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Abstract

Ordinary least squares estimator (OLS) becomes unstable if there is a linear dependence
between any two predictors. When such situation arises ridge estimator will yield more
stable estimates to the regression coefficients than OLS estimator. Here we suggest two
modified ridge estimators based on weights, where weights being the first two largest eigen
values. We compare their MSE with some of the existing ridge estimators which are defined
in the literature. Performance of the suggested estimators is evaluated empirically for a wide
range of degree of multicollinearity. Simulation study indicates that the performance of the
suggested estimators is slightly better and more stable with respect to degree of
multicollinearity, sample size, and error variance.
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1. Introduction

Consider the standard form of multivariate linear regression (MLR) model defined by
y=X§+u (1)
Where X is (nx p) data matrix, yis (nx1) vector of response, g is ( px1) vector of
regression coefficients and u is (n x 1) vector of residuals which are i.i.d. with zero mean
2
and variance o . When X has full rank, the ordinary least squares (OLS) method, gives
the estimate for g as
A -1
Bos = (XX) Xy 2)

Due to near linear dependence between the predictors, (XX)fl may not exist always and
therefore OLS estimator will yield unstable estimates to the regression coefficients. That
is, in presence of multicollinearity, OLS estimator becomes biased and also has large
variance. When moderate or severe degree of multicollinearity is present
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var - cov(fs ) = o’ (XX) *will be large. That is, regression parameters are sensitive to

small changes in the response variable y or the matrix of predictors X (Marquardt and
Snee, [1]; Vinod and Ullah, [2]). Thus to overcome the drawbacks of OLS, there are
number of techniques have been proposed in the literature, viz., Ridge regression,
Principal component regression, Partial least squares regression, LASSO method of
regression, Liu method of regression etc., for details, see Hoerl [3], Hoerl and Kennard
[4], Helland [5], Vinod and Ullah [2], Mardikyan and Cetin [6], Tibshirani [7].

2. The Canonical Model

Here matrix X , is standardised such that XX , is in the form of a near correlation matrix.
Further, let z = Xw where W is a matrix of order (px p) so that its columns are

normalized eigen vectors of XX, such thatZZ =WXXwW =D = diag(4,, 4,4 4,)

th .
where /11. ‘s are the Jt eigen value of XX . The equation (1) becomes

y=2Zy +u, 3)
where y = W} . The OLS estimator for y is then given by

. -1_, -1

Jos =(Z2) "Zy=D "ZY. 4)

Since y =W}, implies g = Wy .
3. Ridge Estimation

Ridge regression is one of the most widely used techniques to cope with the problem of
multicollinearity. It is an alternative technique to OLS. OLS estimator become unstable
when there is a linear dependence between any two predictors. Linear dependency leads to
multicollinearity and thereby inverse of the matrix XX , may not be possible. When such a
situation arises, Hoerl and Kennard [4] have suggested that; add a constant k(> 0) to

every jlhelement of the diagonal of the matrix XX, to overcome the problem of
singularity. That is increasing the length of OLS estimator by a small amount k(> 0) , will
reduce the MSE of £, and such a modification in XX made the ridge estimator more
robust to the problem of singularity.

The ordinary ridge estimator for the regression coefficients is given by

o= (@ZZ+K) 2y =AZY (5)
Where A =D +kl and X = ZW'. Using equation (4), equation (5) reduce to

. -1,

Pe=(—A K- (6)

Hoerl and Kennard [4] showed that ridge estimator is biased and its bias-square is
2

o
continuous and monotonically increasing function ofk . Also for 0 < kK < - the MSE

}’max
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A . .. 2 . A2 2 . .
(75 ) is minimum, where j_ is the largest element of j_ and o~ is replaced by its

. A2 yly_j;IOLSZ'y . . .
estimate 6° = ——————. Halawa and El Bassiouni [8] suggested that the estimate of
n-p-1
_ VY —PosZ'Y . . . .
olis 6" = "8 7 Above two estimators of o, may yield negative estimates to
n-p

the residual mean square, if n < p . Instead, herewith considered Hastie and Tibshirani’s
[9] methodology, which makes the use of ‘hat matrix’, H, in turn the degrees of freedom
for the errorisn —tr(2H —HH') =n—-p.

3.1. Some well-known ridge estimators

In the literature, several authors have defined different methods of estimating the ridge
parameter k, to overcome the problem of multicollinearity. Some of the well-known
methods for choosing ridge parameter are due to references [2,10-17].

Some of the well-known methods of estimating the ridge parameter k are

po

i) k= (Hoerl, Kennard, and Baldwin, [18]) @)

77
where p , is the number of predictors, & is the estimate of o~ and 7 is the estimate of y.

i) k, = " (Lawless and Wang, [10]) (8)
2 A 7

=0
. . .th
where 4, is the eigen jt value of XX

2

iii) k, = 5 be } (Nomura, [19]) 9)

L2.1/2

e e 1671

where 4, is the eigen jth value of XX .

_ i G

iv) k, = - — (Khalaf and Shukur, [12]) (10)
n-p-1)6 +4__7

max‘ max

where 4__ the largest Eigen is value of XX , and ;?;ax is the largest element of 33;
A2
pc 1 )
V) k, =Max 0, - , (Dorugade and Kashid, [15]) (11)
5 VIR,

1 .th
,j =1,2,..., p; is the variance inflation factor of the ! regressor.

where VIF. = ;
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. p
vi) k, :—%Az ,
A 7.
max j

where 4 __ is the largest eigen value of XX .
y ps" 1 1 . .
vii) k, = + =k + , (Satish and Vidya, [20]) (13)
3%  ni ni

max max

(Dorugade, [16]) (12)

where 4 __ is the largest eigen value of XX .

ps’ 1 1 _ _
viii) k, = + =k + ,  (Satish and Vidya, [21]) (14)

1
ArA ArA

77 Aad? Ava? ?

where 4__ is the largest eigen value of XX .

. pe 1 1 . .
iX) ky = — ; =k +— , (Satish and Vidya, [21]) (15)
77 2 A, 1A 2m

min)
wherem = *Mmax/’lmin is the condition number [2,22]. Higher the value of m, higher is

the degree of multicollinearity. If (30 < m< 100) means a moderate to strong
multicollinearity, and if m > 100 suggests severe multicollinearity [23].

X) K, = GM (K, Ko ) =k, xk, , (Satishand Vidya, [24]) (16)
xi) k, = HM(k k) = 2k xk, /(k_+k,), (Satishand Vidya, [24]) (17)

where, Kk, is the estimator due to Hoerl et al. [18] and k, is the estimator due to Dorugade
and Kashid, [15].

A k1 + Wlk

Xii) k,, = WAMC(K, . k,) = = |, (Satish, [25]) (18)

W1 + W2

where, weight w, = 4, being the largest eigen value, andw, = 4,, is the second largest
eigen value of X’X matrix. It is observed that the estimators defined in equations (7) to
(12) are verified under very high degree (p > 0.9) of multicollinearity between the
predictors whereas, the estimators due to Satish and Vidya [20,21,24] are investigated
under various degree of multicollinearity viz., low, moderate and high degree of
multicollinearity. Also, Satish and Vidya [20,24], have considered different error
distributions viz., normal and non-normal (t- distribution with 5 d.f.) for the error term.

Further, the estimator due to Hoerl et al. [18] seems to be over shrunken the estimator
towards zero and it does not work well when number of predictors is more than the
sample size whereas the estimator due to Dorugade and Kashid [15] performs better when
number of predictors is more than the sample size, and also when predictors are highly
collinear, i.e., later is more stable than the earlier. Moreover, Askin and Montgomery [26],
proposed ridge regression based on M-estimates, where the M-estimates were computed
using weighted least squares procedure. Holland [27] suggests that weights being used are
non-negative, may not be equal, and their sum need not be equal to unity. Holland [27]
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also used the weighted least squares procedure to estimate g, where g ‘s are obtained by
subtracting the means of y'sand jth column of X; respectively. Motivated by these
features of the above estimators, we would like to suggest a new method of assigning
weights to ordinary ridge estimators.

4. Proposed Estimators

Here we suggest two modified ridge estimators namely, weighted geometric mean ridge
estimator; and secondly, a weighted harmonic mean ridge estimator, where weights being
the first two largest eigen values 4, and 4, (4, > 4,) . These two estimators are obtained by
taking weighted geometric mean and weighted harmonic mean of the estimators due to
Dorugade and Kashid [15], and Hoerl et al. [18] respectively. We have assigned higher
weight (w, = 4, largest eigen value) to estimator, which is due to Dorugade and Kashid
[15], and lower weight (w, = 4,, the second largest eigen value) to estimator, which is
due to Hoerl et al. [18]. The weights are assigned in such a way that prior is more stable
than the later, for n < p; and the suggested estimators is defined by

In(k In(k
Xiii) k, =WGM(k,.k,) = exp , Ine) + # Infi) , (19)

Wl +W2

2
W, + W kk Xw
Xiv) k, =WHM(k k) = 1 2 Y= | 20)
(W, /k) + (W, /k) Wk, +wk

Modifications made the suggested estimators more robust to the problem of
multicollinearity, since the two largest eigen values A, andA,, carry most of the
information’s of the data matrix X and further, it is observed that an input of higher
weights to more stable estimator will have more influence on the MSE, that is, MSE of the
suggested estimators gets reduced to a certain extent, and thereby suggested estimators
become more stable and comparable to some of the existing estimators, which are
considered under this study.

LASSO [7] technique of regression is the one which shrinks some regression
coefficients in absolute terms and sets others to zero. That is “LASSO minimizes the
residual sum of squares subject to the sum of the absolute value of the coefficients being
less than a constant”, [17]. It is also used as subset selection operator and hence “tries to
retain the good features of both subset selection and ridge regression” [7]. This article
pertains to weighted ridge regression and does not through light on the subset selection.

5. Application of Real Data
Here we consider a part of the real data related to wages and other characteristics of

workers [28]. We have computed VIF to know the degree of multicollinearity between the
predictors; and then computed average mean square error (AMSE) ratio of OLSE over
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different ridge estimators which are considered in this article. The simulation results are
given in Tables 1 and 2.

Table 1. VIF values of different predictors.

Predictors  X; Xz X3 Xa X5 Xs X7
VIF 1.2982 1.1987 1.1209 231.1956 5184.0939 4645.6650 1.0916

VIF values indicated that there exists a moderate to very high degree of multicollinearity
between the predictors.

Table 2. AMSE of OLSE over other ridge estimators.

< © o] N~ 0 © <t <t <t < < 2] 7o) 7o)
— ¥s} ™ o o] I — Bl — Bl ﬁ o2} o ©
AMSE <t ™ ol ] o ™ <t < <t < <t 1) ¥o) ¥o)
] 3\ ) 0 ] 0 [ee) e} ] e} ] o'} ] ]
o o o o o o o o o o o o o o

Above results indicate that the suggested estimators ki3, and k4, perform better than all
the other estimators except, the estimator due to Dorugade and Kashid [15], i.e., ks, but
the two suggested estimators coincide with [15], in terms of MSE, and thereby their
performances are comparable and satisfactory.

6. Simulation Study

Simulation study was conducted for various values of n, the sample size; p the number of
predictors, residual variance 0'2, and p , the degree of correlation, in the presence of low,
moderate and a high degree of multicollinearity. The results were obtained by generating a
random data matrix X of size (n x p) using the relation:

2 12 . .
xij:(l—p ) afij+p§ip,|:1,2,...,n; i=12,..,p;
here &; ‘s are independent standard normal pseudo-random numbers, p is fixed such that

p2 is the degree of correlation between any two predictors. These variables are
standardized such that XX takes up correlation matrix form, and to generate y we have
assumed vector gas g =[0.03,0.5,0.03,0.91,0.59,0.74,0.3,0.95,0.83,0.9,0.5,0.4,0.3, 0.5,
0.3,0.9]" . The performance of the suggested estimators was evaluated with n = 25, 50, and

1000; p = 15, the variance of the residual term o’ 5,25, 100, and 1000; and the degree
of correlation o =0.3, 0.5, 0.7, 0.9, 0.99 and 0.9999. The experiment was replicated 1000
times each and the average of mean square error (AMSE) was computed using the
relation,

000

Nl 1 A P
AMSE(R )=—— X (8 -pY(B,, - P
1000, _,

§))



where, ﬁ'* is any estimator that was used in this study. Ridge estimates were computed by
considering the different estimators of the ridge parameter k , defined in equations (7) to
(15). The results of the simulation are presented in Table 3. Here, the estimators leading to
the maximum ratio of AMSE of OLS over AMSE of other ridge estimators were
considered to be the best in terms of MSE.
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Table 3. AMSE ratio of OLSE over different Ridge estimator’s when error (u) ~ N (0, 6°1).

N=25 AMSE p=03 p=05 p=07 p=09 p=099 p =0.9999

6°=5 ki 1.3847 15546 2.0207  3.0783  4.3582  4.4458
k 08151 09654 1.2828 24334  9.2939 8.4226
ks 26436  2.8054 3.6249 61488 95922  8.0385
Ky 09547 10856 1.3709 17858  2.0074 2.0952
Ks 0653 07119 07950  0.9087  0.9972  1.0039
Ke 17419  2.1588 24789 34314 135524  9.3012
k; 1.3848 15546 20207 30786 43631  4.9155
Ke 1.3848 15546 20207  3.0783 43583  4.4458
Ko 1.3862 15556 20215  3.0794 43600  4.4476
Ko 0653 07119 07950  0.9087  0.9972 1.0039
Kuy 0653 07119 07950  0.9087 09972  1.0039
Ki 1.0641  1.0777 1.0861 11813  1.2852 1.2936
Kis 0653 07119 07950  0.9087  0.9972  1.0039
Kig 0653 07119 07950  0.9087  0.9972 1.0039

=25 K, 38362 4.0195 41562 45012 45178  4.5289
K, 15163 1.6370 1.9547  3.4116 236202  35.0617
ks 155810 157196 150989  13.8062  10.2328  8.2485
Ke 17682  1.8619 2.0544 21102  2.1038 2.1636
ks 09827 09865 09920  1.0002  1.0036  1.0037
Ke 9.8250  7.8409  6.4622 81541  58.6202  64.2824
ks 38366 4.0198 41564 45018 45229  5.0202
Ke 38362  4.0195 4.1562 45012 45178  4.5289
Ko 3.8441 40245 41593 45033 45197  4.5308
Ko 09827 09865 09920  1.0002  1.0036 1.0037
Kuy 09827 09865 09920  1.0002  1.0036  1.0037
Ki 23191 1.9745 15516 13452  1.2967 1.2959
Kis 09827 09865 09920  1.0002  1.0036  1.0037
Kg 09827 09865 09920  1.0002  1.0036 1.0037

Table 3. Continued...
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6?=100 Kk 41835 41850 4.2574 4.2754 4.4948 4.3794
ka 15571  1.6521  1.9876 3.3089 24.2098  36.4688
ks 19.4858 18.6403 17.0535  13.4637  10.1515  7.8843
Ky 1.8143 19598  1.9854 2.0473 2.1504 2.0742
Ks 1.0018 1.0016  1.0035 1.0039 1.0039 1.0039
Ks 10.9368 8.4201  6.6092 8.6282 66.6886  69.2413
ks 41839 41853  4.2577 4.2762 4.5003 5.0290
ks 41835 41850  4.2574 4.2754 4.4948 4.3794
Kg 41917 41902  4.2609 4.2778 4.4967 4.3817
Ko 1.0018 1.0016  1.0035 1.0039 1.0039 1.0039
ki1 1.0018 1.0016  1.0035 1.0039 1.0039 1.0039
ko 24601  2.0291  1.5672 1.3311 1.3014 1.2877
ki3 1.0018 1.0016  1.0035 1.0039 1.0039 1.0039
Ki4 1.0018 1.0016  1.0035 1.0039 1.0039 1.0039

6?=1000 k; 4.2053  4.2322  4.4203 4.4399 4.3937 4.4939
k, 15556  1.7040  2.0094 3.3465 22.7244  32.1036
ks 20.0472 18.5617 17.4034  14.0752  9.8729 8.2017
ky 1.8110 19661  2.0098 2.0775 2.0975 2.1428
ks 1.0023  1.0032  1.0035 1.0039 1.0037 1.0040
ke 119794 8.4695  6.6124 9.2420 57.5703  58.1728
ks 4.2057  4.2326  4.4206 4.4404 4.3998 4.9828
ks 4.2053  4.2322  4.4203 4.4399 4.3937 4.4939
kg 42132 42376  4.4235 4.4421 4.3956 4.4957
kio 1.0023  1.0032  1.0035 1.0039 1.0037 1.0040
ki1 1.0023  1.0032  1.0035 1.0039 1.0037 1.0040
ko 24572  2.0240  1.5939 1.3444 1.2999 1.2920
kis 1.0023  1.0032  1.0035 1.0039 1.0037 1.0040
Ki4 1.0023 1.0032  1.0035 1.0039 1.0037 1.0040

6°=5 ky 0.4921  0.5460 0.7318 1.5173 3.5282 4.1053
k, 0.3547  0.4027  0.5111 0.9051 4.4414 21.3857
ks 0.9480 0.9960  1.2204 2.7386 9.7035 8.7063
Ky 0.3731  0.4314 0.5718 1.0255 1.7613 1.8971
ks 0.3463  0.3894  0.4806 0.7251 0.9704 1.0037
ke 0.5295  0.5773  0.6542 1.0676 4.6746 15.1524
ks 0.4921  0.5460 0.7318 1.5173 3.5284 4.1246
ks 0.4921  0.5460 0.7318 1.5173 3.5282 4.1053
kg 0.4925  0.5462  0.7320 1.5176 3.5291 4.1064
k1o 0.3463  0.3894  0.4806 0.7251 0.9704 1.0037
ki1 0.3463  0.3894  0.4806 0.7251 0.9704 1.0037
ko 0.4181  0.4425  0.5276 0.8130 1.1399 1.1888
ki3 0.3463  0.3894  0.4806 0.7251 0.9704 1.0037
K14 0.3463  0.3894  0.4806 0.7251 0.9704 1.0037

Table 3. Continued. ..
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62=25 ky 29064  3.0897 3.2671 3.7431 4.1254 4.0843
ka 0.9982  1.0378  1.1058 1.4217 5.6537 9.1050
ks 16.9697 17.2122 17.8079  20.0133  14.2235 8.6603
Ky 1.1140 12650 1.4631 1.7424 1.9170 1.9175
Ks 0.9257  0.9421  0.9604 0.9892 1.0029 1.0037
Ks 3.1264  2.6384  2.1896 2.8993 13.1149  11.2494
ks 29064  3.0897  3.2671 3.7431 4.1256 4.1041
ks 29064  3.0897  3.2671 3.7431 4.1254 4.0843
Kg 29105  3.0921  3.2686 3.7443 4.1266 4.0855
Ko 0.9257  0.9421  0.9604 0.9892 1.0029 1.0037
ki1 0.9257  0.9421  0.9604 0.9892 1.0029 1.0037
ko 1.7400  1.4874  1.2526 1.1957 1.1933 1.1878
ki3 0.9257  0.9421  0.9604 0.9892 1.0029 1.0037
Ki4 0.9257  0.9421  0.9604 0.9892 1.0029 1.0037

6?=100 Kk 3.5480 3.7782  3.8378 3.9303 4.1303 4.0535
k, 1.0826 11057  1.1632 1.4297 5.8513 9.6707
ks 49.5670 46.2030 39.5045  26.5260  14.2741 8.5836
ky 12200 1.3618  1.5508 1.7847 1.9492 1.9009
ks 0.9974  0.9988  1.0012 1.0030 1.0034 1.0039
ke 3.8769  3.0262  2.4780 3.0913 149276  15.7086
ks 3.5480 3.7782  3.8378 3.9304 4.1305 4.0725
ks 3.5480 3.7782  3.8378 3.9303 4.1303 4.0535
kg 3.5538  3.7816  3.8398 3.9317 4.1315 4.0546
kio 0.9974  0.9988  1.0012 1.0030 1.0034 1.0039
ki1 0.9974  0.9988  1.0012 1.0030 1.0034 1.0039
ko 19897  1.6493  1.3298 1.2169 1.1932 1.1853
kis 0.9974  0.9988  1.0012 1.0030 1.0034 1.0039
Ki4 0.9974 0.9988  1.0012 1.0030 1.0034 1.0039

6?=1000 k; 3.7254  3.7503  3.7826 4.0203 4.1284 4.0442
k, 1.0901 11105 1.1653 1.4625 5.8678 16.7318
ks 60.1782 51.4491 40.8727 275066  14.2625  8.5588
Ky 12256  1.3545  1.5600 1.8112 1.9025 1.9017
ks 1.0021  1.0032  1.0039 1.0040 1.0041 1.0038
ke 41366  3.0482  2.5878 3.4286 15.2173  18.7290
ks 3.7254  3.7503  3.7827 4.0203 4.1286 4.0638
ks 3.7254  3.7503  3.7826 4.0203 4.1284 4.0442
kg 3.7315  3.7538  3.7847 4.0217 4.1296 4.0453
k1o 1.0021  1.0032  1.0039 1.0040 1.0041 1.0038
ki1 1.0021  1.0032  1.0039 1.0040 1.0041 1.0038
ko 2.0508 1.6480  1.3267 1.2237 1.1944 1.1851
ki3 1.0021  1.0032  1.0039 1.0040 1.0041 1.0038
K14 1.0021  1.0032  1.0039 1.0040 1.0041 1.0038

Table 3. Continued. ..
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o= ky 0.0243  0.0254  0.0397 0.1045 0.7290 3.7906
k, 0.0239  0.0251  0.0390 0.0998 0.4969 5.0480
ks 0.0468  0.0497  0.0668 0.1485 1.0749 11.2802
ky 0.0239  0.0251  0.0391 0.1002 0.5471 1.7908
ks 0.0239  0.0251  0.0390 0.0998 0.4898 0.9921
ke 0.0247  0.0251  0.0390 0.0998 0.4913 1.5512
ks 0.0243  0.0254  0.0397 0.1045 0.7290 3.7906
ks 0.0243  0.0254  0.0397 0.1045 0.7290 3.7906
kg 0.0243  0.0254  0.0397 0.1045 0.7290 3.7907
kio 0.0239  0.0251  0.0390 0.0998 0.4898 0.9921
ki1 0.0239  0.0251  0.0390 0.0998 0.4898 0.9921
k2 0.0240  0.0251  0.0391 0.1002 0.5102 1.1299
ki3 0.0239  0.0251  0.0390 0.0998 0.4898 0.9921
Ki4 0.0239  0.0251  0.0390 0.0998 0.4898 0.9921

6?=25 ky 0.4410 0.4626  0.6882 1.4820 3.2961 3.8787
k, 0.3197  0.3394  0.4646 0.7304 1.0520 24.7335
ks 0.9101  1.0563  1.5380 3.5267 104580  12.3470
ky 0.3202  0.3409  0.4708 0.7824 1.4402 1.8268
ks 0.3194 0.3391  0.4637 0.7253 0.9632 1.0035
ke 0.3561  0.3541  0.4842 0.7836 1.2705 20.2522
ks 0.4410 0.4626  0.6882 1.4820 3.2961 3.8787
ks 0.4410 0.4626  0.6882 1.4820 3.2961 3.8787
kg 0.4410 0.4626  0.6882 1.4821 3.2962 3.8788
kio 0.3194 0.3391  0.4637 0.7253 0.9632 1.0035
ki1 0.3194 0.3391  0.4637 0.7253 0.9632 1.0035
ko 0.3635 0.3660  0.4958 0.7920 1.0893 1.1423
kis 0.3194 0.3391  0.4637 0.7253 0.9632 1.0035
Ki4 0.3194 0.3391  0.4637 0.7253 0.9632 1.0035

6?=100 ky 24891  2.5443  2.8634 3.4213 3.8460 3.9557
k, 0.8852  0.8931  0.9384 0.9922 1.1054 29.2807
ks 145413 16.3185 23.8444 482369 60.7924  12.7026
Ky 0.8875  0.9006  0.9614 1.0892 1.5196 1.8298
ks 0.8834  0.8909  0.9349 0.9820 1.0005 1.0037
ke 1.0625 1.0309  1.0719 1.1883 1.8081 58.6681
ks 24891 25443  2.8634 3.4213 3.8460 3.9557
ks 24891 25443  2.8634 3.4213 3.8460 3.9557
kg 24895 25445  2.8635 3.4214 3.8461 3.9558
k1o 0.8834  0.8909  0.9349 0.9820 1.0005 1.0037
ki1 0.8834  0.8909  0.9349 0.9820 1.0005 1.0037
ko 13734 11742  1.1306 1.1332 1.1399 1.1447
ki3 0.8834  0.8909  0.9349 0.9820 1.0005 1.0037
K14 0.8834  0.8909  0.9349 0.9820 1.0005 1.0037

Table 3. Continued. ..
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62=1000 kq 3.5859 3.5177 3.6323 3.7691 3.8553 3.9229
k, 1.0022 1.0050 1.0067 1.0143 1.1094 29.0332
ks 9.2437 7.8368 47126 4.7090 9.8025 12.6319
K4 1.0050 1.0143 1.0330 1.1165 1.5192 1.8106
Ks 0.9999 1.0023 1.0027 1.0035 1.0040 1.0038
Ks 1.2731 1.1681 1.1801 1.2222 1.9098 63.1879
ks 3.5859 3.5177 3.6323 3.7691 3.8553 3.9229
Ks 3.5859 3.5177 3.6323 3.7691 3.8553 3.9229
Ko 3.5866 3.5181 3.6325 3.7692 3.8555 3.9230
K10 0.9999 1.0023 1.0027 1.0035 1.0040 1.0038
ki1 0.9999 1.0023 1.0027 1.0035 1.0040 1.0038
K12 1.7056 1.3760 1.2385 1.1651 1.1437 1.1427
K1z 0.9999 1.0023 1.0027 1.0035 1.0040 1.0038
Kia 0.9999 1.0023 1.0027 1.0035 1.0040 1.0038

7. Discussion

From Table 2, it is observed that for a moderate to high degree of correlations, the
suggested estimators perform better than all the other existing estimators and coincide
with ks. From Table 3, one may observe that the estimators k,, k3 and kg i.e., due to
Lawless-Wang [10], Nomura [19] and Dorugade [16], have shown somewhat peculiar
behaviour than any other estimators. Further for large n, say n > 50, low error variance ¢°
(<5), low and moderate degree of correlations (p), all the estimators considered here have
produced unstable estimates for the ridge parameter. Estimators due to k; i.e., Hoerl et al.
[18], Satish and Vidya [20,21,24] i.e., ks, kg and kg behaved better, and yielded more stable
estimates to the regression coefficients, but it is observed carefully that, these estimators
slightly over shrinks the estimates to the regression coefficients as compared to other
estimators due to Dorugade and Kashid [15], Satish and Vidya [24] i.e., Kio, K11, and, Kiy;
and the proposed estimators kyzand ki,.

8. Conclusion

Motivated by the interesting behaviour of several popular estimators in Ridge Regression,
an attempt was made to further refine the estimators so that the Mean Square Errors are
reduced to a certain extent possible so that more robust and reliable estimates can be
achieved. Accordingly new estimators were developed and their performance was
evaluated in this study. As standard procedures to establish the robustness of the
estimators, the newly developed estimators were evaluated in terms of MSE and
compared with existing methods of estimators. Examples using real-life data and
simulation studies were provided to illustrate the practical benefits of the new estimators.
In all cases the performance of the proposed estimators was satisfactory and comparable.
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