Nearlattices Whose Sets of Principal n-ideals Form Relatively Normal Nearlattices

M. S. Raihan and A. S. A. Noor
Department of Mathematics, Rajshahi University, Rajshahi, Bangladesh
Department of APCE, East West University, Mohakhali, Dhaka, Bangladesh

Received 14 December 2009, accepted in final revised form 8 November 2010

Abstract

We generalize several results of relatively normal nearlattices in terms of n-ideals. We introduce the notion of relative n-annihilators in a nearlattice and include some interesting results on this. Several characterizations of the set of principal n-ideals $P_{n}(S)$ are given which forms a relatively normal nearlattice in terms of relative n-annihilators. It is shown that $P_{n}(S)$ is relatively normal if and only if for any two incomparable prime n-ideals P and $Q, P \vee Q=\mathrm{L}$.

Keywords: Relatively normal nearlattice; Relative n-annihilator; Incomparable prime nideals.
© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.
doi:10.3329/jsr.v3i1.3955 J. Sci. Res. 3 (1), 35-42 (2011)

1. Introduction

Relative annihilators in lattices and semi-lattices have been studied by many authors including Mandelker [1] and Varlet [2]. Cornish [3] has used the annihilators in studying relative normal lattices. On the other hand, relative annihilators in nearlattices have been studied by Noor and Islam [4]. Recently Noor and Ali [5] have studied the relative nannihilators in a lattice L for a fixed element $n \in L$

In this paper we have introduced the notion of relative n-annihilators in a nearlattice. Then with the help of relative n-annihilators we have studied those $P_{\mathrm{n}}(S)$ which are relatively normal.

2. Preliminaries

A nearlattice is a meet semi lattice together with the property that any two elements possessing a common upper bound, have a supremum. A nearlattice S is distributive if $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$ for all $x, y, z \in S$ provided $y \vee z$ exists.

For a fixed element $n \in S$, a convex sub nearlattice containing n is called an n-ideal. The concept of n-ideals is a kind of generalization of ideals and filters of a nearlattice. Details on nearlattices and n-ideals in both lattices and nearlattices can be found in refs. [6-9].

An element n of a nearlattice S is called a standard element if for all $t, x, y \in S$

$$
t \wedge((x \wedge y) \vee(x \wedge n))=(t \wedge x \wedge y) \vee(t \wedge x \wedge n)
$$

Element n is called neutral if

i) it is standard and
ii) $n \wedge((t \wedge x) \vee(t \wedge y))=(n \wedge t \wedge x) \vee(n \wedge t \wedge y)$ for all $t, x, y \in S$.

An element n of a nearlattice S is called a medial element if $m(x, n, y)=(x \wedge y) \vee(x \wedge n) \vee(y \wedge n)$ exists for all $x, y \in S$.

Element n is called an upper element of S if $x \vee n$ exists for every $x \in S$ Of course, every upper element is medial.

An element n of a nearlattice S is called a central element if it is upper, neutral and complemented in each interval containing it.

For a medial element n, an n-ideal P of a nearlattice S is called a prime n-ideal if $P \neq$ S and $\mathrm{m}(x, n, y) \in P(x, y \in S)$ implies either $x \in P$ or $y \in P$.

The set of all n-ideals of a nearlattice S is denoted by $I_{n}(S)$ which is an algebraic lattice. For two n-ideals I and J of a nearlattice S, the set theoretic intersection is their infimum. Moreover, when n is standard and medial, then $I \cap J=\{\mathrm{m}(i, n, j): i \in I, j \in J\}$. According to [7], the supremum is defined by $I \vee J=\left\{x: i \wedge j \leq x \leq i_{1} \vee j_{1}\right\}$, for some $i, i_{1} \in I$ and $j, j_{1} \in J$ provided ${ }_{i_{1} \vee j_{1}}$ exists.

An n-ideal generated by a finite number of elements $a_{1}, a_{2}, \ldots, a_{\mathrm{m}}$ is called a finitely generated n-ideal, denoted by $\left\langle a_{1}, a_{2}, \ldots, a_{\mathrm{m}}\right\rangle_{n}$. Following [8],

$$
<a_{1}, a_{2}, \ldots, a_{\mathrm{m}}>_{n}=\left\{y \in S: a_{1} \wedge \ldots \wedge a_{\mathrm{m}} \wedge n \leq y=\left(y \wedge a_{1}\right) \vee \ldots \vee\left(y \wedge a_{\mathrm{m}}\right) \vee(y \wedge n)\right\},
$$

provided S is distributive.
When S is a lattice, $<a_{1}, a_{2}, \ldots ., a_{m}>_{n}$ is the interval $\left[a_{1} \wedge \ldots . \wedge a_{m} \wedge n, a_{1} \vee \ldots . . \vee a_{m} \vee n\right]$.
The set of finitely generated n-ideals is denoted by $F_{n}(S)$ which is again a nearlattice. An n-ideal generated by a single element a is called a principal n-ideal, denoted by $\langle a\rangle_{n}$. The set of principal n-ideals is denoted by $P_{n}(S)$.

By [8] we know that
$\langle a\rangle_{n} \cap\langle b\rangle_{n}=\langle m(a, n, b)\rangle_{n}$ when n is standard and medial.
Thus $P_{n}(S)$ is a semi lattice when n is medial and standard. Moreover by [8] it is a nearlattice if n is neutral and upper.

Let S be a nearlattice. For $a, b \in \mathrm{~S},\langle a, b\rangle=\{x \in \mathrm{~S}: x \wedge a \leq b\}$ is called the annihilator of a relative to b, or simply a relative annihilator. It is easy to see that in presence of distributivity, $\langle a, b\rangle$ is an ideal of S.

Also note that $\langle a, b\rangle=\langle a, a \wedge b\rangle$. Again for $a, b \in L$, where L is a lattice we define $<a, b\rangle_{\mathrm{d}}=\{x \in L: x \vee a \geq b\}$, which we call a dual annihilator of a relative to b or simply a dual relative annihilator. In presence of distributivity of $L,\langle a, b\rangle_{\mathrm{d}}$ is a dual ideal (filter).

For $a, b \in S$ and an upper element $n \in S$, we define,

$$
\begin{aligned}
<a, b>^{n} & =\left\{x \in S: m(a, n, x) \in_{n}\right\} \\
& =\{x \in S: b \wedge n \leq m(a, n, x) \leq b \vee n\}
\end{aligned}
$$

We call $\langle a, b\rangle^{n}$ the annihilator of a relative to b around the element n or simply a relative n-annihilator. It is easy to see that for all $a, b \in S,<a, b>^{n}$ is always a convex subset containing n. In presence of distributivity, it can easily be seen that $\langle a, b\rangle^{n}$ is an n-ideal. If $0 \in S$, then putting $n=0$, we have, $\langle a, b\rangle^{n}=\langle a, b\rangle$.

For two n-ideals A and B of a nearlattice S,
$<A, B>$ denotes $\{x \in S$: $m(a, n, x) \in B$ for all $a \in A\}$, when n is a medial element.
In presence of distributivity, clearly $<A, B>$ is an n-ideal. Moreover, we can easily show that $\langle a, b\rangle^{n}=\left\langle\langle a\rangle_{n},\langle b\rangle_{n}\right\rangle$.

A prime n-ideal P of a nearlattice S is called a minimal prime n-ideal if there exists no prime n-ideal Q such that $Q \neq P$ and $Q \subseteq P$.

A distributive nearlattice S with 0 is normal if every prime ideal of S contains a unique minimal prime ideal. A distributive nearlattice S is relatively normal if each interval $[x, y]$ in $S(x, y \in S) x<y$, is normal.

We start the paper with the following result on n-ideals due to [8].
Lemma 1.1 For a central elemenl $n \in S, P_{n}(S) \cong(n]^{\mathrm{d}} \times[n)$.
Following result is also essential for the development of this paper, which is due to [10].
Lemma 1.2 Let S be a distributive near-lattice with an upper element n and let I, J be two n-ideals of S. Then for any $x \in I \vee J, x \vee n=i \vee j$ and $x \wedge n=i^{\prime} \wedge j^{\prime}$ for some $i, i^{\prime} \in$ $I, j, j^{\prime} \in J$ with $i, j \geq n$ and $i^{\prime}, j^{\prime} \leq n$.

Following result in lattices is due to [5] and can be proved by similar technique in case of nearlattices. This is also a generalization of Lemma 3.6 [3].

Theorem 1.3 Let S be a distributive nearlattice with an upper element n. Then the following conditions hold.
(i) $\left\langle\langle x\rangle_{n} \vee\langle y\rangle_{n},\langle x\rangle_{n}\right\rangle=\left\langle\langle y\rangle_{n},\langle x\rangle_{n}\right\rangle$.
(ii) $\left\langle\langle x\rangle_{n}, J\right\rangle=\vee_{y \in J}\left\langle\langle x\rangle_{n},\langle y\rangle_{n}\right\rangle$, the supremum of n-ideals $\left\langle\langle x\rangle_{n}\right.$, $\left.\langle y\rangle_{n}\right\rangle$ in the lattice of n-ideals of S, for any $x \in S$ and any n-ideal J.

Lemma 1.4 and lemma 1.5 are due to [5]. We prefer to omit the proofs as they are easy to prove.

Lemma 1.4 Let S be a distributive nearlattice with an upper element n. Suppose a, b, $c \in S$.
(i) If $a, b, c \geq n$, then $\left\langle\langle m(a, n, b)\rangle_{n},\langle c\rangle_{n}\right\rangle=\left\langle\langle a\rangle_{n},\langle c\rangle_{n}\right\rangle$ $\vee\left\langle\langle b\rangle_{n},\langle c\rangle_{n}\right\rangle$ is equivalent to $\langle a \wedge b, c\rangle=\langle a, c\rangle \vee\langle b, c\rangle$.
(ii) If $a, b, c \leq n$, then $\left\langle\langle m(a, n, b)\rangle_{n},\langle c\rangle_{n}\right\rangle=\left\langle\langle a\rangle_{n},\langle c\rangle_{n}\right\rangle \vee\left\langle\langle b\rangle_{n}\right.$, $\left.\langle c\rangle_{n}\right\rangle$ is equivalent to $\langle a \vee b, c\rangle_{d}=\langle a, c\rangle_{d} \vee\langle b, c\rangle_{d} \cdot a$

Lemma 1.5 Let S be a distributive nearlattice with an upper element n. Suppose a, b, $c \in S$.
(i) If $a, b, c \geq n$ and $a \vee b$ exists, then $\left\langle\langle c\rangle_{n},\langle a\rangle_{n} \vee\langle b\rangle_{n}\right\rangle=\left\langle\langle c\rangle_{n},\langle a\rangle_{n}\right\rangle$ $\vee\left\langle\langle c\rangle_{n},\langle b\rangle_{n}\right\rangle$ is equivalent to $\langle c, a \vee b\rangle=\langle c, a\rangle \vee\langle c, b\rangle$.
(ii) If $a, b, c \leq n$, then $\left\langle\langle c\rangle_{n},\langle a\rangle_{n} \vee\langle b\rangle_{n}\right\rangle=\left\langle\langle c\rangle_{n},\langle a\rangle_{n}\right\rangle v<\langle c\rangle_{n}$, $\left.\langle b\rangle_{n}\right\rangle$ is equivalent to $\langle c, a \wedge b\rangle_{\mathrm{d}}=\langle c, a\rangle_{\mathrm{d}} \vee\langle c, b\rangle_{\mathrm{d}}$.
(iii) For each $x, y \in L,[x \vee y)^{* d}=[x)^{* d} \vee[y)^{* d}$.
(iv) If $x \vee y=1$, then $[x)^{* d} \vee[y)^{* d}=L$.

Following result is due to Theorem 2.4 [3]:

Theorem 1.6: For a distributive lattice with 0 , the following conditions are equivalent.
(i) Any two distinct minimal prime ideals are comaximal,
(ii) L is normal,
(iii) For any $\mathrm{x}, \mathrm{y} \in \mathrm{L},(\mathrm{x} \wedge \mathrm{y}]^{*}=(\mathrm{x}]^{*} \vee(\mathrm{y}]^{*}$,
(iv) For any $x, y \in L$ with $x \wedge y=0$ implies $(x]^{*} \vee(y]^{*}=L$.

Moreover, when L has a largest element 1, then each of the above conditions is equivalent to" for any $x, y \in L, x \wedge y=0$ implies $x_{1}, y_{1} \in L$ such that $x \wedge x_{1}=y \wedge y_{1}=0$ and $x_{1} \vee y_{1}=1 "$.

The following result is also due to Theorem 3.7 [3]:

Theorem 1.7. Let L be a distributive lattice. Let a, b, c be arbitrary elements and A, B be arbitrary ideals. Then the following conditions are equivalent.
(i) L is relatively normal.
(ii) $\langle a, b\rangle \vee\langle b, a\rangle=L$.
(iii) $\langle c, a \vee b\rangle=\langle c, a\rangle \vee\langle c, b\rangle$.
(iv) $\langle(c], A \vee B\rangle=\langle(c], A\rangle \vee\langle(c], B\rangle$.
(v) $\langle a \wedge b, c\rangle=\langle a, c\rangle \vee\langle b, c\rangle$.

The following result has been proved by [5] in case of lattices. The idea of dual relative annihilators in nearlattices is not always possible. Since $(n]$ is a sublattice of S for each $n \in S$, we have:

Theorem 1.8. Let $a, b, c \in(n]$ be arbitrary elements and A, B be arbitrary filters on (n]. Then the following conditions are equivalent.
(i) (n] is relatively normal.
(ii) $\langle a, b\rangle_{\mathrm{d}} \vee\langle b, a\rangle_{\mathrm{d}}=(n]$.
(iii) $\langle c, a \wedge b\rangle_{\mathrm{d}}=\langle c, a\rangle_{\mathrm{d}} \vee\langle c, b\rangle_{\mathrm{d}}$.
(iv) $\left\langle[c), A \vee B>_{d}=\langle[c), A\rangle_{d} \vee<[c), B\right\rangle_{d}$.
(v) $\langle a \vee b, c\rangle_{\mathrm{d}}=\langle a, c\rangle_{\mathrm{d}} \vee\langle b, c\rangle_{\mathrm{d}}$.

Now we prove our main results of this paper, which are generalizations of Theorem 3.7 [3] and Theorem 5 [1].

Theorem 1.9. Let n be a central element of a distributive nearlattice. Suppose A, B are two n-ideals of S. Then for all $a, b, c \in S$ the following conditions are equivalent.
(i) $P_{n}(S)$ is relatively normal.
(ii) $\left\langle\langle a\rangle_{n},\langle b\rangle_{n}\right\rangle \vee\left\langle\langle b\rangle_{n},\langle a\rangle_{n}\right\rangle=S$.
(iii) $\left\langle\langle c\rangle_{n},\langle a\rangle_{n} \vee\langle b\rangle_{n}\right\rangle=\left\langle\langle c\rangle_{n,}\langle a\rangle_{n}\right\rangle \vee\left\langle\langle c\rangle_{n},\langle b\rangle_{n}\right\rangle$, whenever $a \vee b$ exists.
(iv) $\left\langle\langle c\rangle_{n}, A \vee B\right\rangle=\left\langle\langle c\rangle_{n}, A\right\rangle \vee\left\langle\langle c\rangle_{n}, B\right\rangle$.
(v) $\left.\langle<m(a, n, b)\rangle_{n},\langle c\rangle_{n}\right\rangle=\left\langle\langle a\rangle_{n},\langle c\rangle_{n}\right\rangle \vee\left\langle\langle b\rangle_{n},\langle c\rangle_{n}\right\rangle$.

Proof. (i) \Rightarrow (ii). Let $z \in S$. Consider the interval $I=\left[\langle a\rangle_{n} \cap\langle b\rangle_{n} \cap\langle z\rangle_{n},\langle z\rangle_{n}\right]$ in $P_{n}(S)$. Then $\langle a\rangle_{n} \cap\langle b\rangle_{n} \cap\langle z\rangle_{n}$ is the smallest element of the interval I. By (i), I is normal. Then by Theorem 1.6, there exist principal n-ideals $\langle p\rangle_{n},\langle q\rangle_{n} \in I$ such that, $\langle a\rangle_{n} \cap\langle z\rangle_{n} \cap\langle p\rangle_{n}=\langle a\rangle_{n} \cap\langle b\rangle_{n} \cap\langle z\rangle_{n}=\langle b\rangle_{n} \cap\langle z\rangle_{n} \cap\langle q\rangle_{n}$ and $\langle z\rangle_{n}=\langle p\rangle_{n} \vee\langle q\rangle_{n}$.

Now, $\langle a\rangle_{n} \cap\langle p\rangle_{n}=\langle a\rangle_{n} \cap\langle p\rangle_{n} \cap\langle z\rangle_{n}=\langle a\rangle_{n} \cap\langle b\rangle_{n} \cap\langle z\rangle_{n} \subseteq\langle b\rangle_{n}$ implies $\langle p\rangle_{n} \subseteq\left\langle\langle a\rangle_{n},\langle b\rangle_{n}\right\rangle$.

Also, $\langle b\rangle_{n} \cap\langle q\rangle_{n}=\langle b\rangle_{n} \cap\langle z\rangle_{n} \cap\langle q\rangle_{n}=\langle a\rangle_{n} \cap\langle b\rangle_{n} \cap\langle z\rangle_{n} \subseteq\langle a\rangle_{n}$ implies $\langle q\rangle_{n} \subseteq\left\langle\langle b\rangle_{n},\langle a\rangle_{n}\right\rangle$

Thus $\langle z\rangle_{n} \subseteq\left\langle\langle a\rangle_{n},\langle b\rangle_{n}\right\rangle \vee\left\langle\langle b\rangle_{n},\langle a\rangle_{n}\right\rangle$ and so $z \in\left\langle\langle a\rangle_{n},\langle b\rangle_{n}\right\rangle \vee$ $\left\langle\langle b\rangle_{n},\langle a\rangle_{n}\right\rangle$.

Hence $\left\langle\langle a\rangle_{n},\langle b\rangle_{n}\right\rangle \vee\left\langle\langle b\rangle_{n},\langle a\rangle_{n}\right\rangle=S$.
(ii) \Rightarrow (iii). Suppose (ii) holds and $a \vee b$ exists. For (iii), R.H.S. \subseteq L.H.S. is obvious. Now, let $z \in\left\langle\langle c\rangle_{n},\langle a\rangle_{n} \vee\langle b\rangle_{n}\right\rangle$. Then $z \vee n \in\left\langle\langle c\rangle_{n},\langle a\rangle_{n} \vee\langle b\rangle_{n}\right\rangle$ and $m(z \vee n, n, c) \in\langle a\rangle_{n} \vee\langle b\rangle_{n}$.

That is, $m(z \vee n, n, c) \in[a \wedge b \wedge n, a \vee b \vee n]$. This implies $(z \vee n) \wedge(c \vee n) \leq a \vee b \vee n$. Now, by (ii), $z \vee n \in\left\langle\langle a\rangle_{n},\langle b\rangle_{n}\right\rangle \vee\left\langle\langle b\rangle_{n},\langle a\rangle_{n}\right\rangle$. So by Lemma 1.2, $z \vee n=$ $r \vee t$ for some $r \in\left\langle\langle a\rangle_{n},\langle b\rangle_{n}\right\rangle$ and $t \in\left\langle\langle b\rangle_{n},\langle a\rangle_{n}\right\rangle, r, t \geq n$. Then $b \wedge n=m(r, n, a)=r \wedge(a \vee n) \leq b \vee n$.

Hence, $r \wedge(c \vee n)=r \wedge(z \vee n) \wedge(c \vee n) \leq r \wedge(a \vee b \vee n)=(r \wedge(a \vee n)) \vee(r \wedge(b \vee$ $n)$) $\leq(b \vee n)$. This implies $r \in\left\langle\langle c\rangle_{n},\langle b\rangle_{n}\right\rangle$. Similarly, $t \in\left\langle\langle c\rangle_{n},\langle a\rangle_{n}\right\rangle$. Hence $z \vee n \in\left\langle\langle c\rangle_{n},\langle a\rangle_{n}\right\rangle \vee\left\langle\langle c\rangle_{n},\langle b\rangle_{n}\right\rangle$.

Again, $z \in\left\langle\langle c\rangle_{n},\langle a\rangle_{n} \vee\langle b\rangle_{n}\right\rangle$ implies $z \wedge n \in\left\langle\langle c\rangle_{n},\langle a\rangle_{n} \vee\langle b\rangle_{n}\right\rangle$. A dual calculation of the above shows, $z \wedge n \in\left\langle\langle c\rangle_{n},\langle a\rangle_{n}\right\rangle \vee\left\langle\langle c\rangle_{n},\langle b\rangle_{n}\right\rangle$. Thus by convexity, $z \in\left\langle\langle c\rangle_{n},\langle a\rangle_{n}\right\rangle \vee\left\langle\langle c\rangle_{n},\langle b\rangle_{n}\right\rangle$ and so L.H.S. \subseteq R.H.S. Hence (iii) holds.
(iii) \Rightarrow (iv). Suppose (iii) holds. In (iv), R.H.S. \subseteq L.H.S. is obvious.

Now let $x \in\left\langle\langle c\rangle_{n}, A \vee B\right\rangle$. Then $x \vee n \in\left\langle\langle c\rangle_{n}, A \vee B\right\rangle$. Thus $m(x \vee n, n, c) \in A \vee B$. Now $m(x \vee n, n, c)=(x \vee n) \wedge(n \vee c) \geq n$ implies $m(x \vee n, n, c) \in(A \vee B) \cap[n)$. Hence by Theorem 1.3(ii), $x \vee n \in\left\langle\langle c\rangle_{n},(A \cap[n)) \vee(B \cap[n))\right\rangle=\vee_{r \in(A \cap[n)) \vee(B \cap[n))} \ll c$ $\left.>_{n},\langle r\rangle_{n}\right\rangle$. But by Lemma 1.2, $r \in(A \cap[n)) \vee(B \cap[n))$ implies $r=s \vee t$ for some $s \in A$, $t \in B$ and $s, t \geq n$. Then by (iii),

$$
\begin{aligned}
& \left\langle\langle c\rangle_{n},\langle r\rangle_{n}\right\rangle=\left\langle\langle c\rangle_{n},\langle s \vee t\rangle_{n}\right\rangle=\left\langle\langle c\rangle_{n},\langle s\rangle_{n} v\langle t\rangle_{n}\right\rangle \\
& =\left\langle\langle c\rangle_{n},\langle s\rangle_{n}\right\rangle v\left\langle\langle c\rangle_{n},\langle t\rangle_{n}\right\rangle \subseteq\left\langle\langle c\rangle_{n}, A\right\rangle \vee\left\langle\langle c\rangle_{n}, B\right\rangle
\end{aligned}
$$

Hence $x \vee n \in\left\langle\langle c\rangle_{n}, A\right\rangle \vee\left\langle\langle c\rangle_{n}, B\right\rangle$. Also $x \in\left\langle\langle c\rangle_{n}, A \vee B\right\rangle$ implies $x \wedge n \in\left\langle\langle c\rangle_{n}, A \vee B\right\rangle$.

Since $m(x \wedge n, n, c)=(x \wedge n) \vee(x \wedge c) \leq n$, so $x \wedge n \in\left\langle\langle c\rangle_{n},(A \vee B) \cap(n]>\right.$.
Then, by Theorem 1.3(ii),
$x \wedge n \in\left\langle\langle c\rangle_{n},(A \cap(n]) \vee(B \cap(n])\right\rangle=\vee_{i \in(A \cap(n)) \vee(B \cap(n))}\left\langle\langle c\rangle_{n},\langle i\rangle_{n}\right.$.
Again, using Lemma 1.2, we see that $i=p \wedge q$ where $p \in A, q \in B$ and $p, q \leq n$. Then by (iii),

$$
\begin{aligned}
& \left\langle\langle c\rangle_{n},\langle i\rangle_{n}\right\rangle=\left\langle\langle c\rangle_{n},\langle p \wedge q\rangle_{n}\right\rangle=\left\langle\langle c\rangle_{n},\langle p\rangle_{n} \vee\langle q\rangle_{n}\right\rangle \\
& =\left\langle\langle c\rangle_{n},\langle p\rangle_{n}\right\rangle \vee\left\langle\langle c\rangle_{n},\langle q\rangle_{n}\right\rangle \subseteq\left\langle\langle c\rangle_{n}, A\right\rangle \vee\left\langle\langle c\rangle_{n}, B\right\rangle
\end{aligned}
$$

Hence $x \wedge n \in\left\langle\langle c\rangle_{n}, A\right\rangle \vee\left\langle\langle c\rangle_{n}, B\right\rangle$. Therefore, by convexity, $x \in\left\langle\langle c\rangle_{n}, A\right\rangle$ $v\left\langle\langle c\rangle_{n}, B\right\rangle$ and so L.H.S. \subseteq R.H.S. Thus (iv) holds.
(iv) \Rightarrow (iii) is trivial.
(ii) \Rightarrow (v). Suppose (ii) holds. In (v), R.H.S. \subseteq L.H.S. is obvious.

Now let $z \in\left\langle\langle\mathrm{~m}(a, n, b)\rangle_{n},\langle c\rangle_{n}\right\rangle$ which implies $z \vee n \in\left\langle\langle\mathrm{~m}(a, n, b)\rangle_{n},\langle c\rangle_{n}\right\rangle$. By (ii), $z \vee n \in\left\langle\langle a\rangle_{n},\langle b\rangle_{n}\right\rangle \vee\left\langle\langle b\rangle_{n},\langle a\rangle_{n}\right\rangle$. Then by Theorem 1.2, z $\vee n=x \vee y$ for some $x \in\left\langle\langle a\rangle_{n},\langle b\rangle_{n}\right\rangle$ and $\left.y \in<\langle b\rangle_{n},\langle a\rangle_{n}\right\rangle$ and $x, y \geq n$.
Thus, $\langle x\rangle_{n} \cap\langle a\rangle_{n} \subseteq\langle b\rangle_{n}$ and so $\langle x\rangle_{n} \cap\langle a\rangle_{n}=\langle x\rangle_{n} \cap\langle a\rangle_{n} \cap\langle b\rangle_{n} \subseteq\langle z$ $\vee n\rangle_{n} \cap\langle a\rangle_{n} \cap\langle b\rangle_{n}=\langle z \vee n\rangle_{n} \cap\langle\mathrm{~m}(a, n, b)\rangle_{n} \subseteq\langle c\rangle_{n}$. This implies $x \in \ll a$ $\left.\rangle_{n},\langle c\rangle_{n}\right\rangle$.

Similarly, $y \in\left\langle\langle b\rangle_{n},\langle c\rangle_{n}\right\rangle$ and so $z \vee n \in\left\langle\langle a\rangle_{n},\langle c\rangle_{n}\right\rangle \vee\left\langle\langle b\rangle_{n},\langle c\rangle_{n}\right\rangle$.
Similarly, a dual calculation of above shows that $z \wedge n \in\left\langle\langle a\rangle_{n},\langle c\rangle_{n}\right\rangle \vee\left\langle\langle b\rangle_{n}\right.$, $\left.\langle c\rangle_{n}\right\rangle$. Thus by convexity, $z \in\left\langle\langle a\rangle_{n},\langle c\rangle_{n}\right\rangle \vee\left\langle\langle b\rangle_{n},\langle c\rangle_{n}\right\rangle$ and so L.H.S. \subseteq R.H.S. Hence (v) holds.
(v) \Rightarrow (i). Suppose (v) holds. Let $a, b, c \geq n$.

By (v), $\left\langle\langle m(a, n, b)\rangle_{n},\langle c\rangle_{n}\right\rangle=\left\langle\langle a\rangle_{n},\langle c\rangle_{n}\right\rangle \vee\left\langle\langle b\rangle_{n},\langle c\rangle_{n}\right\rangle$. But by Lemma 1.5(i), this is equivalent to $\langle a \wedge b, c\rangle=\langle a, c\rangle \vee\langle b, c\rangle$. Then by Theorem 1.7, this shows that $[n$) is relatively normal. Similarly, for $a, b, c \leq n$, using Lemma 1.5(ii) and Theorem 1.8, we find that $(\mathrm{n}]$ is relatively normal. Therefore by Lemma 1.1, $P_{\mathrm{n}}(S)$ is relatively normal.

Finally we need to prove that (iii) $\Rightarrow \mathbf{(i) .}$
Suppose (iii) holds. Let $a, b, c \in S \cap\left[n\right.$). By (iii), $\left\langle\langle c\rangle_{n},\langle a\rangle_{n} \vee\langle b\rangle_{n}\right\rangle=\left\langle\langle c\rangle_{n},\langle\right.$ $a\rangle_{n} \vee\left\langle\langle c\rangle_{n},\langle b\rangle_{n}\right.$, whenever $a \vee b$ exists. But by Lemma 1.6(i), this is equivalent to $\langle c, a \vee b\rangle=\langle c, a\rangle \vee\langle c, b\rangle$. Then by Theorem 1.7, this shows that [n) is relatively normal.

Similarly, for $a, b, c \leq n$, using the Lemma 1.6(ii) and Theorem 1.8, we find that (n] is relatively normal. Therefore by Lemma 1.1, $P_{n}(S)$ is relatively normal.

We conclude the paper with the following result which is a generalization of a result in [11].
Theorem 1.10. Let S be a distributive nearlattice. If n is central in S, then the following conditions are equivalent.
(i) $\quad P_{n}(S)$ is relatively normal.
(ii) Any two incomparable prime n-ideals P and $Q, P \vee Q=S$.

Proof. (i) \Rightarrow (ii). Suppose (i) holds. Let P and Q be two incomparable prime n-ideals of S. Then there exist $a, b \in \mathrm{~S}$ such that $a \in P-Q$ and $b \in Q-P$.
Then $\langle a\rangle_{n} \subseteq P-Q$ and $\langle b\rangle_{n} \subseteq Q-P$. Since by (i), $\mathrm{P}_{n}(\mathrm{~S})$ is relatively normal, so by Theorem 1.9, $\left\langle\langle a\rangle_{n},\langle b\rangle_{n}\right\rangle \vee\left\langle\langle b\rangle_{n},\langle a\rangle_{n}\right\rangle=S$.

But as P, Q are prime, so it is easy to see that $\left\langle\langle a\rangle_{n},\langle b\rangle_{n}\right\rangle \subseteq Q$ and $\left\langle\langle b\rangle_{n}\right.$, $\left.\langle a\rangle_{n}\right\rangle \subseteq P$.
Therefore, $S \subseteq P \vee Q$ and so $P \vee Q=S$. Thus (ii) holds.
(ii) \Rightarrow (i). Suppose (ii) holds. Let P_{1} and Q_{1} be two incomparable prime ideals of [n). Then by [12], there exist two incomparable prime ideals P and Q of S such that $P_{1}=P \cap[n$) and $Q_{1}=Q \cap[n)$. Since $n \in P_{1}$ and $n \in Q_{1}$, so P and Q are in fact two incomparable prime n-ideals of S. Then by (ii), $P \vee Q=S$.
Therefore, $P_{1} \vee Q_{1}=(P \vee Q) \cap[n)=S \cap[n)=[n)$. Thus by [11], [n) is relatively normal.

Similarly, considering two prime filters of ($n]$ and proceeding as above and using the dual result of Theorem 3.5 [3] we find that (n] is relatively normal. Therefore, by Lemma 1.1, $P_{n}(S)$ is relatively normal.

References

1. M. Mandelker, Duke Math. J. 40, 377 (1970). doi:10.1215/S0012-7094-70-03748-8
2. J. Varlet, Bull Austral. Math. Soc. 9, 169 (1973). doi:10.1017/S0004972700043094
3. W. H. Cornish, J. Austral. Math. Soc. 14, 200 (1972). doi:10.1017/S1446788700010041
4. A. S. A. Noor and M. A. K. S. Islam, The Rajshahi University Studies B 25, 117 (1997).
5. A. S. A. Noor and M. A. Ali, The Rajshahi University Studies B 28, 141 (2000).
6. W. H. Cornish and A. S. A.Noor, Bull. Austral. Math. Soc. 26, 185 (1982). doi:10.1017/S0004972700005700
7. M. G. Hossain and A. S. A.Noor, The Rajshahi University Studies B 28, 105 (2000).
8. A. S. A. Noor and M. G. Hossain, The Rajshahi University Studies B 25, 187 (1997).
9. A. S. A. Noor and M. A. Latif, SEA Bull. Math. 22, 72 (1998).
10. M. S. Raihan and A. S. A.Noor, Nearlattices whose sets of principal n-ideals form normal Nearlattices - submitted (2010).
11. A. S. A. Noor, M. B. Rahman, and M. A. K. Azad, The Rajshahi University Studies B 32, 77 (2004).
12. M. B. Rahman and A. S. A. Noor, SEA Bull. Math. 23, 193 (1999).
