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Abstract 
 

In this paper, Bernstein piecewise polynomials are used to solve the integral equations 
numerically. A matrix formulation is given for a non-singular linear Fredholm Integral 
Equation by the technique of Galerkin method. In the Galerkin method, the Bernstein 
polynomials are used as the approximation of basis functions. Examples are considered to 
verify the effectiveness of the proposed derivations, and the numerical solutions guarantee 
the desired accuracy.  
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1. Introduction 
 
In the survey of solutions of integral equations, a large number of analytical but a few 
approximate methods for solving numerically various classes of integral equations [1, 2] 
are available. Since the piecewise polynomials are differentiable and integrable, the 
Bernstein polynomials [4, 5] are defined on an interval to form a complete basis over the 
finite interval. Moreover, these polynomials are positive and their sum is unity. For these 
advantages, Bernstein polynomials have been used to solve second order linear and 
nonlinear differential equations, which are available in the literature, e.g. Bhatti and 
Bracken [7].  Very recently, Mandal and Bhattacharya [6] have attempted to solve integral 
equations numerically using Bernstein polynomials, but they obtained the results in terms 
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of finite series solutions. In contrast to this, we solve the linear Fredholm integral equation 
by exploiting very well known Galerkin method [3] and Bernstein polynomials are used 
as trial functions in the basis. For this, we give a short introduction of Bernstein 
polynomials first. Then we derive a matrix formulation by the technique of Galerkin 
method. To verify our formulation we consider three examples, in which we obtain exact 
solutions for two examples even using a few and lower order polynomials. On the other 
hand, the last example shows an excellent agreement of accuracy compared to exact 
solution and convergence as well. All the computations are performed using 
MATHEMATICA. 
 
2. Bernstein Polynomials 
  
The general form of the Bernstein polynomials [4-7] of nth degree over the interval  
is defined by 
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Note that each of these n+1 polynomials having degree n satisfies the following 
properties: 

 i) ,  ii) ;  nioriifxB ni ><= 0,0)(, 1)(
0

, =∑
=

n

i
ni xB

iii) , 0)()( ,, == bBaB nini 11 −≤≤ ni  

Using MATHEMATICA code, the first 11 Bernstein polynomials of degree ten over the 

interval [a, b], are given below:  
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Now the first six polynomials over  are shown in Fig. 1(a), and the remaining 
five polynomials are shown in Fig. 1(b). 
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      Fig. 1(a). Graph of first 6 Bernstein        Fig. 1(b). Graph of last 5 Bernstein 
      polynomials over [0, 1].                         polynomials over [0, 1].  
   
 
 
3. Formulation of Integral Equation in Matrix Form 
 
Consider a general linear Fredholm integral equation (FIE) of second kind [1, 2] is given 
by 
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where  and  are given functions,  is the kernel, and )(xa )(xf ),( xtk )(xφ is the unknown 
function or exact solution of (2), which is to be determined. 

Now we use the technique of Galerkin method [Lewis, 3] to find an approximate 
solution )(~ xφ  of (2). For this, we assume that  
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where  are Bernstein polynomials (basis) of degree i  defined in eqn. (1), and  
are unknown parameters, to be determined. Substituting (3) into (2), we obtain  
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Then the Galerkin equations [Lewis, 3] are obtained by multiplying both sides of (3) 
by    and then integrating with respect to )(, xB nj x  from a  to  b, we have 
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Since in each equation, there are three integrals. The inner integrand of the left side is 

a function of x and t , and is integrated with respect to t  from a  to  b. As a result the 
outer integrand becomes a function of x  only and integration with respect to x  yields a 
constant. Thus for each  ( ) we have a linear equation with  unknowns 

( i ). Finally (5a) represents the system of  
j n,,1,0 K= 1+n

ia n,,1,0 K= 1+n  linear equations in  
unknowns, are given by 
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Now the unknown parameters  are determined by solving the system of equations 
(5), and substituting these values of parameters in (3), we get the approximate solution  

ia

)(~ xφ   of the integral equation (2). The absolute relative error E for this formulation is 
defined by 
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4. Numerical Examples  
  
In this section, we explain three integral equations which are available in the existing 
literatures [1, 2, 6]. For each example we find the approximate solutions using different 
number of Bernstein polynomials. 
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Example 1: We consider the FIE of 2nd kind given by [6] 
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Using the formulation described in the previous section, the equations (5) lead us, 
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Solving the system (7) for ,3=n  the values of the parameters are: 
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Substituting into (3) and for , the approximate solution is,  3≥n

2
9

101)(~ xx +=φ  

which is the exact solution. 
 
Example 2:  Now we consider another FIE of 2nd kind given by [6]  
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Proceeding as the example 1, the system of equations becomes as 
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Now solving the system (9) for  the values of the parameters,  are: ,3=n ia

 10 −=a , 
3
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2 =a , 13 =a . 

and the approximate solution, for , is     which is the exact solution.  3≥n xx =)(~
φ

 
Example 3:  Consider another FIE of 2nd kind given by [1, pp 213]  
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Proceeding as the previous examples, the system of equations becomes: 
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Example 4: Consider another FIE of 2nd kind given by [2, pp 124] 
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For n = 3, 4, 5, and 6, the approximate solutions are, respectively 
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Plots of absolute relative the errors E between exact and approximate solutions are 
given in Fig. 2 for various values of n. One observes that the minimum order of accuracies 
are 10-4, 10-5, 10-7, and 10-5, respectively, with 4, 5, 6 and 7 Bernstein polynomials. This 
confirms that if we increase the number of polynomials to more than 6, the minimum 
accuracy is 10-7 (obtained using 6 polynomials), which guarantees the convergence. Now 
the approximate solutions, exact solutions, and the absolute relative error E, between 
exact and the approximate solutions at various points of the domain are shown in Table 1 

 

 

 



A. Shirin and M. S. Islam, J. Sci. Res. 2 (2), 264-272 (2010) 271 
 

Fig. 2 (a). Using 4 polynomials .  Fig.2 (b). Using 5 polynomials.  

 

Fig. 2 (c). Using 6 polynomials .  Fig.2 (d). Using 7 polynomials.  

 

    Table 1.  Exact and approximate solutions and absolute relative errors of example 4. 
 

Approximate 
 Solutions 

E, Absolute 
Relative Error 

Approximate 
 Solutions 

E, Absolute 
Relative Error x Exact 

Solutions Polynomials used 4 Polynomials used 5 

 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9    
1.0 

 
-0.1855612526 
-0.2050768999 
-0.2266450257 
-0.2504814912 
-0.2768248595 
-0.3059387842 
-0.3381146470 
-0.3736744748 
-0.4129741624 
-0.4564070342 
-0.5044077810 

 
-0.1853868426 
-0.2051159200 
-0.2267185494 
-0.2505049431 
-0.2767853131 
-0.3058698717 
-0.3380688310 
-0.3736924032 
-0.4130508005 
-0.4564542350 
-0.5042129189 

 
9.399053× 10-4 
1.902705×10-4 
3.244002×10-4 
9.362730×10-5 
1.428573×10-4 
2.252492×10-4 
1.355042×10-4 
4.797873×10-5 
1.855761×10-4 
1.034182×10-4 
3.863186×10-4 

 
-0.1855710276 
-0.2050729953 
-0.2266433896 
-0.2504841183 
-0.2768280333 
-0.3059389305 
-0.3381115499 
-0.3736715753 
-0.4129756348 
-0.4564113003 
-0.5043970878 

 
5.267824×10-5 
1.903950×10-5 
7.218900×10-6 

1.048837×10-5 
1.146489×10-5 
4.784034×10-7 

9.159888×10-6 

7.759438×10-6 

3.565315×10-6 

9.347079×10-6 

2.119953×10-5 
 

  Polynomials used 6 Polynomials used 7 

 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9     
1.0 

 
-0.1855612526 
-0.2050768999 
-0.2266450257 
-0.2504814912 
-0.2768248595 
-0.3059387842 
-0.3381146470 
-0.3736744748 
-0.4129741624 
-0.4564070342 
-0.5044077810 

 
-0.1855612526 
-0.2050768100 
-0.2266450257 
-0.2504814912 
-0.2768248596 
-0.3059387842 
-0.3381146470 
-0.3736744748 
-0.4129741624 
-0.4564070342 
-0.5044077810 

 
1.358183×10-6 
5.311130×10-7 
5.268384×10-7 
4.307390×10-7 
2.997736×10-7 
5.281912×10-7 
3.685661×10-8 
4.654666×10-7 
1.890301×10-7 
5.100054×10-7 
1.161812×10-6 

 
-0.1855612694 
-0.2050768958 
-0.2266450312 
-0.2504814909 
-0.2768248544 
-0.3059387842 
-0.3381146522 
-0.3736744750 
-0.4129741564 
-0.4564070387 
-0.5044077618 

 
4.157210×10-5 
1.272207×10-5 
3.763352×10-6 
6.065680×10-6 
3.529983×10-6 
7.651093×10-6 
1.444431×10-6 
5.945203×10-6 
3.339474×10-6 
5.480605×10-6 
1.495842×10-5 

 
5. Conclusion 
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We have considered the integral equations to solve numerically. We have obtained the 
approximate solution of the unknown function by the well known Galerkin method using 
Bernstein polynomials as trial functions. We have verified the derived formulas with the 
appropriate numerical examples. In this context we may note that the numerical solutions 
coincide with the exact solutions even a few of the polynomials are used in the 
approximation. 
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