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Abstract 

Ordinary least squares estimator (OLS) becomes unstable if there is a linear dependence 

between any two predictors. When such situation arises ridge estimator will yield more 

stable estimates to the regression coefficients than OLS estimator. Here we suggest two 

modified ridge estimators based on weights, where weights being the first two largest eigen 

values. We compare their MSE with some of the existing ridge estimators which are defined 

in the literature. Performance of the suggested estimators is evaluated empirically for a wide 

range of degree of multicollinearity. Simulation study indicates that the performance of the 

suggested estimators is slightly better and more stable with respect to degree of 

multicollinearity, sample size, and error variance. 

Keywords: Multivariate linear regression (MLR); Multicollinearity; Ridge regression; 

Weights; MSE. 
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1.   Introduction 

Consider the standard form of multivariate linear regression (MLR) model defined by 

 
uβy  X

 (1) 

Where X is ( pn  ) data matrix, y is ( 1n ) vector of response, β  is ( 1p ) vector of 

regression coefficients and u  is ( 1n ) vector of residuals which are i.i.d. with zero mean 

and variance
2

 . When X  has full rank, the ordinary least squares (OLS) method, gives 

the estimate for β as       

 yβ XXX
OLS


1

)(ˆ      (2)  

Due to near linear dependence between the predictors, 
1

)(


XX  may not exist always and 

therefore OLS estimator will yield unstable estimates to the regression coefficients. That 

is, in presence of multicollinearity, OLS estimator becomes biased and also has large 

variance. When moderate or severe degree of multicollinearity is present 
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12 -
)()cov(-var XXˆ

OLS
 β will be large. That is, regression parameters are sensitive to 

small changes in the response variable y or the matrix of predictors X (Marquardt and 

Snee, [1]; Vinod and Ullah, [2]). Thus to overcome the drawbacks of OLS, there are 

number of techniques have been proposed in the literature, viz., Ridge regression, 

Principal component regression, Partial least squares regression, LASSO method of 

regression, Liu method of regression etc., for details, see  Hoerl [3], Hoerl and Kennard 

[4], Helland [5], Vinod and Ullah [2], Mardikyan and Cetin [6],  Tibshirani [7].
 

 

2. The Canonical Model 

 

Here matrix X , is standardised such that XX  , is in the form of a near correlation matrix. 

Further, let XWZ  where W is a matrix of order ( pp  ) so that its columns are 

normalized eigen vectors of XX  , such that ZZ  XWXW D  ).,..,,(
21 p

diag  , 

where s
j
' are the 

th
j  eigen value of XX  . The equation (1) becomes  

 uγy  Z , (3) 

where βγ W  . The OLS estimator for γ  is then given by  

 yyγ ZDZZZ
OLS








11

)(ˆ . (4) 

Since βγ W  , implies γβ ˆˆ W .  

 

3. Ridge Estimation  

 

Ridge regression is one of the most widely used techniques to cope with the problem of 

multicollinearity. It is an alternative technique to OLS. OLS estimator become unstable 

when there is a linear dependence between any two predictors. Linear dependency leads to 

multicollinearity and thereby inverse of the matrix XX  , may not be possible. When such a 

situation arises, Hoerl and Kennard [4] have suggested that; add a constant )0(k  to 

every 
th

j element of the diagonal of the matrix XX  , to overcome the problem of 

singularity. That is increasing the length of OLS estimator by a small amount )0(k , will 

reduce the MSE of β̂ , and such a modification in XX  made the ridge estimator more 

robust to the problem of singularity.  

The ordinary ridge estimator for the regression coefficients is given by 

 yyγ ZAZkIZZ
R


 11

)(ˆ  (5) 

Where kIDA   and WZX  . Using equation (4), equation (5) reduce to 

      
OLSR

kAI γγ ˆ)
1

(ˆ


 . (6) 

Hoerl and Kennard [4] showed that ridge estimator is biased and its bias-square is 

continuous and monotonically increasing function of k . Also for 0 ≤ k  ≤ 
2

max

2

γ̂


, the MSE    
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(
R

γ̂ ) is minimum, where 
2

max
γ̂ is the largest element of 

2
ˆ

R
γ and 

2
  is replaced by its 

estimate .
1

ˆ
ˆ

2






pn

Z
OLS

yγyy
  Halawa and El Bassiouni [8] suggested that the estimate of 

2
  is .

ˆ
ˆ

2

pn

Z
OLS






yγyy
  Above two estimators of 

2
 , may yield negative estimates to 

the residual mean square, if pn  . Instead, herewith considered Hastie and Tibshirani‟s 

[9] methodology, which makes the use of „hat matrix‟, H, in turn the degrees of freedom 

for the error is pnHHHtrn  )2( . 

 

3.1. Some well-known ridge estimators  

 

In the literature, several authors have defined different methods of estimating the ridge 

parameter k, to overcome the problem of multicollinearity. Some of the well-known 

methods for choosing ridge parameter are due to references [2,10-17].   

 Some of the well-known methods of estimating the ridge parameter k are  

 i) 
γγ ˆˆ

ˆ
2

1



p

k                         (Hoerl, Kennard, and Baldwin, [18]) (7) 

where p , is the number of predictors, 
2

̂ is the estimate of 
2

 and γ̂ is the estimate of γ.  

 ii) 



 p

j jj

p
k

1

2

2

2

ˆ

ˆ

γ


    (Lawless and Wang, [10])     (8) 

where 
j

 is the eigen 
th

j value of XX  . 

   iii)   





p

j jj j

p
k

1

2/1222

2

3

)]]ˆ/ˆ[1(1[/ˆ

ˆ





γγ

   (Nomura, [19])              (9) 

where 
j

 is the eigen 
th

j value of XX  . 

 iv)    
2

maxmax

2

2

max

4
ˆˆ)1(

ˆ

γ







pn

k  ,         (Khalaf and Shukur, [12])    (10) 

where 
max

 the largest Eigen is value of XX  , and 
2

max
γ̂ is the largest element of 

2
ˆ

R
γ  

 v)  


















max

2

5

)(

1

ˆˆ

ˆ
,0

j
VIFn

p
Maxk

γγ


 , (Dorugade and Kashid, [15]) (11)     

where ;.,..,2,1,

)1(

1

2
pj

R

VIF

j

j




 is the variance inflation factor of the 
th

j regressor. 
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 vi) 


p

j

j

p
k

1 2

2

max

6
ˆ

ˆ2

γ





 , (Dorugade, [16])         (12) 

where 
max

 is the largest eigen value of XX  . 

 vii) 

max

1

max

2

7

11

ˆˆ

ˆ





n

k

n

p
k 





γγ

 , (Satish and Vidya, [20])      (13) 

where 
max

 is the largest eigen value of XX  . 

 viii) 
γγγγγγ ˆˆ

1

ˆˆ

1

ˆˆ

ˆ

max

1

max

2

8















k

p
k  ,     (Satish and Vidya, [21]) (14) 

where 
max

 is the largest eigen value of XX  . 

 ix) 
212

minmax

2

9

2

1

)/(2

1

ˆˆ

ˆ

m

k
p

k 









γγ

 , (Satish and Vidya, [21])   (15) 

where
minmax

/ m  is the condition number [2,22]. Higher the value of m , higher is 

the degree of multicollinearity. If (30 < m < 100) means a moderate to strong 

multicollinearity, and if m > 100 suggests severe multicollinearity [23]. 

 x) 
5110

),( kkkkGMk
DKHKB

  ,    (Satish and Vidya, [24])      (16) 

 xi) )(/2),(
51515111

kkkkkkHMk  ,   (Satish and Vidya, [24])   (17) 

where, 
1

k is the estimator due to Hoerl et al. [18] and 
5

k is the estimator due to Dorugade 

and Kashid, [15]. 

 xii) 













21

5112

51
),(

12

ww

kwkw
kkW AMk ,   (Satish, [25]) (18)  

where, weight 
11
w , being the largest eigen value, and

22
w , is the second largest 

eigen value of X‟X matrix.   It is observed that the estimators defined in equations (7) to 

(12) are verified under very high degree (ρ ≥ 0.9) of multicollinearity between the 

predictors whereas, the estimators due to Satish and Vidya [20,21,24] are investigated 

under various degree of multicollinearity viz., low, moderate and high degree of 

multicollinearity. Also, Satish and Vidya [20,24], have considered different error 

distributions viz., normal and non-normal (t(5)- distribution with 5 d.f.) for the error term.   

 Further, the estimator due to Hoerl et al. [18] seems to be over shrunken the estimator 

towards zero and it does not work well when number of predictors is more than the 

sample size whereas the estimator due to Dorugade and Kashid [15] performs better when 

number of predictors is more than the sample size, and also when predictors are highly 

collinear, i.e., later is more stable than the earlier. Moreover, Askin and Montgomery [26], 

proposed ridge regression based on M-estimates, where the M-estimates were computed 

using weighted least squares procedure. Holland [27] suggests that weights being used are 

non-negative, may not be equal, and their sum need not be equal to unity. Holland [27] 
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also used the weighted least squares procedure to estimate β , where β „s are obtained by 

subtracting the means of s'y and jth column of Xj, respectively. Motivated by these 

features of the above estimators, we would like to suggest a new method of assigning 

weights to ordinary ridge estimators.  

 

4. Proposed Estimators 

 

Here we suggest two modified ridge estimators namely, weighted geometric mean ridge 

estimator; and secondly, a weighted harmonic mean ridge estimator, where weights being 

the first two largest eigen values )(and
2121

  . These two estimators are obtained by 

taking weighted geometric mean and weighted harmonic mean of the estimators due to 

Dorugade and Kashid [15], and Hoerl et al. [18] respectively. We have assigned higher 

weight (
11
w , largest eigen value) to estimator, which is due to Dorugade and Kashid 

[15], and lower weight (
22

w , the second largest eigen value) to estimator, which is 

due to Hoerl et al. [18]. The weights are assigned in such a way that prior is more stable 

than the later, for pn  ; and the suggested estimators is defined by 

 

 xiii)  













21

5112

5113

)(ln)(ln
exp),(

ww

kwkw
kkW GMk , (19) 

 xiv) 

1152

2

151

5112

5114

)/()/(

21
),(

kwkw

wkk

kwkw

ww

kkW HMk
i i












  , (20) 

Modifications made the suggested estimators more robust to the problem of 

multicollinearity, since the two largest eigen values
21

and , carry most of the 

information‟s of the data matrix X  and further, it is observed that an input of higher 

weights to more stable estimator will have more influence on the MSE, that is, MSE of the 

suggested estimators gets reduced to a certain extent, and thereby suggested estimators 

become more stable and comparable to some of the existing estimators, which are 

considered under this study.  

LASSO [7] technique of regression is the one which shrinks some regression 

coefficients in absolute terms and sets others to zero. That is “LASSO minimizes the 

residual sum of squares subject to the sum of the absolute value of the coefficients being 

less than a constant”, [17]. It is also used as subset selection operator and hence “tries to 

retain the good features of both subset selection and ridge regression” [7].  This article 

pertains to weighted ridge regression and does not through light on the subset selection. 

 

5. Application of Real Data 

 

Here we consider a part of the real data related to wages and other characteristics of 

workers [28]. We have computed VIF to know the degree of multicollinearity between the 

predictors; and then computed average mean square error (AMSE) ratio of OLSE over 
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different ridge estimators which are considered in this article. The simulation results are 

given in Tables 1 and 2. 

 
Table 1. VIF values of different predictors.       
  

Predictors X1 X2 X3 X4 X5 X6 X7 

VIF 1.2982 1.1987 1.1209 231.1956 5184.0939 4645.6650 1.0916 

 

VIF values indicated that there exists a moderate to very high degree of multicollinearity 

between the predictors.  

 

Table 2. AMSE of OLSE over other ridge estimators. 
 

Estimators k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 

AMSE  

0
.8

4
1
4
 

0
.2

3
5
6
 

0
.8

2
3
8

  
  
 

0
.8

3
8
7
 

0
.8

5
8
5
 

0
.8

3
2
8
 

0
.8

4
1
4
 

0
.8

4
1
4
 

0
.8

4
1
4
 

0
.8

4
1
4
 

0
.8

4
1
4
 

0
.8

3
9
9
 

0
.8

5
8
5
 

0
.8

5
8
5
 

 

Above results indicate that the suggested estimators k13, and k14, perform better than all 

the other estimators except, the estimator due to Dorugade and Kashid [15], i.e., k5 , but 

the two suggested estimators coincide with [15], in terms of MSE, and thereby their 

performances are comparable and satisfactory.  

 

6. Simulation Study 

 

Simulation study was conducted for various values of n, the sample size; p  the number of 

predictors, residual variance
2

 , and  , the degree of correlation, in the presence of low, 

moderate and a high degree of multicollinearity. The results were obtained by generating a 

random data matrix X of size ( pn  ) using the relation: 

 ;.,..,2,1;.,..,2,1,)1(
2/12

pjnix
ipijij

   

here
ij

 „s are independent standard normal pseudo-random numbers,  is fixed such that 

2
 is the degree of correlation between any two predictors. These variables are 

standardized such that XX   takes up correlation matrix form, and to generate y  we have 

assumed vector β as  =[0.03,0.5,0.03,0.91,0.59,0.74,0.3,0.95,0.83,0.9,0.5,0.4,0.3, 0.5, 

0.3,0.9] . The performance of the suggested estimators was evaluated with n = 25, 50, and 

1000; 15p , the variance of the residual term
2

 : 5, 25, 100, and 1000; and the degree 

of correlation  = 0.3, 0.5, 0.7, 0.9, 0.99 and 0.9999. The experiment was replicated 1000 

times each and the average of mean square error (AMSE) was computed using the 

relation,  

 )-
*ˆ()*ˆ(

1000

1
)

*ˆ(
)(

1000

1
)(

βββββ
j

j
j

AMSE  


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where,


β̂ is any estimator that was used in this study. Ridge estimates were computed by 

considering the different estimators of the ridge parameter k , defined in equations (7) to 

(15). The results of the simulation are presented in Table 3. Here, the estimators leading to 

the maximum ratio of AMSE of OLS over AMSE of other ridge estimators were 

considered to be the best in terms of MSE.  

 

Table 3. AMSE ratio of OLSE over different Ridge estimator‟s when error (u) ~ N (0, σ2I). 
 

n 25 AMSE  0.3  0.5  0.7  0.9  0.99  0.9999 

σ2=5 

 
 k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

k12 

k13 

k14 

1.3847 

0.8151 

2.6436 

0.9547 

0.6536 

1.7419 

1.3848 

1.3848 

1.3862 

0.6536 

0.6536 

1.0641 

0.6536 

0.6536 

1.5546 

0.9654 

2.8054 

1.0856 

0.7119 

2.1588 

1.5546 

1.5546 

1.5556 

0.7119 

0.7119 

1.0777 

0.7119 

0.7119 

2.0207 

1.2828 

3.6249 

1.3709 

0.7950 

2.4789 

2.0207 

2.0207 

2.0215 

0.7950 

0.7950 

1.0861 

0.7950 

0.7950 

3.0783 

2.4334 

6.1488 

1.7858 

0.9087 

3.4314 

3.0786 

3.0783 

3.0794 

0.9087 

0.9087 

1.1813 

0.9087 

0.9087 

4.3582 

9.2939 

9.5922 

2.0074 

0.9972 

13.5524 

4.3631 

4.3583 

4.3600 

0.9972 

0.9972 

1.2852 

0.9972 

0.9972 

4.4458 

 8.4226 

8.0385 

 2.0952 

1.0039 

 9.3012 

4.9155 

 4.4458 

4.4476 

 1.0039 

1.0039 

 1.2936 

1.0039 

 1.0039 

σ2=25 k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

k12 

k13 

k14 

3.8362 

1.5163 

15.5810 

1.7682 

0.9827 

9.8250 

3.8366 

3.8362 

3.8441 

0.9827 

0.9827 

2.3191 

0.9827 

0.9827 

4.0195 

1.6370 

15.7196 

1.8619 

0.9865 

7.8409 

4.0198 

4.0195 

4.0245 

0.9865 

0.9865 

1.9745 

0.9865 

0.9865 

4.1562 

1.9547 

15.0989 

2.0544 

0.9920 

6.4622 

4.1564 

4.1562 

4.1593 

0.9920 

0.9920 

1.5516 

0.9920 

0.9920 

4.5012 

3.4116 

13.8062 

2.1102 

1.0002 

8.1541 

4.5018 

4.5012 

4.5033 

1.0002 

1.0002 

1.3452 

1.0002 

1.0002 

4.5178 

23.6202 

10.2328 

2.1038 

1.0036 

58.6202 

4.5229 

4.5178 

4.5197 

1.0036 

1.0036 

1.2967 

1.0036 

1.0036 

4.5289 

35.0617 

8.2485 

 2.1636 

1.0037 

64.2824 

5.0202 

 4.5289 

4.5308 

 1.0037 

1.0037 

 1.2959 

1.0037 

 1.0037 

Table 3. Continued… 
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σ2=100 

 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

k12 

k13 

k14 

4.1835 

1.5571 

19.4858 

1.8143 

1.0018 

10.9368 

4.1839 

4.1835 

4.1917 

1.0018 

1.0018 

2.4601 

1.0018 

1.0018 

4.1850 

1.6521 

18.6403 

1.9598 

1.0016 

8.4201 

4.1853 

4.1850 

4.1902 

1.0016 

1.0016 

2.0291 

1.0016 

1.0016 

4.2574 

1.9876 

17.0535 

1.9854 

1.0035 

6.6092 

4.2577 

4.2574 

4.2609 

1.0035 

1.0035 

1.5672 

1.0035 

1.0035 

4.2754 

3.3089 

13.4637 

2.0473 

1.0039 

8.6282 

4.2762 

4.2754 

4.2778 

1.0039 

1.0039 

1.3311 

1.0039 

1.0039 

4.4948 

24.2098 

10.1515 

2.1504 

1.0039 

66.6886 

4.5003 

4.4948 

4.4967 

1.0039 

1.0039 

1.3014 

1.0039 

1.0039 

4.3794 

36.4688 

7.8843 

 2.0742 

1.0039 

69.2413 

5.0290 

 4.3794 

4.3817 

 1.0039 

1.0039 

 1.2877 

1.0039 

 1.0039 

σ2=1000 

 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

k12 

k13 

k14 

4.2053 

1.5556 

20.0472 

1.8110 

1.0023 

11.9794 

4.2057 

4.2053 

4.2132 

1.0023 

1.0023 

2.4572 

1.0023 

1.0023 

4.2322 

1.7040 

18.5617 

1.9661 

1.0032 

8.4695 

4.2326 

4.2322 

4.2376 

1.0032 

1.0032 

2.0240 

1.0032 

1.0032 

4.4203 

2.0094 

17.4034 

2.0098 

1.0035 

6.6124 

4.4206 

4.4203 

4.4235 

1.0035 

1.0035 

1.5939 

1.0035 

1.0035 

4.4399 

3.3465 

14.0752 

2.0775 

1.0039 

9.2420 

4.4404 

4.4399 

4.4421 

1.0039 

1.0039 

1.3444 

1.0039 

1.0039 

4.3937 

22.7244 

9.8729 

2.0975 

1.0037 

57.5703 

4.3998 

4.3937 

4.3956 

1.0037 

1.0037 

1.2999 

1.0037 

1.0037 

4.4939 

32.1036 

8.2017 

 2.1428 

1.0040 

58.1728 

4.9828 

 4.4939 

4.4957 

 1.0040 

1.0040 

 1.2920 

1.0040 

 1.0040 

σ2=5 

 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

k12 

k13 

k14 

0.4921 

0.3547 

0.9480 

0.3731 

0.3463 

0.5295 

0.4921 

0.4921 

0.4925 

0.3463 

0.3463 

0.4181 

0.3463 

0.3463 

0.5460 

0.4027 

0.9960 

0.4314 

0.3894 

0.5773 

0.5460 

0.5460 

0.5462 

0.3894 

0.3894 

0.4425 

0.3894 

0.3894 

0.7318 

0.5111 

1.2204 

0.5718 

0.4806 

0.6542 

0.7318 

0.7318 

0.7320 

0.4806 

0.4806 

0.5276 

0.4806 

0.4806 

1.5173 

0.9051 

2.7386 

1.0255 

0.7251 

1.0676 

1.5173 

1.5173 

1.5176 

0.7251 

0.7251 

0.8130 

0.7251 

0.7251 

3.5282 

4.4414 

9.7035 

1.7613 

0.9704 

4.6746 

3.5284 

3.5282 

3.5291 

0.9704 

0.9704 

1.1399 

0.9704 

0.9704 

4.1053 

21.3857 

8.7063 

 1.8971 

 1.0037 

15.1524 

4.1246 

 4.1053 

4.1064 

 1.0037 

1.0037 

 1.1888 

1.0037 

 1.0037 

Table 3. Continued… 
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σ2=25 

 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

k12 

k13 

k14 

2.9064 

0.9982 

16.9697 

1.1140 

0.9257 

3.1264 

2.9064 

2.9064 

2.9105 

0.9257 

0.9257 

1.7400 

0.9257 

0.9257 

3.0897 

1.0378 

17.2122 

1.2650 

0.9421 

2.6384 

3.0897 

3.0897 

3.0921 

0.9421 

0.9421 

1.4874 

0.9421 

0.9421 

3.2671 

1.1058 

17.8079 

1.4631 

0.9604 

2.1896 

3.2671 

3.2671 

3.2686 

0.9604 

0.9604 

1.2526 

0.9604 

0.9604 

3.7431 

1.4217 

20.0133 

1.7424 

0.9892 

2.8993 

3.7431 

3.7431 

3.7443 

0.9892 

0.9892 

1.1957 

0.9892 

0.9892 

4.1254 

5.6537 

14.2235 

1.9170 

1.0029 

13.1149 

4.1256 

4.1254 

4.1266 

1.0029 

1.0029 

1.1933 

1.0029 

1.0029 

4.0843 

 9.1050 

 8.6603 

1.9175 

 1.0037 

11.2494 

4.1041 

4.0843 

 4.0855 

1.0037 

1.0037 

 1.1878 

1.0037 

 1.0037 

σ2=100 

 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

k12 

k13 

k14 

3.5480 

1.0826 

49.5670 

1.2200 

0.9974 

3.8769 

3.5480 

3.5480 

3.5538 

0.9974 

0.9974 

1.9897 

0.9974 

0.9974 

3.7782 

1.1057 

46.2030 

1.3618 

0.9988 

3.0262 

3.7782 

3.7782 

3.7816 

0.9988 

0.9988 

1.6493 

0.9988 

0.9988 

3.8378 

1.1632 

39.5045 

1.5508 

1.0012 

2.4780 

3.8378 

3.8378 

3.8398 

1.0012 

1.0012 

1.3298 

1.0012 

1.0012 

3.9303 

1.4297 

26.5260 

1.7847 

1.0030 

3.0913 

3.9304 

3.9303 

3.9317 

1.0030 

1.0030 

1.2169 

1.0030 

1.0030 

4.1303 

5.8513 

14.2741 

1.9492 

1.0034 

14.9276 

4.1305 

4.1303 

4.1315 

1.0034 

1.0034 

1.1932 

1.0034 

1.0034 

4.0535 

 9.6707 

 8.5836 

1.9009 

 1.0039 

15.7086 

4.0725 

 4.0535 

4.0546 

 1.0039 

 1.0039 

 1.1853 

 1.0039 

 1.0039 

σ2=1000 

 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

k12 

k13 

k14 

3.7254 

1.0901 

60.1782 

1.2256 

1.0021 

4.1366 

3.7254 

3.7254 

3.7315 

1.0021 

1.0021 

2.0508 

1.0021 

1.0021 

3.7503 

1.1105 

51.4491 

1.3545 

1.0032 

3.0482 

3.7503 

3.7503 

3.7538 

1.0032 

1.0032 

1.6480 

1.0032 

1.0032 

3.7826 

1.1653 

40.8727 

1.5600 

1.0039 

2.5878 

3.7827 

3.7826 

3.7847 

1.0039 

1.0039 

1.3267 

1.0039 

1.0039 

4.0203 

1.4625 

27.5066 

1.8112 

1.0040 

3.4286 

4.0203 

4.0203 

4.0217 

1.0040 

1.0040 

1.2237 

1.0040 

1.0040 

4.1284 

5.8678 

14.2625 

1.9025 

1.0041 

15.2173 

4.1286 

4.1284 

4.1296 

1.0041 

1.0041 

1.1944 

1.0041 

1.0041 

4.0442 

16.7318 

8.5588 

 1.9017 

1.0038 

18.7290 

4.0638 

 4.0442 

4.0453 

 1.0038 

 1.0038 

 1.1851 

1.0038 

 1.0038 

Table 3. Continued… 
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σ2=5 

 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

k12 

k13 

k14 

0.0243 

0.0239 

0.0468 

0.0239 

0.0239 

0.0247 

0.0243 

0.0243 

0.0243 

0.0239 

0.0239 

0.0240 

0.0239 

0.0239 

0.0254 

0.0251 

0.0497 

0.0251 

0.0251 

0.0251 

0.0254 

0.0254 

0.0254 

0.0251 

0.0251 

0.0251 

0.0251 

0.0251 

0.0397 

0.0390 

0.0668 

0.0391 

0.0390 

0.0390 

0.0397 

0.0397 

0.0397 

0.0390 

0.0390 

0.0391 

0.0390 

0.0390 

0.1045 

0.0998 

0.1485 

0.1002 

0.0998 

0.0998 

0.1045 

0.1045 

0.1045 

0.0998 

0.0998 

0.1002 

0.0998 

0.0998 

0.7290 

0.4969 

1.0749 

0.5471 

0.4898 

0.4913 

0.7290 

0.7290 

0.7290 

0.4898 

0.4898 

0.5102 

0.4898 

0.4898 

3.7906 

 5.0480 

11.2802 

1.7908 

 0.9921 

1.5512 

 3.7906 

3.7906 

 3.7907 

0.9921 

 0.9921 

1.1299 

 0.9921 

0.9921 

σ2=25 

 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

k12 

k13 

k14 

0.4410 

0.3197 

0.9101 

0.3202 

0.3194 

0.3561 

0.4410 

0.4410 

0.4410 

0.3194 

0.3194 

0.3635 

0.3194 

0.3194 

0.4626 

0.3394 

1.0563 

0.3409 

0.3391 

0.3541 

0.4626 

0.4626 

0.4626 

0.3391 

0.3391 

0.3660 

0.3391 

0.3391 

0.6882 

0.4646 

1.5380 

0.4708 

0.4637 

0.4842 

0.6882 

0.6882 

0.6882 

0.4637 

0.4637 

0.4958 

0.4637 

0.4637 

1.4820 

0.7304 

3.5267 

0.7824 

0.7253 

0.7836 

1.4820 

1.4820 

1.4821 

0.7253 

0.7253 

0.7920 

0.7253 

0.7253 

3.2961 

1.0520 

19.4580 

1.4402 

0.9632 

1.2705 

3.2961 

3.2961 

3.2962 

0.9632 

0.9632 

1.0893 

0.9632 

0.9632 

3.8787 

24.7335 

12.3470 

1.8268 

 1.0035 

 20.2522 

3.8787 

 3.8787 

 3.8788 

 1.0035 

 1.0035 

 1.1423 

 1.0035 

 1.0035 

σ2=100 

 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

k12 

k13 

k14 

2.4891 

0.8852 

14.5413 

0.8875 

0.8834 

1.0625 

2.4891 

2.4891 

2.4895 

0.8834 

0.8834 

1.3734 

0.8834 

0.8834 

2.5443 

0.8931 

16.3185 

0.9006 

0.8909 

1.0309 

2.5443 

2.5443 

2.5445 

0.8909 

0.8909 

1.1742 

0.8909 

0.8909 

2.8634 

0.9384 

23.8444 

0.9614 

0.9349 

1.0719 

2.8634 

2.8634 

2.8635 

0.9349 

0.9349 

1.1306 

0.9349 

0.9349 

3.4213 

0.9922 

48.2369 

1.0892 

0.9820 

1.1883 

3.4213 

3.4213 

3.4214 

0.9820 

0.9820 

1.1332 

0.9820 

0.9820 

3.8460 

1.1054 

60.7924 

1.5196 

1.0005 

1.8081 

3.8460 

3.8460 

3.8461 

1.0005 

1.0005 

1.1399 

1.0005 

1.0005 

3.9557 

29.2807 

12.7026 

1.8298 

 1.0037 

58.6681 

3.9557 

3.9557 

 3.9558 

1.0037 

 1.0037 

 1.1447 

 1.0037 

 1.0037 

Table 3. Continued… 
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σ2=1000 

 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

k12 

k13 

k14 

3.5859 

1.0022 

9.2437 

1.0050 

0.9999 

1.2731 

3.5859 

3.5859 

3.5866 

0.9999 

0.9999 

1.7056 

0.9999 

0.9999 

3.5177 

1.0050 

7.8368 

1.0143 

1.0023 

1.1681 

3.5177 

3.5177 

3.5181 

1.0023 

1.0023 

1.3760 

1.0023 

1.0023 

3.6323 

1.0067 

4.7126 

1.0330 

1.0027 

1.1801 

3.6323 

3.6323 

3.6325 

1.0027 

1.0027 

1.2385 

1.0027 

1.0027 

3.7691 

1.0143 

4.7090 

1.1165 

1.0035 

1.2222 

3.7691 

3.7691 

3.7692 

1.0035 

1.0035 

1.1651 

1.0035 

1.0035 

3.8553 

1.1094 

9.8025 

1.5192 

1.0040 

1.9098 

3.8553 

3.8553 

3.8555 

1.0040 

1.0040 

1.1437 

1.0040 

1.0040 

3.9229 

29.0332 

12.6319 

1.8106 

 1.0038 

63.1879 

3.9229 

 3.9229 

3.9230 

 1.0038 

1.0038 

 1.1427 

1.0038 

 1.0038 

        

7. Discussion  

 

From Table 2, it is observed that for a moderate to high degree of correlations, the 

suggested estimators perform better than all the other existing estimators and coincide 

with k5. From Table 3, one may observe that the estimators k2, k3 and k6 i.e., due to 

Lawless-Wang [10], Nomura [19] and Dorugade [16], have shown somewhat peculiar 

behaviour than any other estimators. Further for large n, say n ≥ 50, low error variance σ
2 

(≤ 5), low and moderate degree of correlations (ρ), all the estimators considered here have 

produced unstable estimates for the ridge parameter. Estimators due to k1 i.e., Hoerl et al. 

[18], Satish and Vidya [20,21,24] i.e., k7, k8 and k9 behaved better, and yielded more stable 

estimates to the regression coefficients, but it is observed carefully that, these estimators 

slightly over shrinks the estimates to the regression coefficients as compared to other 

estimators due to Dorugade and Kashid [15], Satish and Vidya [24] i.e., k10, k11, and, k12; 

and the proposed estimators k13 and k14.  

 

8. Conclusion 

 

Motivated by the interesting behaviour of several popular estimators in Ridge Regression, 

an attempt was made to further refine the estimators so that the Mean Square Errors are 

reduced to a certain extent possible so that more robust and reliable estimates can be 

achieved. Accordingly new estimators were developed and their performance was 

evaluated in this study. As standard procedures to establish the robustness of the 

estimators, the newly developed estimators were evaluated in terms of MSE and 

compared with existing methods of estimators. Examples using real-life data and 

simulation studies were provided to illustrate the practical benefits of the new estimators. 

In all cases the performance of the proposed estimators was satisfactory and comparable.  
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