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Abstract 

In this paper, the flow of a viscous conducting liquid with uniform distribution of dust 
particles in a channel is considered under the influence of a uniform transverse magnetic 
field with pressure gradient varying linearly with time. The velocities of fluid and dust are 
found to decrease with the increase of the magnetic parameter. Further that the velocity of 
the fluid particles is observed to be more than that of dust particles. 
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1. Introduction 

Interest in problems of mechanics of systems with more than one phase has developed 
rapidly in recent years. The study of fluids having uniform distribution of solid spherical 
particles is of interest in a wide range of areas of technical importance. These areas 
include fluidization (flow through packed feds), flow in rocket, tubes, where small carbon 
or metallic fuel particles are present, environmental pollution, the process by which rain 
drops are formed by the coalescence of small droplets, which might be considered as solid 
particles for the purpose of examining their movement prior to coal scene, combustion and 
more recently blood flow in capillaries. Attia [1] studied unsteady flow of a dusty 
conducting fluid between parallel porous plates with temperature dependent viscosity. 
Effect of Hall currents on the MHD flow and heat transfer of a second order fluid between 
two parallel porous plates was studied by Bhargava and Takhar [2]. Hazem Attia and 
Kotb [3] studied the MHD flow between two parallel plates with heat transfer. Aboul-
Hassan et al. [4] presented a paper on temperature due to motion of one of them between 
two parallel plates. Reddy [5] studied the flow of dusty viscous liquid through rectangular 
channel. Work in this field has been carried out by several researchers [6-8]. Saffman [9] 
investigated the stability of a laminar flow of a dusty gas which is very useful for this 
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work. The previous studies done by Bathaiah [10], Sparrow and Cess [11] are much useful 
in the present study. 

In the present investigation, an attempt has been made to study the flow of a dusty 
viscous and slightly conducting liquid between two parallel flat plates under the influence 
of a uniform transverse magnetic field. The fluid velocity and the velocity of dust are 
evaluated and the effect of magnetic field on these velocities is investigated. It is observed 
that the velocities of fluid and dust decrease with the increase in magnetic parameter M. 
Further it is noticed that the velocity of the fluid particles is more than that of dust 
particles. 
 
2. Formulation and Solution of the Problem 
 
We consider the flow of a dusty viscous, slightly conducting liquid between two parallel 
flat plates under the influence of a uniform transverse magnetic field. It is assumed that 
the fluid is of small electrical conductivity with magnetic Reynolds number much less 
than unity, so that the induced magnetic field can be neglected in comparison with applied 
magnetic field. 

The equations of motion of a dusty conducting viscous, unsteady and incompressible 
fluid in the absence of input electric field are [12, 13]:  
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where u  and v are velocities of fluid and dust particles respectively; t, the time, p, the 
fluid pressure; ρ, the fluid density; υ, the kinematic coefficient of viscosity; k, the Stokes’s 
resistance coefficient which for spherical particle of radius r is 6πμr. N represents the 
number density of the dust particles, μe the magnetic permeability, J the current density, H 
the magnetic field and m the mass of the dust particles. 

The x-axis is taken along the mid way of the channel and a straight line perpendicular 
to that is taken as the y-axis. The magnetic field of intensity H0 is introduced in the y-
direction.  

For the present problem the velocity distribution of fluid and dust particles are defined 
respectively as  

u1 = u1(y, t),   u2 = 0,   u3 =0  
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                v1= v1(y, t),   v2 = 0,   v3 = 0                              (5) 

 
where (u1, u2, u3) and (v1, v2, v3) are the velocity fields of fluid and dust, respectively. 

Now using these, Eqs. (1) and (2) become 
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where   
ρ

mNl = (mass concentration), and  
K
m

=τ  (time relaxation).  

 

The boundary conditions are  
 
      u1 = 0, v1 = 0     at      y = -h                   
               (8) 
      u1 = 0, v1 = 0      at     y = +h                                                                                         
  

We introduce non-dimensional quantities t1, u1
1, v1

1, x1, y1, p1and z1, As follows 
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where u0 is the characteristic velocity and h the half distance between the plates. 
In view of Eq. (9), Eqs. (6) and (7) reduce to (dropping primes). 
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ν

μ hR 0= (Reynolds number) and   
μ
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0

2 hHM e=  (magnetic parameter) 
 

Eliminating v1 from the Eq. (10) and (11), we obtain 
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The boundary conditions in the non-dimensional form are 

 
       u1 = 0, v1 = 0     at      y = -1                                                                                       (13) 
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 u1 = 0, v1 = 0      at     y = 1 
 

Suppose that  
 

  ata
x
pR +=

∂
∂

− 0                                                                                  (14) 

and   
( )( ) (yagatayfu )++= 01                                                                    (15) 

 

 

where f and g are functions of y only. 
 

In view of Eqs. (14) and (15), Eq. (12) reduces to 
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where primes denote differentiation with respect to y we can obtain the expressions for 
f(y) and g(y) from Eq.  (16) by equating the coefficients of (a0+at) and a to zero 

Thus  
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Then from Eqs. (15), (17) and (18), we obtain the velocity of the fluid 
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From Eqs. (11) and (19) we get the velocity of the dust 
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3. Results and Discussions 
 
The results obtained on the velocity of the fluid particles (u1) and dust particles (v1) due to 
the variation of the parameters l, τ and t under the influence of the magnetic field are 
shown in Figs. 1-4. It is noticed that variation in magnetic parameter (M) causes 
significant changes in the velocity of fluid particles as well as in the velocity of dust 
particles. It is observed that the velocity of both the fluid and dust particles decreases as 
the magnetic parameter M increases. But a close look at Fig.1 reveals that the effect of 
magnetic parameter M is slight on the velocity of the dust particles when compared to the 
fluid particles. This result follows the logic that the velocity of the fluid particles is more 
than that of the dust particles.  
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               Fig. 1. Velocity profile for different values of M for (a) fluid particles and (b) dust particles.         
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Fig. 2. Velocity profiles for different values of mass concentration l for (a) fluid particles and (b) dust particles.   
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  Fig. 3. Velocity profile for different values of time relaxation τ for (a) fluid particles and (b) dust particles.     
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Fig. 2 illustrates the effect of mass concentration l on the velocity of the fluid and dust 
particles. It is noticed that velocity of the fluid and dust particles decreases with the 
increasing values of mass concentration l. This is in agreement with the fact that the mass 
of the dust particles is small, then the influence of the fluid flow is reduced and as m → 0, 
the fluid becomes ordinary viscous.    
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Fig. 4. Velocity profile for different values of time t for (a) fluid particles and (b) dust particles. 
 
The effect of time relaxation τ on the velocities of fluid and dust particles is shown in 

Fig. 3. It is observed that the velocity of fluid particles increases with increase in τ, 
whereas in case of dust particles the trend is reversed and the dust particle velocity tends 
to zero as τ increases. If the dust is very fine, i.e. mass of the dust particles is negligibly 
small, then the relaxation time of dust particles decreases and ultimately as τ → 0 the 
velocities of fluid and dust particles will be the same. Finally in case of time t as shown in 
Fig. 4, we observe that the velocity of both fluid and dust particles increases with the 
increase in time. For t > 3, considerable difference is not observed in the velocity of fluid 
and dust particles. 
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