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Abstract 

 
 
 

Quantitative structure activity relationship (QSAR) has been established for 2-
aminoquinoline-6-carboxamide melanin-concentrating hormone (MCH) 1R antagonists. 
The multiple linear regressions were used to generate the relationship between biological 
activity and calculated descriptors. From the 100 of models with r2 > 0.700 was developed. 
Final selected model was prepared using four descriptors (DMXC, KChiV4, Rcom, and 
IM1L) which are belong to topological, steric, spatial and electrotopological class 
descriptor. The validation of the model was done by cross validation; randomization and 
external test set prediction. The binding pattern of most active compound B15 was 
postulated based on the pharmacophoric features to further exploration of QSAR model 
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1.  Introduction 
 
The prevalence of obesity continues to increase throughout the world and the burden of 
obesity and related co morbidities is large. However, existing drug therapies for obesity 
are limited and agents with high efficacy, safety and tolerability are expected to meet 
patient needs and lead to more substantial commercial success. In recent years, obesity 
has become a major health problem for many post industrial societies. The number of 
deaths per year attributable to obesity is about 30,000 in the UK and nearly 400,000 in the 
United States, where obesity is set to overtake smoking as the main preventable cause of 
illness and premature death [1-3].  The total direct and indirect cost of obesity was 
estimated to be approximately €32,800 million per year in the EU and $99.2 billion per 
year in the USA [3, 4]. Obesity itself is not life threatening however; it can significantly 
increase the risk of life threatening diseases like cardiovascular disease, neurological, 
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respiratory, musculoskeletal, endocrine, gastrointestinal, genitourinary and psychological 
disorders [5].  For these reasons, the World Health Organization declared obesity a global 
epidemic [6-8], and obesity is now considered as disease that needs pharmacological 
treatments [9, 10].  Therefore, it is necessary to develop effective and safe antiobesity 
drugs to reduce the worldwide obesity epidemic.  

Melanin-concentrating hormone (MCH) is a cyclic 19-amino-acid peptide is 
synthesized exclusively by neurons, present in the lateral hypothalamus that is believed to 
be involved in energy homeostasis and feeding behavior. [11] MCH axons and receptors 
are found throughout the brain. MCH is expressed in the lateral hypothalamus and zona 
incerta and has been shown to be important for feeding and energy homeostasis in rodents 
[12, 13]. MCH1R agonists and antagonists have increased interest in MCH1R as an 
important central nervous system G-protein coupled receptor (GPCR) drug target. This 
biology and pharmacology result generated a great interest in the development of MCH1R 
antagonists for the possible treatment of obesity [14] and depression or anxiety. Many non 
peptide MCH1R antagonists have appeared in the patent literature in recent years [15] in 
an effort to obtain compounds viable for clinical validation of MCH1R antagonism as a 
therapeutic target for human health.  

Quantitative structure activity relationship (QSAR) is a useful method for the design 
of bioactive compounds and the prediction of activity from the parameters calculated from 
chemical structure of compound through ligand based drug design approach. There are 
many examples available in literature where QSAR models have been used for screening 
of compounds from the chemical databases [16, 17].  The QSAR models can be developed 
by linearly correlating the biological activity to the descriptors or the non-linear regression 
methods such as artificial neural network (ANN) can be used [18].  

In the present work even if no conclusive therapeutic agents have been identified, with 
the huge recent increase in our knowledge on the molecular modeling processes involved 
in drug design, we have tried to identify the associated molecular properties and exploited 
them to optimize MCH1 antagonistic activity from the available chemical databases. The 
model can be used for virtual screening by applying Lipinski’s rule filters for initial 
screening and then predicting the activity by QSAR model.  

 
2. Materials and Method 
 
The inhibitory activity of the aminoquinoline analogues was taken from literature in terms 
of IC50 values in nM [19].  Total set of 29 compounds was divided in training and test set 
of 23 and 6 compounds respectively, by dividing compound into four groups based on 
range of activity. Selection of training and test set was made by keeping in mind that all 
four groups compound are included in both set. To make the interpretation more clear, the 
originally reported IC50 values of nM is converted to picomolar values, so that the pIC50 
values lies in positive range for easy and clear interpretation.  
     

pIC50 = - logIC50                                                                                                         (1) 
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The structures of compounds used in the study along with observed IC50 values are 
provided in Table 1. 
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General structure of aminoquinoline derivative. 
 

Table 1. Chemical and biological dataset, class for test or training set, IC50, pIC50 of compound. 
 

 t/ T Comp 
No R IC50 

nM 
pIC50 
pM 

 t/ 
T 

Com 
No R IC50 

nM 
pIC50 
pM 

T A1 N
H

H

 
240 1.620 T B2 N

Me

 

5 3.301 

T A2 N
CH3

H

 
20 2.699 T B3 N

Me
 

2 3.699 

T A3 N
CH3

CH3

 
13 2.886 T B4 N

CO2Me

 
800 1.097 

T A4 N
CH3

CH3

 
10 3.000 T B5 N

Ph
 

25 2.602 

T A5 N
CH3

CH3
CH3

 
2 3.699 T B6 N

NH2
 

12 2.921 

T A6 N
Et

Et

 
88 2.056 t B7 N

N
H

Me

O

 

5 3.301 

t A7 N
Pr

Pr

 
490 1.310 t B8 N

N
H

Ph

O

 
10 3 

t A8 N
Pr  

2 3.699 T B9 N
N
H

O
Me

Me  

0.99 4.004 

T A9 N
Pr  

11 2.959 T B10 N N
H

N
H

O
Me

 
6 3.222 

T A10 N
Pr  

3700 0.432 T B11 N N
H

NHSO2Me
O

 
3 3.523 

T A11 N
 

4 3.398 T B12 N
 

0.99 4.004 

T A12 N
 

3 3.523 t B13 N O
 

13 2.886 
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Table 1 (contd.) 

T A13 N
 

12 2.921 T B14 N NH
 

210 1.678 

T A14 N
 

36 2.444 T B15 
N

 
0.5 4.301 

t A15 N
 

3 3.523  
     

 

   T = training set compound, t = test set compound. 
 
The molecular structures of all 29 compounds were sketched using the chemdraw 

module of chemoffice 2004 software and energy minimized via steepest descent, 
conjugative gradient, and truncated Newton methods in sequence using MMFF94 as force 
field with energy tolerance value of root mean square gradient 0.001 kcal/mol and 
maximum number of iteration was allowed to 1000 [20, 21] in MOPAC 6.0. The 
following specific software options were employed while performing AM1 studies: 
convergence = normal, optimization = full, state = singlet, net charge = 0 e.u., time limit = 
3600 s, keyword = mmok. Conformational search of each energy-minimized structure was 
performed using the stochastic approach. The stochastic conformational search method is 
similar to the RIPS method, which generates new molecular conformation by randomly 
perturbing the position of each coordinate of each atom in molecule followed by the 
energy minimization. A total of more than 900 descriptors were calculated using 
chemoffice 2008, Adriana code [22], and Tsar 3.3 software package [23]. A brief 
description of descriptors used which include topological descriptors, spatial descriptors, 
E-state indices, thermodynamic, electronic and structural descriptors is provided in Table 
2.  

From the total calculated descriptors, some of the descriptors were rejected because 
they contain a value of 0 for all the compounds. The reason for the value of 0 for all the 
compounds for these descriptors was that there is no atom corresponding to these 
descriptors in any of the compounds. Further, the inter-correlation of descriptors was 
taken in to account and highly correlated descriptors were grouped together manually by 
analyzing the correlation matrix. Only one descriptor was then taken for further study 
from each group of highly correlated descriptors. Only remaining descriptors were 
considered for model development by multiple regression method. The multiple 
regression method works in the following way: first of all few equations (set at 100 by 
default in the TSAR software) are generated randomly by MATLAB 7.0 [24]. The 
sequential multiple linear regression analysis method was employed. The ± data within 
the parentheses are the standard deviations associated with the coefficient of descriptors in 
regression equations. The best model was selected from the various statistically significant 
equations on the basis of the observed squared correlation coefficient (r2), the standard 
error of estimate (SE), the sequential Fischer test (F), the cross validated squared 
correlation coefficient using leave one- out procedure (r2

cv), chance statistics (evaluated as 
the ratio of the equivalent regression equations to the total number of randomized sets; a 
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chance value of 0.001 corresponds to 0.1% chance of fortuitous correlation), outliers (on 
the basis of residual pIC50 value), and the predictive squared correlation coefficient of the 
test set (r2 pred) for final selected model. 
 

Table 2. Description of the parameters used in the study.     
 

 

Com 
No 

1/DM
XC KChiV4 Rcom 1/IM1

L CoToE Com 
No 

1/DM
XC KChiV4 Rcom 1/IM1

L CoToE 

A1 1.217 1.152 1.125 0.014 -497.668 B2 -0.188 1.871 1.095 0.013 -7.108 

A2 0.573 1.206 1.125 0.013 -350.641 B3 -0.193 1.807 1.095 0.013 -6.730 

A3 -0.366 1.478 1.125 0.013 -10.6886 B4 1.970 1.829 1.095 0.013 -137.52 

A4 -0.210 1.506 1.125 0.013 -9.65403 B5 0.885 2.054 1.074 0.013 -177.04 

A5 -0.209 2.003 1.125 0.012
8 -13.3197 B6 -0.193 1.666 1.095 0.012 -7.728 

A6 0.872 1.554 1.125 0.013 -286.836 B7 -0.117 1.771 1.095 0.010 -26.406 

A7 1.970 1.388 1.125 0.013 0.0000 B8 0.187 1.973 1.074 0.010 -3.783 

A8 -0.207 1.916 1.095 0.012 -2.7245 B9 -0.118 2.126 1.095 0.011 -13.484 

A9 -0.208 1.916 1.091 0.013 -9.1876 B10 -0.104 1.793 1.095 0.011 -29.646 

A10 3.032 1.662 1.091 0.014 -319.511 B11 -0.220 2.193 1.095 0.012 -34.615 

A11 -0.175 1.488 1.100 0.012 22.9161 B12 -0.183 2.158 1.217 0.015 5.3972 

A12 -0.207 1.488 1.095 0.012 -5.0963 B13 1.970 1.971 1.217 0.014 0.0000 

A13 -0.190 1.488 1.091 0.011 -8.2373 B14 5.714 2.028 1.217 0.013 -211.17 

A14 0.673 1.488 1.087 0.011 -291.409 B15 -0.202 2.717 1.120 0.010 3.113 

A15 2.141 2.202 1.250 0.013 -0.010       

DMXC = Dipole moment X Component, KCHiV4 = Kier Chi V4 index,Rcom = Ring complexity, IM1L = inertial moment 1 
Length, CoToE = Cosmic total energy. 
 
 

The training set was subjected to sequential multiple linear regression analysis, in 
order to establish a correlation between physicochemical parameters and MCH1 receptor 
antagonist activity. Several significant equations with coefficients of correlation (r) > 
0.700 were obtained, a high correlation coefficient alone is not enough to select the 
equation as a model and hence the internal consistency of the training set was confirmed 
using the leave one out (LOO) and leave many out (LMO- 33%) cross validation method 
to ensure the robustness of the equations. Although a few equations showed good internal 
consistency (q2 = 0.300–0.700), they may not be applicable for the analogs which were 
never used in the generation of the correlation and therefore, the predictive power of Eqa 
3 (model 4; Table 3) was further confirmed by a test set of six compounds. 

The goodness of each progeny equation is assessed by Friedman’s lack of fit (LOF) 
score, which is described by following formula                      

LOF  = LSE/ {1 – (c + d p) /m}2                                                                                  (2)  
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where LSE is the least square error, c is the number of basic functions in the model, d is 
smoothing parameter, p is the number of descriptors and m is the number of observations 
in the training set [12]. The smoothing parameter that controls the scoring bias between 
equations of different sizes was set at default value of 1.0 and the new term was added 
with a probability of 50%. Only the linear equation terms were used for model building. 
The best equation out of the 100 equations was taken based on the statistical parameters 
such as regression coefficient, adjusted regression coefficient, regression coefficient cross 
validation and F-test values. 
 
3. Results and discussion 

 
As a rule of thumb, data set should be approximately five times more than the number of 
descriptors used in the model [25].  Thus, descriptor reduction was done as described 
above. The results of the best QSAR model developed using forward selection method for 
one to five descriptors are given in Table 3.  
 

 

Table 3. Statistical assessment of equations with increasing number of descriptors. 

 

No. Equation LOF r2 r2
adj F q2 RSS PRESS 

1 P(IC50)  = -0.202(±0.037) * 
1/DMXC - 2.195(±0.823) 

0.249 0.544 0.519 25.088 0.295 9.341 0.022 

2 P(IC50) = - 5.604(±1.523) *1/DMXC +
1.174  (±0.430)* KChiV4  
- 6.182 (±1.085) 

0.215 0.769 0.641 21.132 0.368 4.724 0.194 

3 P(IC50) = -14.391(±1.890) * 1/DMXC
+ 0.175 (±0.045)* KChiV4 + 3.264 
(±1.350)*Rcom  - 7.656(±.0003) 

0.207 0.821 0.793 23.000 0.479 3.179 4.325 

4 p(IC50) = - 0.550(±0.063) 1/DMXC  +
0.711(±0.242) KChiV4 + 12.009 
(±2.662) Rcom  - 68.312(±81.421)* 
1/IM1L - 8.083(±0.892) 

0.193 0.879 0.853 32.827 0.597 2.470 1.167 

5 P(IC50) =  -289.346(±92.205)* 
1/IM1L + 0.368(±0.063) *  KChiV4 
- 0.012(±4.623)* Rcom - 
1.659(±0.469)* 1/DMXC -
0.008(±0.003)* CoToE - 8.422 
(±0.058) 

0.213 0.905 0.854 32.431 0.437 1.944 19.927 

 
As the r2 value can be easily increased by increasing the number of descriptors in the 

model, so cross validated correlation coefficient (q2) was used as a parameter to select the 
optimum number of descriptors. The variation in cross validation correlation coefficient 
(q2) as a function of number of descriptors is shown in Fig. 1.  
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Fig. 1.  Number of descriptor vs. q2. 
 

 
The best model according to the value of q2 was obtained with four descriptors and is 

given as:  
 
p(IC50) = - 0.550(±0.063) 1/DMXC + 0.711(±0.242)* KChiV4 + 12.009(±2.662) * Rcom –  
 

                   268.312(±81.421)* 1/IM1L - 8.083(±0.892)                                                                  (3) 
 
n = 23; LOF = 0.193; r2 = 0.879, r2adj = 0.853; F = 32.827; SE = 0.370; r = 0.938; q2 = 0.597, r2 
pred = 0.535, r2

cv LOO = 0.923, r2
cvLMO = 0.8806 

Here n is number of compounds in training set, LOF is Lack of Fit score, r2 is squared 
correlation coefficient, r2adj is square of adjusted correlation coefficient, F is a variance 
related static which compares two models differing by one or more variables to see if the 
more complex model is more reliable than the less complex one, the model is supposed to 
be good if the F-test is above a threshold value, SE is standard error, r is correlation 
coefficient, q2 is the square of the correlation coefficient of the cross validation, r2pred is 
the predicted correlation coefficient calculated from the predicted activity of the test set 
compounds.  

The five descriptors selected by Tsar 3.3 to develop the model, belong to four different 
descriptor classes. DMXC: Electronic parameters are of critical importance in determining 
the types of intermolecular forces which underlie in drug-receptor interactions.  Extensive 
studies using electronic parameters reveal that electronic attributes of molecules are 
intimately related to their chemical reactivities and biological activities. The extent to 
which a given reaction responds to electronic perturbation constitutes a measure of the 
electronic demands of that reaction, which is determined by its mechanism. The 
introduction of substituent groups into the framework and the subsequent alteration of 
reaction rates helps delineate the overall mechanism of reaction. Quantum chemical 
descriptors such as net atomic charges, Dipole moment and their component derivation to 
specific axis, highest occupied molecular orbital lowest unoccupied molecular orbital 
(HOMO-LUMO) energies, frontier orbital electron densities, and super delocalizabilities 
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have been shown to correlate well with various biological activities. Dipole moment X 
component (DMXC) is the important molecular descriptor which depicts the directional 
electronic energy of the compound which is very useful in postulating the ligand 
interaction [26]. KchiV4: Hall and Kier have developed molecular connectivity indices 
(Chi) that reflect the atom identities, bonding environments and number of bonding 
hydrogen. These Kier indices are consequently useful in a wider variety of applications. 
Hall and Kier defined four series of fragment categories: Path, Cluster, Path/Cluster, and 
Ring. The spread and numbers of fragment membership for each category is determined 
by molecule connectivity. ChiV indices are based on these fragment categories, also 
incorporating information about the bonding environment. Chiv indices represent 
structure information that organizes molecular structures into chemically meaningful 
patterns. Based on this information, one can navigate through this structure space. The 
immediate neighborhood of any structure in this space consists of similar structures. 
Library screening in this space takes advantage of this structure information and provides 
a basis for similarity screening [26]. RCom: It is a ring complexity molecular descriptor 
calculated according to the approach by Gasteiger and Jochum [28].  For a given ring 
system (single, bridged or fused), the ring complexity is the ratio of the sum of the number 
of atoms of each individual ring of the ring system to the sum of all atoms that belong to 
at least one ring in the entire ring system and it is derived from the 2D structure diagram 
of a molecule. The descriptors belong to global molecular descriptor which explains the 
overall molecule rigidity for interaction with receptor. Ring complexity for 
aminoquinoline series of analogues has important application in predicting their activity in 
inhibiting the MCH1 receptor. IM1L: The moments of inertia and principal axes of inertia 
for a molecule are calculated using the inertia tensor, with standard methods of calculation 
[21]. These descriptors are reported as Moment 1 Size, Moment 1 Length, etc. The 
volume defined by these values is calculated and reported as the Ellipsoid Volume. In 
addition, one can view the molecule and an ellipsoid of inertia. The ellipsoid’s principal 
axes are aligned with the axes of the inertia tensor. The length of each axis is inversely 
proportional to the moment of inertia around that axis. The resulting ellipsoid is then 
scaled so that the atom furthest from the centre of gravity of the molecule appears on the 
ellipsoid surface. IM1L explains the steric parameter to the specific axis in the form of 
ellipsoidal volume to define the biological interaction between ligand and compound. The 
inter correlation of the descriptors used was checked and is provided in the form of 
correlation matrix (Table 4).  
 

 Table 4. Correlation matrix of descriptors used in Eq. 3. 
 

 CoToE IM1L DMXC KChiv4 RComplx 
CoToE 1     
IM1L 0.353 1    
DMXC -0.533 -0.555 1   
KChiv4 0.466 0.256 -0.362 1  
RCom 0.035 -0.433 0.115 0.252 1 
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The developed Eq. (3) (Table 3) was used to predict the activity of test set compounds 
and the predicted activity for training and test set compounds are given in Tables 5 and 6, 
respectively.  

Table 5. Observed and predicted activity and residual variance of training set compounds. 
 

Comp 
No. 

Act 
PIC50 

Pre 
PIC50 

Residual 
pIC50 

Comp 
No 

Act 
PIC50 

Pre 
PIC50 

Residual 
pIC50 

A1 1.620 1.706 -0.086 B5 2.602 2.284 0.318 
A2 2.699 2.417 0.282 B6 2.921 3.022 -0.101 
A3 2.886 3.190 -0.304 B9 4.004 3.792 0.213 
A4 3.000 3.237 -0.237 B10 3.222 3.364 -0.142 
A5 3.699 3.520 0.179 B11 3.523 3.541 -0.018 
A6 2.055 2.453 -0.397 B12 4.004 4.197 -0.193 
A9 2.959 3.035 -0.076 B14 1.678 1.276 0.402 

A10 0.432 0.758 -0.326 B15 4.301 4.658 -0.357 
A11 3.398 2.984 0.414 A7 1.310 1.797 -0.487 
A12 3.523 3.135 0.388 A8 3.699 3.384 0.315 
A13 2.921 3.191 -0.270 A15 3.523 3.866 -0.343 
A14 2.444 2.675 -0.231 B7 3.301 3.707 -0.406 
B2 3.301 2.934 0.367 B8 3.000 3.312 -0.312 
B3 3.699 2.967 0.732 B13 2.886 3.114 -0.228 
B4 1.097 1.651 -0.554     

 
The correlation of predicted activity to the observed activity is shown scatter plot 

shown in Fig. 2 for training and test set. Scatter plot shows that the predicted and actual 
pIC50 values are having linear relationship and is fitting to the linear line plotted in the 
graph. The value of residual p(IC50) gives idea about outliers of the test which is defined 
as the more than a twice the standard deviation of the valid model. Further validation of 
the developed model was done by randomization test. The test was done by repeatedly 
permuting the activity values of the data set and using the permuted values to generate 
QSAR models and then comparing the resulting scores with the score of the original 
QSAR model generated from non-randomized activity values. If the original QSAR model 
is statistically significant, its score should be significantly better than those from permuted 
data [29]. 

 

 
 

Fig. 2. Scatter plot of actual vs. predicted p(IC50) test and training set compound. 
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The randomization test was performed at 95% and 99% confidence interval. The 
higher the confidence level, the more randomization tests are run. 22 trials at 95% and 99 
trials at 99% were permuted to check randomization of the model. The r value of the 
original model was much higher than any of the trials using permuted data. Hence, the 
model is statistically significant and robust. The results of randomization test at various 
confidence levels are shown in Table 7.  

 
Table7.  Results of randomization test performed to check the validation of model. 

 

confidence level 95% 99% 

Total trial 22 99 

r from non random 0.938 0.938 

Random r's > non random r's 0 0 

Random r's < non random r's 22 99 

Standard deviation of random trial 0.251 0.297 

Standard deviation of non random to mean 4.208 3.401 

 
So it is clear that the model satisfy all the validation criteria i.e. leave one out cross 

validation, randomization test and external set prediction which are considered to be 
optimum validation test of QSAR model. Good results are obtained in each of the 
validation technique.  

From Table 3, dipole moment X component (DMXC) is the most important molecular 
descriptor for the predicting the MCH1 receptor activity. DMXC is applicable in 
reciprocal format and its contribution is negative in predicting the biological activity. It 
shows that the functional group such as in compounds B11, B15 shows good electronic 
feature in specific direction and their values for DMXC is so lower. Simultaneous in 
compounds such as A1, A7 and A10 functional groups are aromatic and bulkier functional 
group but they are not supporting the activity. It is also clear that Kier Chi V4 path index 
is the most important descriptor for the MCH1 receptor antagonistic activity as it is 
present in all the equations. So it can give an idea about the activity of the compounds. In 
all accepted model, the coefficient associated with KChiV4 is positive, which shows that 
equations are valid and with increase in the value of KChiV4, there is an increase in the 
activity. Since kier Chi V indices are the measure of the atomic arrangement in the 
compound which explained Hydrogen bond interaction with receptor. So functional 
groups which increase KChiV4 value will increase the activity of the compound by 
producing MCH1 receptor antagonistic activity. Compounds with higher KChiV4 value 
high such as A5, A15, B11, and B15 are having good binding coefficient with the 
receptor. Third most important molecular descriptor for prediction of MCH1 receptor 
binding efficiency of aminoquinoline series of compound is Ring complexity (Rcom). The 
descriptor contributing positively, i.e. as its value increase there is good binding. Further, 
the descriptors inertial moment descriptor IM1L contribute negatively so functional group 
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increases its activity will reduce the activity. Overall, molecular descriptor DMXC, 
KChiV4, Rcom, and IM1L show that the overall shape, size, rigidity and branching in the 
molecule is critical for activity and should be considered during designing the drug for 
MCH1receptor antagonistic behavior.  
 
4. Conclusion 
 
The QSAR model of MCH1 antagonistic activity have been developed based on Dipole 
moment X component, Kier Chi V index, is a topological indices, inertial moment a steric 
parameter and molecular orbital and energy related electronic descriptors to estimate and 
predict relative antagonistic activity of 29 aminoquinoline derivative of MCH1 antagonist. 
The predictive ability of model was demonstrated by using LOO cross validation 
technique, randomization test as well as external test set prediction. The binding pattern 
and proposed pharmacophore features of compound B15 provide a good platform in 
designing new molecule of the series. The results presented above show that these 
descriptors can be used to describe the structure activity relationship of MCH1 antagonist 
and its performance based on statistical parameters is satisfying and can provide a good 
platform for designing new MCH1 receptor antagonist of the series. 
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