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Abstract 

In this article, the compound difference anti-synchronization between fractional order 

hyper-chaotic systems have been studied. Numerical simulations have been performed using 

MATLAB to verify the theoretical results on fractional order Xling, Vanderpol, Rikitake 

and Rabinovich hyper-chaotic systems. 
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1.   Introduction 

CHAOS theory has been gaining popularity ever since the well-known Lorenz system was 

discovered. From then on, there has been no looking back in the growth and development 

of chaos theory. Chaos synchronization [1] was introduced by Pecora and Carroll in 

1990.In synchronization two chaotic systems arising from different initial conditions is 

made stable by designing controllers. Where synchronizing [2-5] two chaotic systems is 

considered difficult, synchronizing more than two hyper-chaotic systems is in itself a big 

challenge. 

 Though fractional calculus is not new to mathematics, it has recently emerged most 

useful in modelling of processes and systems where integer order could not serve purpose. 

Motivated by the above discussions hyper-chaotic systems have been synchronized here. 

Numerical Simulations have been performed using MATLAB which verify the theoretical 

results.  

2. Problem Formulation 

Consider three hyper-chaotic fractional order master systems and one chaotic fractional 

order slave system we formulate the compound difference anti-synchronization scheme. 

Let the scaling master system be: 
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𝐷  𝑥 = 𝑓 (𝑥)  (1) 

Let the base master systems be: 

𝐷  𝑦 = 𝑓 (𝑦)  (2) 

𝐷  𝑧 = 𝑓 (𝑧) (3) 

Let the slave system be: 

𝐷  𝑤 = 𝑓 (𝑤) + 𝑣     (4) 

Where x = (𝑥  𝑥    𝑥 ) , y = (𝑦  𝑦    𝑦 ) , z = (𝑧  𝑧    𝑧 )  and  w = (𝑤  𝑤    𝑤 ) 

are state vectors of the respective systems, 𝑓   =         are continuous functions, 

      and 𝑣 = (𝑣  𝑣    𝑣 ), is controller to be designed. 

Defining the error as: 

e = Aw + Bx(Cz − Dy) 

where  =    𝑔(          ),  =    𝑔(          ),  =    𝑔(          ), 

𝐷 =    𝑔(          ) are suitably chosen diagonal matrices with    . 

To achieve the desired anti-synchronization we must have error tending to zero, i.e. 

L m ||e|| =   as t → ∞ 

i.e., L m|| Aw + Bx(Cz − Dy)|| =   as t → ∞ 

Where || || represents the Euclidean norm. 

We here define the controllers as: 

𝑣 =
   

  
− 𝑓  −

      

  
 (5) 

Where    =        (   z  −    y  ) +    x  (       −        ) for  =         
 

Theorem: Systems (1)-(3) will be in compound difference anti-synchronization with (4) 

if the controllers are designed as in (5). 

 

Proof: We define the compound difference anti-synchronization error as: 

𝑒 =   𝑤 +   𝑥 (  𝑧 −   𝑦 ) (6) 

Differentiating (6) we get the error dynamical system as: 

𝐷  𝑒 =   𝐷
  𝑤 +   𝐷

  𝑥 (  𝑧 −   𝑦 )  +   𝑥 (  𝐷
  𝑧 −   𝐷

  𝑦 ) (7) 

Substituting the values of the derivatives and applying the designed controller, the error 

dynamical system simplifies to: 

𝐷  𝑒 = −𝐾 𝑒  (8) 

Next, we consider the Lyapunov function as: 

V(e(t)) =
 

 
(𝑒 

 + 𝑒 
  + 𝑒 

  + 𝑒 
  ) (9) 

Differentiating we get 

𝐷 (𝑉(𝑒(𝑡))) ≤ (𝑒 𝐷
 𝑒 + 𝑒 𝐷

 𝑒 + 𝑒 𝐷
 𝑒 + 𝑒 𝐷

 𝑒 ) (10) 

Substituting (8) into (10), we get 

𝐷  (V(e(t))) ≤ (𝑒 
 (−𝐾 𝑒 ) + 𝑒 (−𝐾 𝑒 )

  + 𝑒 (−𝐾 𝑒 )
 + 𝑒 (−𝐾 𝑒 )

  )         (11) 

 = −𝐾 𝑒 
 − 𝐾 𝑒 

  − 𝐾 𝑒 
  − 𝐾 𝑒 
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i.e. V(e(t)) is positive definite function with a negative definite derivative. Hence, by 

Lyapunov Stability Theory we have that error tends to zero, implying desired anti-

synchronization has been achieved. 

Note: We have taken Caputo’s version of fractional derivative in our paper. 

 

3. System Description 
 

3.1.   Scaling master system 
 

We consider the fractional order hyper-chaotic Xling system as the scaling master system 

given by: 

Fractional Order Hyper-Chaotic Xling System 
    

   
=   (𝑥 − 𝑥 ) + 𝑥   

    

   
=   𝑥 + 𝑥 𝑥 − 𝑥  (12) 

    

   
= −  𝑥 −   𝑥 

    

    

   
=   𝑥   

Here 𝑥 = (𝑥  𝑥  𝑥  𝑥 )   
 are state variables and               

  are parameters. 

For parameter values   =      =      =   5   =   and initial conditions of state 

variables as (1,2,3,4) the system shows chaotic behavior as displayed in Fig. 1 (a). 
 

3.2.   Base master systems 
 

Next we consider the hyperchaotic fractional order Rabinovich and Rikitake chaotic 

systems. 

Fractional Order Hyper-Chaotic Rabinovich System 
    

   
= −  𝑦 +   𝑦 + 𝑦 𝑦   

    

   
=   𝑦 − 𝑦 + 𝑦 − 𝑦 𝑦  (13) 

    

   
= −𝑦 + 𝑦 𝑦   

    

   
= −  𝑦   

Here   𝑦 = (𝑦  𝑦  𝑦  𝑦 )   
 are state variables and            

  are parameters. 

For parameter values   =      =    5   =   and initial conditions of state variables 

as (5.5,-1.25,8.4,2.75) the system shows chaotic behavior as displayed in Fig. 1 (b). 

Fractional Order Hyper-Chaotic Rikitake System 

    

   
= −𝑧 + 𝑧 𝑧 −   𝑧   

    

   
= −𝑧 + 𝑧 (𝑧 −   ) −   𝑧  (14) 

    

   
=   − 𝑧 𝑧   

    

   
=   𝑧   
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Here   z = (𝑧  𝑧  𝑧  𝑧 )   
 are state variables and            

  are parameters. 

For parameter values   =       =     =     and initial conditions of state variables 

as (3.5,1.7,-4.5,2.8) the system shows chaotic behavior as displayed in Fig. 1 (c). 

 

3.3. Slave system 

 

We consider the slave system as the hyperchaotic fractional order Vanderpol system. 

Fractional Order Hyper-Chaotic Vanderpol System 

    

   
= 𝑤   

    

   
= −(  +   𝑤 )𝑤 − (  +   𝑤 )𝑤 

 −   𝑤 +   𝑤   

    

   
= 𝑤   (15) 

    

   
= −𝑤 +   𝑤 +   𝑤 ( − 𝑤 

 )  

Here 𝑤 = (𝑤  𝑤  𝑤  𝑤 )   
 are state variables and                     

  are 

parameters. 

 

 

    (a)               (b) 
 

 

          (c)       (d) 

Fig. 1. Phase portraits of the scaling master system, base master system I, base master system -II, 

slave system in (a) 𝑥 − 𝑥 − 𝑥  space, (b) 𝑦 − 𝑦 − 𝑦  space, (c) 𝑧 − 𝑧 − 𝑧  space and (d) 

𝑤 − 𝑤 − 𝑤  space 
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For parameter values   =      =     =     ,  =      = 5   =     and initial 

conditions  of state variables as (0.1,-0.5,0.1,-0.5) the system shows chaotic behavior as 

displayed in Fig. 1 (d). 

 

4. Compound Difference Anti-Synchronization between Hyperchaoticsystems of 

Fractional Orders 

 

4.1.   Numerical simulations and discussions 

 

Corresponding to master system (1)-(3) and slave system (4), the slave system with 

control functions is given as: 

    

   
= 𝑤 + 𝑣   

    

   
= −(  +   𝑤 )𝑤 − (  +   𝑤 )𝑤 

 −   𝑤 +   𝑤 + 𝑣  (16) 

    

   
= 𝑤 + 𝑣   

    

   
= −𝑤 +   𝑤 +   𝑤 ( − 𝑤 

 ) + 𝑣   

We define the error given by (6) as: 

𝑒 =   𝑤 +   𝑥 (  𝑧 −   𝑦 )  

𝑒 =   𝑤 +   𝑥 (  𝑧 −   𝑦 ) (17) 

𝑒 =   𝑤 +   𝑥 (  𝑧 −   𝑦 )  

𝑒 =   𝑤 +   𝑥 (  𝑧 −   𝑦 )  

 

 

         (a)      (b) 
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         (c)                 (d) 

 

(e) 

Fig. 2. Anti-synchronized trajectories of compound of master systems with slave system and error 

plot. 
 

The error dynamical system is given by: 

    

   
=   

    

   
+   

    

   
(  𝑧 −   𝑦 ) +   𝑥 (  

    

   
−   

    

   
)  

    

   
=   

    

   
+   

    

   
(  𝑧 −   𝑦 ) +   𝑥 (  

    

   
−   

    

   
) (18) 

    

   
=   

    

   
+   

    

   
(  𝑧 −   𝑦 ) +   𝑥 (  

    

   
−   

    

   
)  

    

   
=   

    

   
+   

    

   
(  𝑧 −   𝑦 ) +   𝑥 (  

    

   
−   

    

   
)  

Substituting values of the derivatives from (12)-(15) and designing controllers as: 

𝑣 =
   

  
− 𝑓  −

      

  
  

Where    =        (   z  −    y  ) +    x  (       −        ) 

𝑣 =
   

  
− 𝑓  −

      

  
  

Where    =        (   z  −    y  ) +    x  (       −        )                   (19)                    

𝑣 =
   

  
− 𝑓  −

      

  
  

Where    =        (   z  −    y  ) +    x  (       −        ) 
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𝑣 =
   

  
− 𝑓  −

      

  
  

Where    =        (   z  −    y  ) +    x  (       −        ) 

The error dynamical system simplifies to: 

    

   
= −𝐾 𝑒   

    

   
= −𝐾 𝑒   (20) 

    

   
= −𝐾 𝑒   

    

   
= −𝐾 𝑒   

Next, we consider the lyapunov function as: 

V(e(t)) =
 

 
(𝑒 

 + 𝑒 
  + 𝑒 

  + 𝑒 
  )  

Differentiating we get 

𝐷  (V(e(t))) ≤ (𝑒 
 𝐷  𝑒 

 + 𝑒 𝐷
  𝑒 

  + 𝑒 𝐷
  𝑒 

  + 𝑒 𝐷
  𝑒 

  )  

= −𝐾 𝑒 
 − 𝐾 𝑒 

  − 𝐾 𝑒 
  − 𝐾 𝑒 

    

                                
i.e. V(e(t)) is a positive definite function with a negative definite derivative. Hence, by 

Lyapunov Stability Theory we have that error tends to zero, implying desired anti-

synchronization has been achieved. 

 

5. Conclusion 
 

In this paper four hyper-chaotic fractional order systems have been synchronized in 

compound difference anti-synchronization manner by designing suitable controllers. This 

technique will find application in secure communication, control systems etc. 
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