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Abstract 

 

In this paper we concern the adaptive sliding mode control technique for synchronization of 

fractional order chaotic systems with uncertainties and disturbances. This technique is used 

to design control law through suitable sliding surface and estimate the external disturbances. 

Computational results using MATLAB verified the effectiveness of the proposed scheme. 
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1.   Introduction 

Chaotic dynamics [1] has grown into very curious and attractive area for researchers. 

Chaotic dynamical systems are unstable and ambiguous. Generally, chaos being the 

intrinsic property of non-linear systems has numerous applications such as in 

viscoelasticity [2], dielectric polarization, electromagnetic waves [3], diffusion, signal 

processing, mathematical biology and in many more disciplines.  

 

1.1. Literature review 

 

Around us all the system that we account are non-linear. Different techniques are used to 

investigate the chaotic behaviour few of them are by plotting phase portraits, poincare 

section, bifurcation diagram or by finding Lyapunov exponents. The most reliable and 

widely used among the above technique is Lyapunov exponent spectrum. If the largest 

Lyapunov exponent is positive, we say that the system is chaotic and if more than one 

Lyapunov exponents are positive, then the system is said to be hyperchaotic. 

The worldwide researchers got attraction in conquer chaos either by controlling chaos 

or by synchronizing chaotic systems. It was the pioneering work of Pecora and Caroll [4] 
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who gave the concept of synchronization to control and utilize the chaos in the proper 

way. Synchronization means the trajectories of the coupled systems evolve with time to a 

usual pattern. Various techniques have been developed by researchers in this direction 

during last two decades. Numerous synchronization schemes have been proposed such as 

lag synchronization [5], complete synchronization [6], phase and anti-phase 

synchronization [7], anti-synchronization [8], hybrid synchronization [9], projective 

synchronization [10], hybrid function projective synchronization [11], generalised 

synchronization [12], multi-switching synchronization [13] etc. To achieve 

synchronization different techniques have been designed some of them are adaptive 

feedback control, optimal control, linear and nonlinear feedback synchronization [14], 

active control [15], sliding mode control [16,17], adaptive sliding mode technique [18], 

time delay feedback approach [19], tracking control [20], back-stepping design method 

[20] and so on. 

In recent years, a lot of pioneering work has been done in the field of fractional 

calculus [21]. It was first suggested by Leibnitz and L'Hospital in 1675 and they gave the 

theory of integrals and derivatives of random order which combines the concept of integer 

order differentiation and n-fold integration. These studies describe the significant work in 

the real life systems and have a lot of multidisciplinary applications. As compared to 

integer order network the fractional order system add a degree of freedom by employing 

fractional derivative. Many types of fractional order chaotic and hyperchaotic systems 

have been introduced by researchers like Lorenz system [22], Chen system [23], Rossler 

system [23], Lu-system [24], Lui-system [17], Chua system [25] etc. to explain the 

various physical processes. In order to increase the complexity, researchers also 

introduced numerous fractional order complex chaotic systems like complex Lorenz 

system [26], T-system [27], Lu-system [28], Chen system [26] etc. 

 

1.2. Prime objectives and novelty of this manuscript 

 

Prime objectives of this manuscript are  

 To achieve synchronization of fractional order complex system in presence of 

external disturbances and uncertainties. 

 To compare our technique with previous published literatures techniques. 

 To show the effectiveness of this scheme in presence of external disturbances. 

The novelty of this manuscript lies in proposing the adaptive sliding mode technique 

[29,30] to synchronize fractional order complex chaotic systems. To the best of authors 

knowledge synchronization of fractional order complex system in the presence of external 

disturbances and uncertainties does not examined in the prior literatures. Also, we have 

compared our result with previous published literatures which shows that our 

synchronization time is much lesser than that reported [5,31,32]. Numerical simulations 

have been done to validate and visualize our results in the form of plots and demonstrates 

that our results are in excellent agreement with the theoretical results. 
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2. Preliminaries 

 

The fractional order system is continuation to the integer order calculus. As compared to 

integer order network the fractional order system add a degree of freedom by employing 

fractional derivative. Also, fractional order derivatives show better results when modelling 

real life processes as compared to integer order derivatives. The fractional order derivative 

can be defined in various forms [4], such as Riemann-Lioville's derivative, Grunwald 

Letnikov's derivative, Caputo's derivative etc.  

The Riemann Liouville's derivative is defined as 
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Since the Caputo’s fractional derivative of a constant is zero, in this paper we choose 

Caputo’s definition. 

 

Fig. 1. Phase portraits of fractional order complex system (1) for fractional order order       , 
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2. System Description 

 

Considering the fractional order complex Lorenz system [26] given by 
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Separating the real and imaginary parts, we obtain the system (2) as 
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For the values of parameters as 𝑎    , 𝑎     , 𝑎   , initial conditions as  ( )  
             and       , the system (1) is chaotic. 

Considering the fractional order complex T system [27] given by 
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For the values of parameters as 𝑏    , 𝑏    , 𝑏     , initial conditions as 
𝑣( )     7          and       , the system (4) is chaotic. 

 

 

Fig. 2. Phase portraits of fractional order complex system (4) for fractional order       , 𝑣( )  
            (a) 𝑣 

  𝑣 
  (b) 𝑣 
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  (c) 𝑣 

  𝑣 
     (d) 𝑣 

  𝑣 
  𝑣 

  

 

3. Synchronization Scheme 

 

The fractional order complex chaotic system (3) is taken as drive system and the system 

(6) is taken as response system which is given by 
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Where 𝑈  are appropriate control inputs of the response system for i=1,2,3,4,5. which will 

be designed later. 

Here we assume that  Δ𝑓  ≤ 𝜓  and  Δ𝑔  ≤ 𝜒  , where 𝜓  and 𝜒  are positive constants. 

Also �̂�     and   �̂�  represents the estimated values of 𝜓  and 𝜒  respectively. 

Now the error state is defined as 
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Definition: The drive system (3) and response system (6) are said to be in 
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The adaptive parameter update laws are  
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Theorem 3.1. The fractional order complex chaotic system (3) and the slave system (6) 

with uncertain dynamics are globally and asymptotically stable and synchronized with 

adaptive sliding mode control laws (13) and parameter update laws (14). 

 

Proof. To discuss the stability of the fractional order chaotic systems, we have used 

Lyapunov's direct method [34] Ch-5. Here our main focus is to take a positive definite 

function V and would show the derivative of V negative definite which would imply that 

our error converges asymptotically to zero. 
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Hence, by Lyapunov stability theory ‖  ‖    as   ∞. Thus the error dynamical 

system (10) asymptotically converges to     . Therefore, the trajectories of state 

variables of system (3) and system (6) are asymptotically and globally adjusted to desired 

set of points with control laws (13) and adaptive laws (14). 
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Fig. 3. Different synchronized state trajectories. 

 

Fig. 4. Synchronization error tends to zero at time t=1.5 sec (approx.). 

 

4. Numerical Simulations 

 

Simulations have been performed (using MATLAB) to validate the effectiveness of the 

proposed scheme for the synchronization between drive system (3) and response system 

(6). In simulations we have taken fractional order α=0.95 with step size=0.001. The 
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parameters of drive system system  (3) are taken as 𝑎    , 𝑎     , 𝑎    and of 

response system as 𝑏    , 𝑏    , 𝑏     . Initial conditions for response and drive 

system are  ( )               and 𝑣( )     7          respectively. Figs. 1 and 2 show 

the phase portraits of the respective drive and response systems.  

The bounded disturbances and uncertainties for the drive are taken as 

Δ𝑓 
        

 –     /  , Δ𝑓 
        

      /  , Δ𝑓 
        

          , 

Δ𝑓 
        

           and Δ𝑓 
   𝑖  /   

          and for response system are 

taken as Δ𝑔 
      / 𝑣 

 –         , Δ𝑔 
      / 𝑣 

          , Δ𝑔 
      𝑣 

  

    , Δ𝑔 
      𝑣 

       and Δ𝑔 
  𝑐𝑜     𝑣 

         . The initial condition for 

estimating the parameters as �̂�( )  (           ) and �̂�( )  (           ) and designed 

control parameters as        ,        , 𝜅   𝜅   𝜅   𝜅   𝜅   and 𝜙   𝜙  

 𝜙   𝜙   𝜙  . Fig. 3 represents the trajectories of the drive system and controlled 

response system. Fig. 4 shows the synchronization error becomes zero as time increasing. 

Fig. 5 shows that chosen sliding surface converges to zero and hence stable. Fig. 6 shows 

the estimated bounds of external disturbances of both the drive and response systems. 

 

Fig. 5. Sliding surface tends to zero at time t=1.5sec(approx.) 

 

Fig. 6. Estimated Bounds of (a) drive system external disturbances and uncertainties, (b) response 

system external disturbances and uncertainties. 

 

5.1. Comparison of given synchronization scheme with previous published literature 

 

 In a reference [28], author studies active control technique for synchronization of drive 

fractional order complex Lorenz system and response T-system. For        they 

achieve synchronization at time t=9 sec (approx.) with uncertain terms and at time t= 6 
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sec (approx.) without uncertain terms whereas in present scheme we achieve 

synchronization at time t=sec (approx.) which is much lesser than the synchronization 

time as reported [28]. 

 In the reference [32], author studies active control technique for synchronization of 

fractional order complex Lorenz system and T-system. For α=0.7, α=0.85 and α=1 the 

synchronization is achieved at time t=5 sec (approx.), t=5.5 sec (approx.) and t=7 sec 

(approx.) respectively whereas in present scheme we achieve synchronization at time 

t=0.2 sec (approx.), t=0.6 sec (approx.) and t=3.8 sec (approx.) respectively which is 

much lesser than the reported synchronization time [32].   

Therefore, our results are far better than the result obtained by previous authors which 

have shown in Fig. 7. 

 

Fig. 7. Synchronization errors (a) for fractional order     7  (b) for fractional order        (c) 

for fractional order      

 

6. Conclusion 

In this paper, we have designed an adaptive sliding mode control technique to synchronize 

different fractional order complex chaotic systems. By choosing the suitable sliding 

surface and selecting parameters by update laws to carry out the desired synchronization 

and to deny the issues of external disturbances and chattering problem. Since the 

synchronization of fractional order complex chaotic system in the presence of 

uncertainties and disturbances has not been examined in the prior literature, we have 

interrogated, and synchronized the considered fractional order complex Lorenz system 

and complex chaotic T-systems in the presence of uncertainties and disturbances. Also we 

have compared our results with previous published literature results which have 

established that our scheme gives better synchronization time than the used technique in 

(a) (b) 

(c) 
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prior literature. Although we have taken both complex system with uncertainties and 

disturbances but still our synchronization results are better. Also, this scheme will perform 

significant role to enhance security in communication. Computational methods evaluate 

the efficiency of the considered scheme.  
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