

Available Online

JOURNAL OF SCIENTIFIC RESEARCH

J. Sci. Res. **2** (3), 485-488 (2010)

www.banglajol.info/index.php/JSR

Short Communication

The Semi-splitting Block Graph of a Graph

V. R. Kulli¹ and K. M. Niranjan²

¹Department of Mathematics, Gulbarga University, Gulbarga-585106, Karnataka, India ²Department of Computer Science and Engineering, S.J.M.I.T, NH4 Bye Pass Road, Chitradurga-577 502, Karnataka, India

Received 26 October 2009, accepted in final revised form 4 May 2010

Abstract

We present here characterizations of graphs whose semi-splitting block graphs are planar, outer planar. Also we characterize graphs whose semi-splitting block graphs are planar and outer planar in terms of forbidden sub graphs.

Keywords: Semi-splitting; Block; Planar; Outer planar; Forbidden.

© 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.

DOI: 10.3329/jsr.v2i3.3626 J. Sci. Res. 2 (3), 485-488 (2010)

1. Introduction

All graphs considered here are finite, undirected and without loops or multiple lines. We use the terminology of [1]. The open-neighbourhood N(u) of a point u in V(G) is the set of points adjacent to u. $N(u) = [v/uv \in E(G)]$.

For each point v_i of G, we take a new point u_i and the resulting set of points is denoted by $V_1(G)$.

We introduce the concept of the semi-splitting block graph $S_B(G)$ of a graph G. The semi-splitting block graph $S_B(G)$ of a graph G is defined as the graph having point set $V(G) \cup V_1(G) \cup b(G)$ with two points are adjacent if they correspond to a adjacent points of G or one corresponds to a point v_i of $V_1(G)$ and the other to a point w_j of G and w_j is in $N(v_i)$ or one corresponds to a point u_i of V(G) and the other to a point b_i of b(G), where b(G) is the set of blocks of G.

The splitting graph S(G) of a graph G is defined as the graph having point set $V(G) \cup V_1(G)$ with two points are adjacent if they correspond to a adjacent points of G or

 $^{^2}$ Corresponding author: niru_km@yahoo.com $\,$

one corresponds to a point v_i of $V_1(G)$ and the other to a point w_j of G and w_j is in $N(v_i)$. This concept was introduced by Sampathkumar and Walikar [2]. A graph G, the semi-splitting block graph $S_B(G)$ and the splitting graph S(G) are shown in Fig. 1.

In 1975, Kulli [3] introduced the idea of a minimally nonouterplanar graph. The inner point number i(G) of a planar graph G is the minimum possible number of points not belonging to the boundary of the exterior region in any embedding of G in the plane.

Obviously G is outer planar if and only if i(G)=0. A graph G is minimally nonouterplanar if i(G)=1, and G is n-minimally $(n \ge 2)$ nonouterplanar if i(G)=n.

We make use of the following results to prove our main results.

Theorem A [4]. The splitting graph S(G) of a graph G is planar if and only if every block of G is an even cycle or a line or a triangle.

Theorem B [4]. If G has a cycle of odd length $p \ge 5$ then S(G) is nonplanar.

Theorem C [4]. The splitting graph S(G) of a graph G is outer planar if and only if every component of G is a path or a triangle.

2. Main Results

We prove that semi-splitting block graph $S_B(G)$ of a graph G is nonplanar.

Theorem 1. If *G* is a cycle with $p \ge 4$ points, then $S_B(G)$ is nonplanar.

Proof. Suppose G is a cycle with $p \ge 5$ points. Suppose p is odd. Then by Theorem B, S(G) is non planar. Then $S_B(G)$ is also nonplanar, since S(G) is a sub graph of $S_B(G)$.

Suppose p is even and suppose G is a cycle with four points. In an optimal drawing of $S_B(G)$ we observe that it has a sub graph homeomorphic from $K_{3,3}$. Hence $S_B(G)$ is nonplanar.

The cycle C_4 is the least cycle with even length and $S_B(C_4)$ is nonplanar, $S_B(C_n)$, $n \ge 6$ is also nonplanar. Therefore $S_B(G)$ is nonplanar when G is a cycle of even length. Hence the theorem.

We now present a characterization of graphs whose semi-splitting block graphs are planar.

Theorem 2. The semi-splitting block graph $S_B(G)$ of a graph G is planar if and only if every block of G is a line or a triangle or a triangle together one line is adjoined to some point.

Proof. Suppose $S_B(G)$ is planar. Then obviously S(G) is planar. Therefore by Theorem A, every block of G is either an even cycle or a line or a triangle. But by Theorem 1, G has no cycle with $p \ge 4$ points and a triangle together one line is adjoined to some point then as shown in Fig. 1. Hence every block of G is either a line or a triangle or a triangle together one line is adjoined to some point.

Conversely, suppose every block of G is either a line or a triangle or a triangle together one line is adjoined to some point. Then it is easy to see that $S_B(G)$ is planar.

We now establish a characterization of the semi-splitting block graph $S_B(G)$ of a graph G is outer planar.

Theorem 3. The semi-splitting block graph $S_B(G)$ is outer planar if and only if G is either $K_{L,2}$ or K_2 .

Proof. Suppose $S_B(G)$ is outer planar. Assume a graph G with $p \ge 3$ points. We consider the following cases.

Case 1. Suppose G is a cycle with p>3 points. Then by Theorem 1, $S_B(G)$ is nonplanar, a contradiction.

Case 2. Suppose G is a cycle with p=3 points. Assume G is C_3 . Clearly $i(S_B(C_3))=1$ see Fig. 2, again a contradiction. Then G is $K_{1,2}$ or K_2 .

Case 3. Suppose G is P_n , $n \ge 3$. Then clearly $i(S_B(G)) \ge 2$, a contradiction.

Case 4. Suppose G is $K_{1,n}$, $n \ge 3$. Then by Theorem 3, a contradiction. Then G is $K_{1,2}$ or K_2 . Conversely, suppose G is K_2 or $K_{1,2}$. Then it is easy to see that, $S_B(G)$ is outer planar. This completes the proof of the theorem.

Fig. 2

We now present characterizations of graphs whose semi-splitting block graphs are planar and outer planar in terms of forbidden sub graphs.

Theorem 4. The semi-splitting block graph $S_B(G)$ of a graph G is planar if and only if G has no sub graph homeomorphic to C_4 or K_{4-x} or G_1 (see Fig. 3).

Proof. Suppose $S_B(G)$ is planar. Then by Theorem 2, G must be a triangle or every block of G is a line.

Suppose G is a triangle, then G has no sub graph homeomorphic to C_4 or K_{4-x} or G_1 . Suppose every block of G is a line. Then G does not contain any cycle. Hence G has no sub graph homeomorphic to C_4 or K_{4-x} or G_1 .

Conversely, suppose that G contains no sub graph homeomorphic to C_4 or K_{4-x} or G_1 . Then every block of G is either a line or a triangle. Then by Theorem 2, $S_B(G)$ is planar. Hence the proof the theorem.

Theorem 5. The semi-splitting block graph $S_B(G)$ of a graph G is outer planar if and only if G has no sub graph homeomorphic to $K_{1,3}$ or P_4 or C_3 .

Proof. Suppose $S_B(G)$ be outer planar. Then by Theorem 4, G is either $K_{1,2}$ or K_2 . Hence G has no sub graph homeomorphic to $K_{1,3}$ or P_4 or C_3 .

Conversely, suppose G has no sub graph homeomorphic to $K_{1,3}$ or P_4 or C_3 . Then G must be $K_{1,2}$ or K_2 .

3. Conclusions

We present here characterizations of graphs whose semi-splitting block graphs are planar, outer planar. Also we characterize graphs whose semi-splitting block graphs are planar and outer planar in terms of forbidden sub graphs.

Acknowledgements

The authors are grateful to the reviewers for their critical comments and valuable suggestions.

References

- 1. F. Harary, Graph Theory (Addison Wesley, Reading, Mass, 1969).
- 2. Sampathkumar and H. B. Walikar, J. Karnatak Univ. Sci. 25, 13 (1980-81).
- 3. V. R.Kulli, Proc. Indian.Nat.Sci. Acad. 41, 275 (1975).
- H. P. Patil and S.Tamga Mari, Proc. Nat. Workshop on Graph Theory and its applications.
 M. S. University, Tirunelveli 121 (1996).