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Abstract 

In this paper, we have proved an Lp inequality for polar derivative of the polynomial having 

all its zeros in the disk ,kz  1k . Our result generalizes and improves the earlier 

known results. 
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1.   Introduction 
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 be a polynomial of degree n and )(' zp  be its derivative, then for r > 0, 
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Inequality (1.1) is sharp and equality holds for polynomial . 

Inequality (1.1) for  1r  is due to Zygmund [1], who proved it for all trigonometric 

polynomials of degree n and not only for those which are of the form  iep . Arestov [2] 

proved that (1.1) remains true for  10  r  as well. Lal [3] also has generalized 

inequality (1.1). 

 

If we let r  in (1.1) and make use of well-known fact from analysis [4] that  
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,     (1.2) 

we get the following inequality  
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Inequality (1.3) is a classical result due to Bernstein [5]. 
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If we restrict ourselves to the class of polynomials having no zeros in 1z , then 

inequality (1.1) can be sharpened . In fact, in this case the following results are also 

known. 

Theorem A. If )(zp is a polynomial of degree n having no zero in 1z , then for each 

0r ,  
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where 
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.  

In above inequality, equality occurs for     nzzp ,   . 

For 1r , Theorem A was proved by de-Bruijn [6] and later independently proved by 

Rahman [7].  

 Aziz and Rather [8] proved the following result for the polar derivative of a 

polynomial )(zp . 

Theorem B. If )(zp is a polynomial of degree n having all its zeros in kz  , 1k , then 

for every real or complex number   with k , 
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.                           (1.5) 

Inequality (1.5) is best possible and equality occurs for    nkzzp   with real k . 

 Recently integral inequalities have been extended to polar derivatives. In this 

direction, the following result was obtained by Govil et. al. [9]. 

Theorem C. If )(zp  is  a polynomial of degree n having no zero in 1z , then for 1r   

and for every real or complex number  with 1 ,   
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where 
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. 

In the limiting case, when r , the above inequality is sharp and equality holds for the 

polynomial   nzzp   ,   . 

Dewan et. al.  [10]  obtained a generalization of Theorem B  in the sense that maximum of 

 zp on 1z on the right hand side of (1.5) is replaced by a factor involving the integral 

mean of  p(z) on 1z . In fact, they proved 

Theorem D. If )(zp is a polynomial of degree n having all its  zeros in 1,  kkz , then 

for  every real or complex number  with k , and for each 0r  
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  (1.7) 

The result is best possible for sufficiently large r and equality holds for )(zp =  n
kz 

with real k . 

Aziz and Shah [11], for the class of polynomials   
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, n 1 , 

having all zeros in kz  , 1k  proved the following  

Theorem E. If   
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, n 1 , is a polynomial of degree n  having all 

its zeros in kz  , 1k , then for each 0r , 

    zpdekdepn
z

rr
i

rr
i 








 










1

1

2

0

1

2

0

max1





  .                          (1.8) 

Now, if we involve the coefficients of a polynomial, then we obtain a result which gives 

an improvement as well as a generalization of Theorem D and in a particular case 

Theorem E. More precisely, we prove 

Theorem 1. If   
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, n 1 , is  a polynomial of degree n having all 

its  zeros in 1,  kkz , then for  every real or complex number   with  


,k
A , 

and for each 0r , 1,1  qp with 1
11


qp
,  we have 
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where 
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The following result is an immediate consequence by letting q  (so that 1p ) in 

Theorem 1. 

Corollary 2. If   
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, n 1 , is  a polynomial of degree n having 

all its  zeros in 1,  kkz , then  for every real or complex number   with 
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A

and for  each 0r  
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where ,k
A is as defined in Theorem 1. 
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Remark 3. To prove Theorem 1 as an improvement as well as a generalization of 

Theorem D, it is sufficient to show that 

 kA
k


1, , 

that is  
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which is equivalent to  
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that is  
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implies 
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akan ,            (since 1k ) 

which is true due to Lemma 2.2 for 1 . Hence, we show that Theorem 1 is an 

improvement as well as an generalization of Theorem D. 

Dividing both sides of (1.10) by   and letting  , we get the following result. 

Corollary 4. If   
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, n 1 , is  a polynomial of degree n having all 

its  zeros in 1,  kkz , then  for each 0r  
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where ,k
A is as defined in Theorem 1. 

Remark 5. The above inequality gives better bound than the bound obtained from 

inequality (1.8) of Theorem E. To prove this, it is sufficient to show that 
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. As 

we have proved earlier that kA
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1, , on similar lines,
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 can be proved easily by 

using Lemma 2.2. 

 

2. Lemmas 

 

For the proofs of the above stated theorems, we need the following lemmas. 

Lemma 2.1. If   
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, n 1 , is  a polynomial of degree n having all 

its  zeros in 1,  kkz , and let   
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The above lemma is due to Aziz and Shah [11, Lemma 2]. 

Lemma 2.2. If   
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where ,k
A is as defined in Theorem 1, 

and 
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The above lemma is proved by others [7,12]. 

 

3. Proof of the theorem 

 

Proof of Theorem 1. Since )(zp has all its zeros in 1,  kkz , therefore by    

Lemma 2.2, we have for 1z  
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Equivalently, 

 )(')()(' zqzzqnzp  for 1z . (3.3) 

Using (3.3) in inequality (3.1), we get for 1z  
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Now for every real or complex number  with 
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which gives by interchanging the roles of p(z) and q(z) in (3.3) for 1z that  
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Again, since p(z) has all its zeros in 1,  kkz , therefore by Gauss-Lucas theorem 

 zp'  has all its zeros in 1,  kkz and thus the polynomial  
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well-known property of subordination [13], we have for 0r  and for  20  , 
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This implies for  20  , 
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Integrating both sides of the above inequality with respect to  , from 20 to , we get 
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The above inequality on applying Holder’s inequality for 1p , 1q  and 0r , yields 
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Using inequality (3.6) with r replaced by pr in (3.8), we obtain for each   1p , 1q  and 

0r with  1
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which is the inequality (1.9) and this completes the proof of Theorem 1. 

 

4. Conclusion 

 

Bounds given by our theorem are better than the bounds obtained from inequality (1.8) 

and inequality (1.7) for polynomials having all zeros in kz  , 1k . 
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