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Abstract 
 

Large eddy simulation (LES) in homogeneous isotropic turbulence is performed by using 
the Finite element method (FEM) and Finite volume vethod (FVM) and the results are 
compared to show the performance of FEM and FVM numerical solvers. The validation 
tests are done by using the standard Smagorinsky model (SSM) and dynamic Smagorinsky 
model (DSM) for subgrid-scale modeling. LES is performed on a uniformly distributed 643 
grids and the Reynolds number is low enough that the computational grid is capable of 
resolving all the turbulence scales. The LES results are compared with those from direct 
numerical simulation (DNS) which is calculated by a spectral method in order to assess its 
spectral accuracy. It is shown that the performance of FEM results is better than FVM 
results in this simulation. It is also shown that DSM performs better than SSM for both 
FEM and FVM simulations and it gives good agreement with DNS results in terms of both 
spatial spectra and decay of the turbulence statistics. Visualization of second invariant, Q, in 
LES data for both FEM and FVM reveals the existence of distinct, coherent, and tube-like 
vortical structures somewhat similar to those found in instantaneous flow field computed by 
the DNS. 
 
Keywords: Large eddy simulation; Validation; Smagorinsky model; Dynamic Smagorinsky 
model; Tube-like vortical structure; Homogeneous isotropic turbulence. 
 

© 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. 
DOI: 10.3329/jsr.v2i2.2582         J. Sci. Res. 2 (2), 237-249 (2010) 

 
1.  Introduction 

 
During the past decades, LES has been demonstrated to be an accurate and sophisticated 
predictive method for flows of engineering interest. The position of LES approach is 
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intermediate between DNS and RANS (Reynolds-Averaged Navier-Stokes) techniques. 
Although recent development of supercomputers enable to carry out the DNS [1-5], which 
is considered as the exact approach of turbulence simulations but the grid dependence is 
very high (proportional to Re9/4) and calculation is fairly time consuming, so that the DNS 
is not appropriate to the practical use. On the other hand, LES is less expensive and can 
simulate very complex flow fields in turbulence. Unlike the full-scale turbulence 
modeling of RANS technique, in LES method, large-scale motion is exactly calculated 
and the effects of subgrid-scale (SGS) motion is modeled. Although LES being superior to 
RANS, it still has some theoretical and practical drawbacks; and still today, people are 
putting their efforts to eliminate this drawback for LES.  

However, in recent days the important issues for LES are numerical method and 
subgrid-scale (SGS) modeling. It is known that the numerical methods which are widely 
used for LES are either spectral or the conventional finite difference method with structure 
grids [6-7]; but for the case of complicated flow the use of structure grids method is often 
unsuitable. Since Finite Element Method (FEM) is based on unstructured grids, this 
method is very useful for engineering applications to the complicated flow fields. 

The objective of our present study is to develop “Front Flow” next generation fluid 
simulator based on LES using FEM and FVM in order to apply to the engineering and 
practical problems. However, before applying there, it is necessary to examine the 
effectiveness and performance of our numerical solver through the benchmark problem 
which other researchers have examined. 

In this study, LES is performed in homogeneous isotropic turbulence using FEM and 
FVM formulation and the results are compared with DNS result which is calculated by a 
spectral method. The results with SSM and DSM in both FEM and FVM are also 
compared. Our interest is in whether any effects of the subgrid-scale model should 
appropriately be damped out. In both cases, we also discussed about vortical structures in 
the computed flow fields by LES comparing with those in the instantaneous DNS data by 
visualization of flows. 
 
2.  Numerical Method 
 
2.1. Numerical scheme and SGS model 
 
In this study Front Flow numerical solvers based on FEM and FVM are used for the 
computations. The detailed mathematical formulation and developing procedure of these 
numerical solvers are too long. Since the purpose of this study is to show the performance 
and effectiveness of these two codes in a benchmark problem so the mathematical 
formulations are not given here. However, a brief description of these Front Flow 
numerical codes is given as follows: 
 
Front Flow/FEM code 

The Front Flow/FEM numerical code used in this study is general-purpose fluid 
simulation code which calculates incompressible unsteady flows in arbitrary shaped 
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geometry that involves moving (but not deforming) boundaries. It is particularly designed 
for computing unsteady flows on turbomachinery and simulating sound pressure spectra 
that result from unsteady fluid motion. In order to obtain an accurate sound spectra in 
general, it is of up most importance to simulate the source, i.e., the fluid fluctuations 
accurately in terms of their spatial and frequency spectrum. 

This code is based on an explicit streamline-upwind finite element method with 
second order accuracy both in time and space. In this numerical scheme, the spatial 
discretization is performed by an explicit hexahedral FEM and the coordinate system is 
the three dimensional Cartesian.  

The pressure algorithm is based on the ABMAC (Arbitrary Boundary Marker and 
Cell) method proposed by Viecelli [8], where both the velocity components and static 
pressure are simultaneously corrected until the maximum divergence of the flow field 
decreases to less than a prescribed critical value. The subgrid-scale model for LES 
supported in this code are the SSM [9] incorporating the wall-damping function and the 
DSM proposed by Germano et al. [10]. The details of the numerical methods and 
developing procedures of this code have been given in the previous studies by Uddin et al. 
[11] and Kato et al. [12]. 

 
Front Flow/FVM code  
In this code, the spatial discretization is performed by a finite volume method and the 
coordinate system is the three-dimensional Cartesian. The usable elements in this code 
include hexahedrons, triangular prisms, square pyramids, and tetrahedrons, however, in 
this study we use hexahedrons elements only. In this numerical solver the SIMPLE (Semi-
Implicit Method for Pressure-Linked Equations) scheme is adopted for computations of 
compressible flows and a formula based on the low Mach number approximation can be 
used, however, using this code the incompressible flow computation is also possible. Like 
FEM code, in this solver the adopted SGS models include the SSM and DSM for SGS 
modeling. The detailed numerical methods and developing procedures of this code have 
been given in the previous study by Unemura et al. [13]. 
 
2.2. The computation 
 
The computational domain of the fine mesh was selected to a periodic box (2π×2π×2π) 
and the computation was performed using 643 grids. The present FEM and FVM codes 
assume the solution at t = nΔt is known, where Δt is the time step increment, t is the 
nondimensional time and n is the time step, and the solution at the next time step, t = 
(n+1)Δt, can be calculated using the residual terms described in the finite element and 
finite volume formulation [11-13]. Since we are interested to compare our present results 
with the result of spectral DNS, the initial flow field for LES is calculated with same 
condition and procedure that is done for spectral DNS by Tanahashi et al. [2-3]. The 
calculation presented here was done with nondimensional Δt = 0.00316 and a ν = 1/Re = 
8.26×10-3. In the case of SSM, the Smagorinsky coefficient, Cs = 0.2 is used in both FEM 
and FVM simulations [14]. 
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2.3. DNS database 
 
The reference DNS is performed at 643 resolutions by using a spectral code developed by 
Tanahashi et al. [2-3]. At the end of calculation, the Taylor microscale Reynolds number, 
Reλ, based on root mean square of velocity fluctuations (urms) and Taylor microscale (λ) of 
the DNS data is Reλ= 30.5 (t =3.792), and the maximum possible Reynolds number (Re) 
of the flow is 121.1.  
 
3. Numerical Results 

 
In this section we compare the numerical results in LES with the results of DNS to 
understand the decay and statistical behavior of homogeneous isotropic turbulence. We 
will also discuss about vortical structures in LES data comparing with DNS data. 
 
3.1. Decay of turbulence 
 
The comparisons of the three-dimensional energy spectra in DNS and LES data at the end 
of calculation (t = 3.792) for both FEM and FVM with SSM and DSM models are 
presented in Fig.1. The energy spectrum is calculated by the definition given as: 

 
  ( ) ( )

1 1
2 2

1 ˆ ˆ( ) *2
k k k

E k u u

− < ≤ +

= ∑ k k             (1) 

 
In Fig. 1, we can observe that the DNS spectrum shows the power decay close to k-5/3. 

The energy spectrum in LES calculation using FEM with DSM model shows almost 
similar decay as in DNS calculation at the whole wave number range (in Fig. 1(a)), while 
the decay of turbulence with SSM model is faster than DNS data or DSM results in the 
high wave number  range. Although we use different methods of calculation for DNS and  
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Fig. 1. Comparisons of three-dimensional energy spectra of velocity fluctuations in DNS and LES 
data. (a) SSM and DSM results using FEM; (b) SSM and DSM results using FVM; (c) SSM results 
using FEM and FVM, (d) DSM results using FEM and FVM. The legend FEM and FVM stand for 
finite element method and finite volume method, respectively. 

 



242 Performance of the Finite Element 
 

 

0.0

0.5

1.0

1.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

DNS

LES_SSM_FEM

LES_SSM_FVM

Ek

t

(a)

 
  

0.0

0.5

1.0

1.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

DNS

LES_DSM_FEM

LES_DSM_FVM

Ek

t

(b)

 
 

Fig. 2. Decay of total energy. (a) SSM and (b) DSM results using FEM and FVM, respectively. 
 
 
LES but the DSM result suggests that the decay of turbulence in LES follows the k-5/3 
power law, and the numerical accuracy is quite good. On the other hand, although the 
decay of turbulence using FVM collapse with DNS data in the low wave number range 
but it underestimates DNS data in the high wave number range for both SSM and DSM 
models (in Fig. 1b). Moreover, the SSM results show little faster decay than DSM results. 
The difference between SSM and DSM results may happen due to Smagorinsky constant 
or model itself. However, in both FEM and FVM codes, it reveals that DSM model works 
better than SSM model comparing with DNS data (in Fig. 1c, d). It is also revealed that 
among these two codes, the performance of FEM code is better than FVM code in these 
simulations. 
 
3.2. Turbulence statistics 
 
In this sub-section we discuss about the turbulent statistics in LES comparing with DNS 
results. 

Fig. 2 shows the decay of total resolved energy, Ek, where 
 
 2 2kE u=                               (2) 

It reveals that FEM results with DSM model coincide with the DNS through out the 
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entire analysis (Fig. 2(b)) and SSM result is dissipative in the early stage but collapse with 
DNS data at the end of the calculation (Fig. 2(a)). On the other hand, FVM results do not 
collapse with DNS results through out the entire analysis for both SSM and DSM. 

The decay of resolved enstrophy is presented in Fig. 3, where enstrophy is defined as: 
 

2 2ωΩ =                          (3) 

In this case, the FVM results with SSM and DSM models differ significantly from the 
DNS through out the entire analysis and show too much dissipation in the initial stage of 
the calculation. The FEM results with SSM model are also dissipative in the initial stage 
and it shows relatively higher dissipation from DNS throughout the entire analysis (Fig. 
3a). However, FEM results with DSM are in good agreement with DNS (Fig. 3b). 
However, the performances of these two codes with DSM is better than that of SSM.  
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Fig. 3. Decay of enstrophy. (a) SSM and (b) DSM results using FEM and FVM, respectively. 
 
The decay of root mean square of velocity fluctuations (urms) is presented in Fig. 4, 

where, 
2

rmsu u=                               (4) 
 

The decay of urms for FEM with DSM fully collapses with DNS data in the whole 
analysis. Although, initially FEM results with SSM is little faster but it is in good 
agreement with DNS after time t=2.5. On the other hand, FVM results with SSM and 
DSM do not collapse with DNS through out the entire analysis. Hence it is revealed that 
the FEM-LES result gives good agreement with DNS result in terms of both spatial 
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spectra and decay of turbulence statistics [11]. 
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Fig. 4. Decay of urms. (a) SSM and (b) DSM results using FEM and FVM, espectively. 
 

Skewness and flatness factors of velocity are important statistical properties to 
rep

 r

resent characteristics of turbulence. The production of the rate of dissipation of 
turbulent kinetic energy or, equivalently, the production of enstrophy is directly related to 
skewness in isotropic turbulence [15]. Skewness and Flatness of a random variable are 
presented in Fig. 5, and Fig. 6, respectively. Skewness and Flatness of random variables, 
respectively, are defined as: 
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The agreement of skewness (in Fig. 5) of LES results with DNS data in both FEM 
and FVM simulations for both SSM and DSM cases is good until t =2.0 and it 
overestimate DNS data hereafter. In this case, particularly it is revealed that at the end of 
calculation the profile of skewness for FVM code with DSM goes very close to the DNS 
results. However, skewness for all cases is almost zero at t =0 and the LES results for both 
FEM and FVM solvers either with SSM or DSM agree well with DNS data. On the other 
hand, flatness (in Fig. 6) of LES results for both FEM and FVM simulations collapse with 
DNS data well throughout the entire analysis. At time t =0, flatness of DNS and LES for 
all cases is almost 3.0 and shows nearly a constant value at the end of the calculation. The 
behavior of flatness suggests that turbulence velocity at the end of the calculation does not 
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include the effects of initial condition and reaches to fully developed state. 
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ig. 5. Development of skewness of a velocity component. (a) SSM and (b) DSM results using FEM F
and FVM, respectively. 
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elopment of flatness of a velocity component. (a) SSM and (b) DSM results using FEM 
and FVM, respectively. 
Fig. 6. Dev

 



246 Performance of the Finite Element 
 

3.3. Visualization of flows 
 
In this section we shall discuss about the vortical structures in LES comparing with DNS 
result by visualization of flows. There are several methods for identification of vortical 
structures and their visualization in turbulence with significant differences [16] and most 
of them show threshold dependence. In this study, by direct use of ‘local flow pattern 
method’ we discuss about vortical structures in LES flow fields. From the distributions of 
second and third invariant of the velocity gradient tensor one can define ‘local flow 
pattern method’ which does not depend on the thresholds of the variables. Details of this 
method can be seen in the previous studies by Tanahashi et al. [2-3]. 

The second invariant of the velocity gradient tensor is defined as: 
 

( )1
2 ij ij ij ijQ S S W W= − −                  (6) 
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are the symmetric and asymmetric part of the velocity gradient tensor, 
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Fig. 7 shows the contour surfaces of the positive second invariant given in Eqn. (6) of 

the velocity gradient tensor in DNS and LES data for FEM and FVM simulations as well 
as for SSM and DSM cases at the end of analysis (t = 3.792). In this figure the visualized 
region is the whole calculation domain and the view point is same for all cases. The level 
of the isosurface is selected to be Q =10 for all cases. These figures show that lots of tube-
like vortical structures are randomly oriented in DNS data as well as in LES data for all 
cases. In this visualization we considered Q =10 only to show the vortical structures in 
DNS and LES. However, if we increase or decrease the value of Q, we can also show 
distinct tube-like structures exists in DNS and LES, of course, it will be little bit different 
from the present visualized structures. Our present study reveals that in actual LES we can 
have the coherent tube-like structures somewhat similar to the structures in DNS and these 
structures are quite unique and distinct as we can see in Fig. 7. For FEM code, appearance 
of the vortical structures using DSM case seems higher than that of SSM case and close to 
DNS data. On the other hand, for FVM code, appearance of these vortical structures for 
SSM and DSM cases are similar but differ from the DNS, even it decrease from the SSM 
case in FEM code. This observation again suggests that the accuracy of LES calculation 
using FEM with DSM is better than that of FVM. 



M. A. Uddin et al. J. Sci. Res. 2 (2), 237-249 (2010) 247 
 

 
DNS (Q=10) 

 

  
LES_SSM_FEM (Q=10)

 
          LES_SSM_FVM (Q=10) 

 

  
LES_DSM_FEM (Q=10)          L

 
ig. 7. Contour surfaces of the second invariant of the velocity gradient tensor in DNS and LES data. 

Generally, it is considered that the localized violent event, which is large velocity 
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ference in small scale, appears intermittently in turbulent field with the increase of 
Reynolds number of the flow. In our previous study [4], by visualization of the coherent 
structures in DNS database, we have shown that the distribution of the strongest coherent 
fine scale structures becomes more and more intermittent for high Reynolds number. In 
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this study it is revealed that the coherent structures in FEM-LES are similar to the 
structures in the DNS data which suggest that FEM-LES results may have suitable role to 
tackle turbulence intermittency like DNS. 
 
4.  Conclusions 

Larg  eddy simulations in homogeneous isotropic turbulence have been done using FEM 

r, Q in the computed flow 
fiel
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