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Abstract 
 

The set of all convex sublattices CS(L) of a lattice L have been studied by a new approach. 
Introducing a new partial ordering relation “ ≤ ” it is shown that CS(L) is a lattice. 
Moreover L and CS(L) are in the same equational class. A number of properties of (CS(L); 
≤) has also been included.  
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Convex sublattices of a lattice have been studied by many authors including Koh [1-2]. 
Set of all convex sublattices of a lattice L is denoted by CS (L). By K. M. Koh [2] CS 
(L) with the empty set is a lattice. On the other hand standard convex sublattices of a 
lattice L have been studied by Fried and Schmidt [3]. Recently Lavanya and Bhatta [4] 
have introduced a new partial ordering relation on CS(L), under which CS(L) is a 
lattice. Moreover L and CS(L) are in the same equational class. On CS(L), they 
defined the partial order “ ≤ ” as follows: 

For A, B ∈ CS(L), A ≤ B if and only if “for every a ∈ A there exists a b ∈ B, such 
that  a ≤ b and for every b∈ B there exists an a ∈ A, Such that b ≥ a.” It is easy to see 
that ‘≤’ is clearly a partial order and (CS(L); ≤) forms a lattice, where for A, B ∈ 
CS(L),  
Inf {A, B} =A B 
     = 〈{a∧b|a∈A, b∈B}〉 
     = {x∈L|a∧b≤x≤a1∧b1 for some a, a1∈ A and b, b1∈ B}   
Sup {A, B} =A B 
      = 〈{a∨b| a∈A, b∈B}〉 
      ={x∈L|a∨b≤x≤ a1∨b1for some a, a1∈A and b, b1 ∈B} 
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and for any non-empty subset H of L, 〈H〉 denotes the convex sublattice generated by 
H. Note that A B and A B have also been studied by J. Nieminen [5],where the 
author studied the distributive and neutral sublattices. 

In this paper we studied the structure of CS(L) with this new approach and then 
include some properties  of (CS(L); ≤). We have also given a nice characterization of a 
standard element of CS(L).  

We start with the construction of (CS(L); ≤) of a lattice L of Fig. 1.  
 
 
 

  
 
 
 
 
 
 

             Fig. 1.                                                           Fig. 2.          
 
 

It is easy to check that Fig. 2 represents the lattice “ (CS(L); ≤)”. Now we include 
some properties of “ (CS(L); ≤)”. We know that for any congruence of a lattice L, each 
congruence class is an element of CS(L). We have the following results:  
 
Theorem 1. For any Congruence Θ  of a lattice L, [a] Θ  ≤[b]  in Θ

Θ
L  if and only if 

[a] ≤ [b] Θ  in CS(L). In other words, the quotient lattice Θ
Θ
L  is a subposet of 

(CS(L);≤) but 
Θ
L  is not necessarily a sublattice of CS(L). 

Proof: Suppose[a]  ≤ [b] Θ  in Θ
Θ
L , let s∈[a] Θ  then [s]  =[a] ≤ [b] Θ  in Θ Θ

Θ
L  Thus 

[b]  =[b] ∨[s] = [b∨s] , this implies that b∨s∈[b] Θ  and s≤ b∨s. On the other 
hand, let t∈[b] . Then [a] Θ ≤[b] =[t]  in 

Θ Θ Θ Θ

Θ Θ Θ
Θ
L . Thus [a] Θ =[a]  ∧ [t] Θ =[a∧t] 

, which implies that a ∧ t ∈[a] Θ  and t ≥ a ∧t. Therefore, by the definition of ‘≤’ in 
CS(L), [a] Θ ≤ [b] Θ  in CS(L). 

Θ

Θ

Conversely, let [a] ≤[b] in CS(L). Since a∈[a] m so there exists t∈ [b] Θ  such 
that a ≤ t. Then a = a∧t

Θ Θ Θ
≡ (a∧b)  and so [a] Θ =[a∧b]  =[a] Θ ∧[b]  in Θ Θ Θ

Θ
L  This 

implies [a] Θ ≤ [b]  in Θ
Θ
L . 

 
To prove the last part, consider the following lattice L in Fig. 3. 

a b c

1

0

{1} 

{b} {c} 

{0} 

{c,1} {a,1} {b,1} 

{a} L 
{0,b} {0,c} {0,a} 
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                                         Fig. 3. 
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Consider the congruence Θ ={0,a}, {b}, {c}, {1}, In 

Θ
L , [b] Θ ∧[c] Θ  = [b∧c] Θ  = 

[a] ={0,a}. But in CS(L), [b] Θ ∧[c] ={a}. Therefore Θ Θ
Θ
L is not a sublattice of 

CS(L).  
 
Theorem 2.  For any A, B ∈ CS(L), A≤B if and only if (A]⊆(B] and [A)⊇ [B). 
 

Proof:  Suppose A ≤B, let a ∈(A], then a≤ a1 for some a1∈A. Since A≤B, so there 
exists a b1 ∈ B such that a ≤ b1 and so a∈(B]. Hence (A] ≤ (B]. Now let b∈[B), then b 
≥ b1 for some b1 ∈B. Since A ≤ B, so there exists a1∈A such that b1≥ a1. Thus b ≥ a1 
which implies that b∈[A). Hence [A) ⊇ [B). 

Conversely, suppose (A] ⊆ [B) and [A) ⊇ [B). Let a∈A, then a∈(A] ⊆ (B]. This 
implies that a ≤ b for some b∈B. Again for any b∈B, b∈ [B) ⊆ [A) and so b ≥ a for 
some a∈A. Hence by definition, A ≤ B in CS(L).   

For a lattice L, I(L) and D(L) are Lattice of ideals and dual ideals respectively.  
From the above theorem, we have the following corollary.  
 

Corollary 3. For I, J∈I(L), I ≤ J if and only if I ⊆ J and for D, K∈ D(L), D ≤ K if and 
only if D ⊇ K.   
 

Theorem 4. For any lattice L, I(L) is a principal ideal generated  by L in CS(L) and 
D(L) is a principal dual ideal generated by L in CS(L). 
 
Proof:  By Corollary 3, I(L) is a sublattice of CS(L) with L as its largest element. Now 
let I∈ I(L) and A ∈ CS(L) with A ≤ I. We need to show that A has the hereditary 
property. Suppose, x ∈ A and y ≤ x. Since x ∈ A and A ≤ I, so by definition there 
exists i ∈ I, such that x ≤ i. Since I is an ideal, so y ≤ x ≤ i implies that y∈I. Now A ≤ I 
implies that there exists an element z∈A, such that y ≥ z. Then z ≤ y ≤ x and so by 
convexity y∈A. Hence A has the hereditary property and thus A is an ideal, that is, A∈ 
I(L). Therefore I(L) is an ideal of CS(L) with L as its largest element and so it is a 
principal ideal generated by L. Similarly, we can show that D(L) is a principal dual 
ideal generated by L in CS(L).  
 

Observe that in Fig. 2, both I(L) and D(L) are principal ideal and principal dual 
ideal respectively, in CS(L) generated by L. 
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Since I(L) is a sub lattice of CS(L), we have the following result. 
 

Theorem 5. The mapping f: L → CS(L) defined by f(a)= (a] is an embedding. 
Moreover, an element a is join irreducible in L if and only if f(a) is join irreducible in 
CS(L). 
 
Proof:  The mapping f is obviously an embedding of L into CS(L). Now suppose a is 
join irreducible in L. Let for A, B ∈ CS(L), A B= f(a)=(a], implies A ≤ (a] and B ≤ 
(a] in CS(L).Then each x∈A implies x ≤ a, so x∈(a] and hence A⊆ (a]. Similarly 
B⊆(a]. Since a∈ A B, so by definition a1∨ b1 ≤a≤a2 ∨ b2 for some a1,a2 ∈A and b1,b2 
∈B. Now A, B ⊆ (a] so a2,b2 ≤ a, thus a = a2 ∨ b2.Since a is join irreducible so either a2 
= a or b2=a. Without loss of generality, suppose a =a2, then a∈ A. Now we prove that A 
= (a]. If not, then there exist an element t ∈(a] such that t∉A. Since t∈ (a] =A B, so 
there exist p1,p2∈A; q1,q2 ∈ B, such that p1∨q1 ≤ t ≤ p2 ∨ q2 this implies p1≤ t ≤ a and 
so by convexity t∈ A, which is a contradiction. Therefore A= (a]. Similarly, by 
considering a =b2  we can show that B= (a], therefore f(a) =(a] is join irreducible in 
CS(L).  

Conversely, suppose f(a) is join irreducible in CS(L). Let a=b∨c in L, then 
(a]=(b]∨(c] =(b]  (c]  in CS(L). Since f(a) =(a] is join irreducible in CS(L), so either 
(b]= (a] or (c]= (a], that is, either b=a or c=a. Therefore a is join irreducible in L.  

Since D(L) is also a sub lattice of CS(L) a dual proof of above gives the following 
result. 
 

Theorem 6. The mapping f : L → CS(L) defined by f(a)= [a) is an embedding. 
Moreover, an element a is meet irreducible in L if and only if f(a) is meet irreducible in 
CS(L).  
 

The following theorem is due to S. Lavanya and S. P. Bhatta [4]This gives a clear idea 
on the structure of (CS(L);≤). 
 

Theorem 7. For any lattice L the map f: CS(L) → I(L)×D(L) defined by for any X∈ 
CS(L), f(x)=((X],[X)) is an imbedding. In fact, CS(L) is isomorphic to the sublattice 
{(I,D) ⎢I ∈ I(L), D ∈D (L), I ∩D ≠ φ} of I(L)×D(L)  
 

We know from Grätzer [6] that the identities of lattices are preserved under the 
function of sublattices, homomorphic images, direct products, ideal lattices and dual 
ideal lattices. Also it is easily seen that L can be embedded in CS(L). Therefore, by 
above theorem we have the following result, which is also mentioned by Lavanya and 
Bhatta [4]. 
 

Corollary 8. CS(L) satisfies all the identities satisfied by L and conversely  
 

Thus in particular, a lattice L is distributive (modular) if and only if CS(L) is 
distributive (modular.)  

According to Grätzer [6] an element n of a lattice L is called a standard element if 
for all x, y ∈ L, x ∧ (y ∨ n)= (x ∧ y) ∨ (x ∧ n) Element n is called a neutral element if    

  (i) n is standard, and 
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 (ii) n ∧ (x ∨ y)= (n ∧ x) ∨ (n ∧ y) for all x, y ∈ L.  
 

Since L is the largest element and the smallest element of (I(L); ⊆) and (D(L); ⊇) 
respectively, so it is a neutral element of both I (L) and D(L). Therefore, by Theorem 
7, we have the following result.  
Corollary 9. L is a neutral element of CS(L)  
 

We conclude the paper with the following characterization of standard elements of 
CS(L) 
 

Theorem 10. For a lattice L, a convex sublattice S is a standard element of CS(L) if 
and only if for any a, b ∈L; {a}  (S {b}=({a} S)  ({a} {b}). 
 

Proof: Suppose, S is standard in (CS(L); ≤). Then of course the given condition holds.  
Conversely, suppose the given condition holds for any a, b∈S. We have to show that  

 

A  (S B) = (A S)  (A B) for any A,B ∈ CS(L). Since (CS(L); , ) is a 
lattice, so clearly (A S)  (A B) ≤ A  (S B). For the reverse inequality, let x ∈ 
A  (S B). Then x ≤ a1∧t1 for some a1 ∈ A and 7t1 ∈ S B. Now t1 ∈ S B implies 
that t1 ≤ s1 ∨ b1 for  some s1 ∈ S and b1 ∈ B. Then x ≤  a1∧(s1∨ b1) =y (say). But y=a1∧ 
(s1∨b1) ∈{a1}  (S {b1})=({a1}    S)  ({a1} {b1}) (using the given condition) ⊆ 
(A S)  (A B). In other words, there exists an element y ∈ (A S)  (A B) with 
x ≤ y. Now let p ∈ (A S)  (A B). Then p ≥ c1 ∨ d1 for some c1∈A S and d1∈ 
A B. Now c1∈A S implies c1 ≥ a2 ∧ s2 and d1 ∈ A B implies d1 ≥ a3 ∧ b3 for some 
a2, a3 ∈ A, s2∈S and b3 ∈ B. Thus, p ≥ (a2 ∧a3 ∧ s3) ∨ (a2 ∧a3 ∧ b3) ∈(a′∧s3) ∨(a′∧b3) 
where a′=a2 ∧ a3. But (a′∧s3) ∨(a′∧b3) ∈({a′} S)  ({a′} B)= {a′}  (S B) (by the 
given condition) ⊆ A  (S B).That is, for p ∈ (A S) (A B), there exists 
q=(a′∧s3) ∨(a′∧b3) ∈A  (S B) with p ≥ q. 

 

Therefore, A  (S B) ≤ (A S) (A B)  and  so A  (S B)= (A S) (A B) 
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