting the values of  from equation (14) and  from equation (15), the 

equation (16), i.e.  is a function of two variables and . Now our aim is to 

minimize  using calculus. The optimum values of and  for the minimum 
average cost C  are the solutions of the equations 

1t 3t
tC 2t

2t
4

tC 4

 
 0

2

=
∂
∂
t
C  and 0

4

=
∂
∂
t
C                                                                   (17)  

 
 and 
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 0
2

42

2

2
4

2

2
2

2

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
−

∂
∂

∂
∂

tt
C

t
C

t
C                                            (18) 

 
Therefore, Eqs. (17) can be written as,  
 

( ) ( ) ( ) ( ) 011log1log11 224
2

21221
4

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ −+
−⎥

⎦

⎤
⎢
⎣

⎡ −+
−+−

λ
λ

λ
λβλα

β

βββ
β

ttt
t eceectcce

t
 (19) 

and 

 ( )( ) ( ) ( )
2

2 22
3 2 22 2

4

1 11 1 1 log 1
t

t te
c c e e t

t

β
β βλ

β α λ β λ
λβ

⎡ ⎛ ⎞⎡ ⎤+ −
− + + − − −⎢ ⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎢ ⎥⎣ ⎦⎝ ⎠⎣

  

 

( ) ( )4 2

2
1 2

1
1 log

t t
t e e

c e t
β β

β λ
α λ β

λ

⎛ ⎛ ⎞⎡ ⎤+ −
⎜+ − − − +⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎣ ⎦⎝ ⎠⎝

  

 

              ( ) ( )4 2

4
4 4

1
1 log

t t
t e e

e t t
β β

β λ
β β

λ

⎤⎞⎛ ⎞⎡ ⎤+ −
⎥⎟ 0+ − + − + =⎜ ⎟⎢ ⎥⎜ ⎟⎟⎥⎢ ⎥⎣ ⎦⎝ ⎠⎠⎦

                   (20) 

 
4. Numerical Analysis  
 
Let us consider an inventory system with the following data: α =100, β =1.5, λ =2.5, 

=25, =30, = 40 in appropriate units. From equation (19) and (20), we get the 
following optimal values of times , , , 

. Again substituting these optimum values of times , ,  and  in 
Eq. (16), we obtain the optimum average cost  and the optimum values of 

1c

*
4 =t

2c

258727

3c
0778299.0*

1 =t

.283* =C

125087*
2 =t

* *
2t

.0

1t
181796.0*

3 =
*
3

*
4

t

t.0 t
522 P  

and  calculated from (A1) and (A4) are  and  respectively (see 
Appendix A). Depending on the parameter

S 25551.8* =P 711.*S 10=
β , we get the following results as follows: 

 
Example-1 10 << β  
Let 5.0=β , we get the following optimal values of times , , 

 and . The optimum average cost is  and the 
optimum values of 

082317.0*
1 =t

* =C

135371.0*
2 =t

578.265199033.0=*
3t 290888.0*

4 =t
P  and  are  and  respectively. In this case, 

there is retarded growth in demand (see Appendix C). 
S P 40345.8* = 3824.10* =S

 
Example-2  21 << β  
Let 75.1=β , the optimal times are , , , 

. The optimum average cost is  and the optimum values of P 
and S are  and  respectively. This is the case of accelerated 
growth in demand. (see Appendix C) 

0769075.0*
1 =t

.287* =C
796

122971.0*
2 =t

759
178247.0*

3 =t
252269.0

*P

*
4 =t

23231.8= .10* =S
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Example-3 1=β  
The optimal values are , , , 0798881.0*

1 =t 129808.0*
2 =t 189712.0*

3 =t 273334.0*
4 =t , 

,  and   respectively.  769.274* =C 31658.8* =P 5438.10* =S
 
Example-4 2>β  
 Let 25.3=β ; the optimal values are , , , 

, ,  and  respectively. This is the case of 
accelerated growth in demand. (see Appendix C) 

0723943.0*
1 =t

3139.11* =S

112648.0*
2 =t 160952.0*

3 =t

221615. C0*
4 =t 645.311* = 162.8* =P

 
Example-5 2=β  
The optimal values are , , , 

, ,  and  respectively.  
0760434.0*

1 =t

21306 .10* =S
12099.0*

2 =t 174926.0*
3 =t

246277.0*
4 =t 913.291* =C .8* =P 8817

 
It is numerically verified that all the examples considered here are satisfying the sufficient 
condition in equation (18). 

5. Sensitive Analysis 

We now study the effects of changes in the system parameters 321 ,,,,, cccλβα  on the 
optimal times of inventory interval , on optimum average cost for a production 
cycle *  and also on the optimum values of S  and 

*
4

*
3

*
2

*
1 ,,, tttt

C P  respectively. The sensitivity 
analysis is performed by changing each of the parameter by 50% , 20%, 20%, 10%, 10%+ + + − −  
and -  taking one parameter at a time and keeping the remaining parameters 
unchanged. The results are shown in Table 1. On the basis of the results of Table 1, the 
following observations can be made: 

%50

 
(a) With increase the value of α , the value of , ,*

3
*
2

*
1 ,, ttt *

4t *P , and the optimum cost 
 decreases. The obtained results show that  and *C  are moderately 

sensitive to changes in the value of

*S
*C *

4t
*
3 ,, t*

2
*
1 , tt

α . 
(b)  and *

4
*
3

*
2

*
1 ,,, tttt *P decrease with increase in the value of the parameter β . At the 

same instant, the optimum cost and increase with the increase of *C *S β . 
 (c) With the increase of value of parameter λ , the value of increases, but  

decreases. 

*
1t *

4
*
3

*
2 ,, ttt

*P , and the optimum cost  are moderately sensitive with *S *C λ .  
(d) As the value of parameter increases, the value of , and *

1c * *
1 2,t t *C P increase. 

Moreover,  and  decrease with increase in the value of .  *
4

*
3 , tt *S 1c

(e) ,*
4

*
3

*
2

*
1 ,,, tttt *P and  decreases with the increase the value of . But  increases 

with increase of the value of parameter C2. Moreover, 

*C 2c *S
*P and S is highly sensitive to 

change in the parameter C3. That means with the increase of values of , 

, *P and  increase and the optimum cost  increases these are highly 
sensitive to the parameter C3. 

*

3c
*
4

*
3

*
2 ,, ttt*

1 ,t *S *C
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Table 1. Sensitivity analysis. 
 

% change in 
Parameter 

% 
change t1

* t2
* t3

* t4
* C* P* S* 

α 

+50 
+20 
+10 
-10 
-20 
-50 

-17.2021 
-8.1166 
-4.3236 
+4.9936 
+10.855 
+37.448 

-16.7115 
-7.8617 
-4.1826 
+4.8166 
+10.450 
+35.752 

-16.4596 
-7.7306 
-4.1106 
+4.7256 
+10.2422 
+34.8808 

-15.9102 
-7.4483 
-3.9552 
+4.5325 
+9.8049 
+33.1090 

+20.4139 
+8.6748 
+4.4373 
-4.6684 
-9.6080 
-26.7005 

+22.9336 
+9.7291 
+4.9736 
-5.2241 
-10.7404 
-29.7216 

+21.4144 
+9.0934 
+4.6494 
-4.8884 
-10.0548 
-27.8874 

β 

+50 
+20 
+10 
-10 
-20 
-50 

-3.3390 
-1.4133 
-0.7209 
+0.7521 
+1.5379 
+4.1354 

-4.7630 
-2.0169 
-1.0288 
+1.0736 
+2.1952 
+5.8998 

-5.4951 
-2.3273 
-1.1875 
+1.2382 
+2.5380 
+6.8059 

-6.9698 
-2.9730 
-1.5209 
+1.5947 
+3.2710 
+8.8707 

+4.3982 
+1.7896 
+0.9001 
-0.9117 
-1.8358 
-4.6867 

-0.7047 
-0.3317 
-0.1749 
+0.1952 
+0.4122 
+1.2202 

+2.3966 
+0.9532 
+0.4752 
-0.4733 
-0.9420 
-2.3219 

λ 

+50 
+20 
+10 
-10 
-20 
-50 

+11.413 
+5.8447 
+3.2249 
-4.0725 
-9.3913 
-45.1570 

-7.5491 
-4.0339 
-2.2720 
+3.0466 
+7.3572 
+52.230 

-17.2919 
-9.1091 
-5.0963 
+6.7036 
+15.9612 
+102.2624 

-8.2260 
-4.3942 
-2.4748 
+3.3173 
+8.0092 
+56.7401 

+9.6408 
+4.9417 
+2.7278 
-3.4501 
-7.9644 
-38.7229 

+12.1741 
+6.2137 
+3.4232 
-4.3046 
-9.8958 
-46.6049 

+8.8255 
+4.5429 
+2.5123 
-3.1939 
-7.4012 
-36.9257 

1c  

+50 
+20 
+10 
-10 
-20 
-50 

+11.160 
+5.1616 
+2.7233 
-3.0655 
-6.5460 
-20.6684 

+10.742 
+4.9781 
+2.6285 
-2.9643 
-6.3371 
-20.1020 

-0.9153 
-0.5588 
-0.3261 
+1.0621 
+0.4565 
+5.4027 

-7.9933 
-3.8708 
-2.0825 
+2.4578 
+5.4072 
+19.4722 

+9.4701 
+4.3834 
+2.3141 
+2.6075 
-5.5717 
-17.6458 

+11.9017 
+5.4853 
+2.8899 
-3.2421 
-6.9092 
-21.6362 

-25.9889 
-12.4360 
-6.65866 
+7.7751 
+17.0002 
+59.8917 

2c  

+50 
+20 
+10 
-10 
-20 
-50 

-27.0859 
-13.0043 
-6.9712 
+8.1568 
+17.847 
+62.770 

-26.4001 
-12.6160 
-6.7497 
+7.8593 
+17.144 
+59.471 

-14.3925 
-6.9253 
-3.7157 
+4.3570 
+9.5458 
+33.7515 

-6.8956 
-3.3602 
-1.8123 
+2.1524 
+4.7536 
+17.3947 

+7.8932 
+3.7041 
+1.9659 
-2.2439 
-4.8313 
-15.7585 

-28.2488 
-13.6741 
-7.3560 
+8.6835 
+19.1083 
+69.0034 

+7.2355 
+3.4067 
+1.8112 
-2.0745 
-4.4767 
-14.7366 

3c  

+50 
+20 
+10 
-10 
-20 
-50 

+20.539 
+8.7900 
+4.5082 
-4.7692 
-9.8460 
-27.6618 

+19.712 
+8.4677 
+4.3489 
-4.6143 
-9.5421 
-26.9665 

+19.2875 
+8.3016 
+4.2668 
-4.53530 
-9.3863 
-26.6094 

+18.4055 
+7.9527 
+4.0931 
-4.3644 
-9.0493 
-25.8191 

+24.9338 
+10.4859 
+5.3431 
-5.5741 
-11.4185 
-31.2021 

+22.0251 
+9.3610 
+4.7891 
-5.0390 
-10.3722 
-28.8397 

+23.7867 
+10.0410 
+5.1237 
-5.3627 
-11.0039 
-30.2611 

 
 

6. Conclusion 
 
The demand of a product may increase with time due to the incoming of a new product, 
which may be technically good and attractive than the old one, and also the demand of the 
new product may decrease with time. The given model deals with exponential time-
dependent increasing demand. Here the rate of production depends on demand. Shortages 
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are allowed and are completely backlogged. Numerical examples and its sensitivity 
analysis for parameters are considered to assess the solution procedure. 

The present paper develops an algorithm to determine demand, which is increasing or 
decreasing exponentially with time. The proposed model is more sensitive with respect to 
the parameter β . As the value of β  decreases, the demand decreases and as the value of 
β  increases, the demand increases. Therefore this vary of demand is really seen in stock 
market. Inventory modelers considered demands so far was only two types of time-
dependent demand i.e. linear and Weibull demands. For the first case, the demand rate 
function is of the form ( )0,0,)( ≠≥+= babttR a , which implies steady increase or 
decrease in demand, which may be rarely seen to occur in the real market. For the second 
case, the demand rate function is of the form ( )0,0,1 ≠>− βαα βt)( =tR . The demand 
rate increases at 1β > , decreases at 1β <  and constant at 1β = . The time-dependent 
demand function, which we have assumed here, is of the form ( )0, 0α α β( ) ,tR t eβ= > ≠ . 
If we consider an example of real world, in which we may face such exponentially avail 
situation. 

In real market situation, demand is unlikely increase at a rate, which is very high as 
exponential. Whenever some new attractive products launched in super market or some 
seasonal items happen in beginning of season like winter, the demand of that product or 
item is increasing depending upon the rate of purchase. This type of demand is quite 
appropriate for products like winter vegetables, fruits in the city of Himachal Pradesh and 
Jammu-Kashmir, Rourkela etc. As the season progress, the demand rate goes on 
increasing and gradually approaching a saturation level. Similarly, considering the case of 
spare parts of newly introduced aircrafts, computer etc. The demand rate reaches a level of 
maximum as the production rate is increased. It may be noticed that as β  increases, the 
nonlinearity of the time-dependence demand rate increases (see Appendix C). Similarly, 
the spare parts of obsolete aircrafts, computer chip undergoes decline in demand rate. 
Therefore an exponential demand is more realistic than other type of demand.  
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Appendix A.  Solution of P and S  
 
 

Applying the condition ( ) PtQ −=1
 in equation (10), we have  

 

[ ]11 −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= teP β

β
α                                          (A1) 

 

Further applying the same condition ( ) PtQ −=1  in equation (11), we have 
 

( ) [ ]211 tt eeP ββ

β
αλ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=                                         (A2) 

 

Now equating the two values of  from Eqs. (A1) and (A2), we have  P
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( )
⎥
⎦

⎢
⎣

⎟
⎠

⎜
⎝ λβ1

                  (A3)  

Applying the boundary condition 

⎤⎡ −+
⎟
⎞

⎜
⎛

=
λ β 211log1 tet                    

( ) StQ =3  in Eqs. (12) and (13), we have the following 
relations 

( ) [ ]231 tt eeS ββ

β
αλ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=                                 (A4) 

and    [ ]34 tt eeS ββ

β
α

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=                                    (A5) 

Equating the two values of  from equations (A4) and (A5), we have  S
 

( )
⎥
⎦

⎤
⎢
⎣

⎡ −+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

λ
λ

β

ββ 24 1log1
3

tt eet                                         (A6) 

Appendix B.  Total average cost 

he total cost per cycle includes shortage cost, holding cost and set up cost. Therefore, the 
 
T
total average cost of the system is given by, 

[ ]1 cHCSCC ++=  
3

4t
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Therefore, 
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Appendix C.   Economic advantages of demand function 

he demand rate function is
 

 ( )( ) , 0, 0tR t eβα α β= > ≠
nd for different values of th

T . This functional form represents 
increasing or decreasing dema e parameter β . 
We have,                      

( ) ( ) tetdR 1−= βαβ
dt

                                                       (C1) 

( ) ( ) ( ) te
dt

tRd 2
2

2

1 −−= ββαβ                                               (C2) 

Then the following possible cases arise: 
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1. For 10 << β , ( ) 0>
dt

tdR and ( ) 02

2

<
dt

tRd , the demand increases with time at a 

decreasing rate. We may call it retarded growth in demand. This usually happens 
when some new products launched in the market. For such products, the demand rate 
goes on increasing gradually approached a saturation level. 

2. For 21 << β and 2>β , ( ) 0>
dt

tdR and ( ) 02

2

>
dt

tRd , which implies that the 

demand will go on increasing with time at an increasing rate. We may call it 
accelerated growth in demand which is seen in the case of spare parts of newly 
introduced state-of-the art aircrafts, computers etc. This also happens to the seasonal 
products like winter cosmetics, winter vegetables, fruits towards the beginning of the 
season. 

3. For 0<β , ( ) 0<
dt

tdR and ( ) 02

2

<
dt

tRd , which implies that the demand will go on 

decreasing with time at a decreasing rate. This type of demand rate undergoes an 
accelerated decline in demand. This usually happens in the spare parts of the obsolete 
aircrafts, computer chips of high technology products, which is being substituted by 
another. This is also applicable to the seasonal products towards the end of the 
season. 
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