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Abstract 

The topological index is a numerical representation of a molecular structure. In chemical 

graphs, the atoms and the chemical bonds between them are represented by vertices and 

edges respectively. Vertex degree based topological indices are the most studied and mostly 

used type of topological indices. The mostly used vertex degree based topological indices in 

the field of drug design and developments are the Zagreb index and the Randić index. The 

structural chemistry of dendrimers could be manipulated by their topological indices to get 

the specific structure with required properties to deliver the drugs to target carrier vehicle. In 

this work, topological indices of three types of dendrimers which are used as the drug 

delivery system were studied and their Zagreb index and the Randić index were calculated 

using molecular graph theory. Moreover, the other versions of these two indices were also 

calculated to these dendrimers.  
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1.   Introduction 

Drug delivery systems have recently received tremendous attention, especially on the 

targeted drug delivery systems which could transfer drugs into the cytoplasm of targeted 

cells without harmful toxic effects for healthy tissues or organs [1]. Therefore, 

development of efficient targeted drug delivery is essential in increasing drug safety and 

reducing drug-associated toxicity to non-target tissues and organs. Many materials have 

been demonstrated as drug delivery vehicles traditionally [2,3]. However, many 

researches are focused on dendrimers in developing the smart drug delivery systems 

nowadays, since they provide distinctive physiochemical and structural properties 

compared to other architectural forms of materials that have been used in drug-delivery 

systems [4-6]. Dendrimers are well-defined globular homogenous three-dimensional 

structure of nanosize comprising tree-like branches [7,8]. They have narrow 
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polydispersity, nanometer size range, which can allow them to easier passage across 

biological barriers [9]. Therefore, synthesizing the dendrimers with desired properties is 

challenging task to the pharmaceutical scientists who are involving in developing the drug 

delivery systems. In this regard, researchers are making attempts to improve 

physicochemical and biological properties of these agents resulting in increased 

solubilization, bioavailability, and drug targeting which are crucial in the applications of 

drug delivery [10]. Hence, architectural chemistry is important to synthesize the 

dendrimers with the properties which are essential for drug delivery. The topological 

indices of chemical compounds play a vital role in synthesizing drug delivery system with 

the key features that support their use as potential drug delivery agents. Therefore, this 

work focused on the study of topological indices of three types of dendrimers which are 

used as the drug delivery system. Under this context, this study will pave the path to 

optimize the architecture of dendrimers with the specific features that are important in 

using drug deliveries.    

 The topology of molecules is represented by the topological indices which are the 

numerical representations of the molecules. They are calculated from the heavy atom 

graphical depiction of the molecule. Wiener index which was developed in 1947 by the 

mathematical chemist Wiener [11] was the first topological indices in the study of 

molecular structure in chemical graph theory or molecular topology. He showed that the 

Wiener index correlated well with the boiling points of alkanes. Wiener index, Hosoya 

index or Z index, Zagreb index, Randić index and Balaban J index are the mostly used 

indices in the field of drug design and development [12-14]. In these indices, the Wiener 

index, Hosoya index or Z index and the Balaban J indices are non-degree based 

topological indices, that is, the Wiener index is a distance-based topological index and 

Balaban J index is a distance sums index. The vertex degree-based topological indices are 

the mostly studied type of topological indices which play a prominent role in chemical 

graph theory. Among the above vertex degree-based topological indices, the Zagreb index 

and the Randić index are the mostly used vertex degree based topological indices in the 

field of drug design and developments. The Zagreb index and the Randić index were 

already established for some dendrimers [15-17].   

 A graph is a structure amounting to a set of objects in which some pairs of the objects 

are related. The objects are called vertices and each of the related pairs of vertices is 

called an edge. A graph is denoted by    (   )  where    ( ) is the nonempty set 

of vertices and    ( ) is the set of connected edges if there exists a connection 

between any pair of vertices in  . A connected graph is a graph in which it is possible to 

get from every vertex in the graph to every other vertex through a series of edges.  In a 

connected graph  , the degree of a vertex   in the set of vertices  ( ) is defined as the 

number of vertices of   adjacent to a given vertex   and is denoted by   ( ) or   . 

Chemical graph theory is a branch of mathematics which combines graph 

theory and chemistry. In chemical graph theory, a chemical graph or molecular graph is a 

representation of the structural formula of a chemical compound in terms of graph theory. 

In a chemical graph, the vertices represent atoms and the edges represent bonds between 

https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Chemical_graph_theory
https://en.wikipedia.org/wiki/Structural_formula
https://en.wikipedia.org/wiki/Chemical_compound
https://en.wikipedia.org/wiki/Graph_theory
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those atoms of any chemical structures. It is noted that the degree of any vertex in a 

chemical graph is at most four. The concept of degree is closely related to the concept of 

valence bond in chemistry. 

 The Zagreb index which was introduced by Gutman and Trinajstić [18] during the 

analysis of the structure-dependency of total-electron energy is one of the oldest degree-

based topological indices. The Zagreb index has different versions; the first Zagreb index 

  ( ) was defined as 

   ( )  ∑ (  )
 

   ( )

 ∑ (     
    ( )

) 
(1) 

and the second Zagreb index   ( ) was defined as 

   ( )  ∑     
    ( )

  (2) 

The second modified Zagreb index which was introduced by Hao [19] and was defined as 

   
 ( )  ∑

 

    
    ( )

  (3) 

The Randić index which is also one of the oldest topological indices was introduced by 

Randić [20]. This was defined as 

  ( )  ∑
 

√        ( )

  (4) 

 The Randić index is one of the most studied, most often applied and most popular 

degree-based topological index in the field of drug design. This index was globalized and 

recognized as the generalized Randić index and was defined as 

   ( )  ∑ (    )
 

    ( )

  (5) 

where   is an arbitrary real number [21]. When    
 

 
, the above generalized Randić 

index becomes the (original) Randić index.  

The reciprocal Randić index was defined as  

   ( )  ∑ √    
    ( )

  (6) 

This is actually a special case of the Randić index when   
 

 
. This index was first 

encountered in a paper by Favaron et al. [22].  

The reduced second Zagreb index was defined as  

    ( )  ∑ (    )(    )

    ( )

 (7) 

and the reduced reciprocal Randić index was defined as 

    ( )  ∑ √(    )(    )  

    ( )

 
(8) 

 The reciprocal Randić index, the reduced second Zagreb index and the reduced second 

Zagreb index actually appeared in the literature earlier but did not given much attention by 

the mathematical chemists. Gutman et al., [23] presented the main mathematical 

properties and established the correlating abilities with respect to characteristic physico–
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chemical properties of alkanes. Because of these presentations, these indices become 

popular among the vertex degree based topological indices nowadays.  

 

2. Calculation and Results 

 

In this paper, we considered three biodegradable dendrimers: polyacetal dendrimers with 

polyhedral oligomeric silsesquioxane (POSS) core and a polyester dendrimer. 

 First, we considered the polyacetal dendrimer with polyhedral oligomeric 

silsesquioxane (POSS) core. By observing the structure as it shows in Fig. 1, we inferred 

five partitions of the edge set which are: 

  ( )  *      ( )              +,  

  ( )  *      ( )              +, 
  ( )  *      ( )        +, 
  ( )  *      ( )              +  
  ( )  *      ( )              +. 
 The number of edges of the edge set   ( )are given by |  ( )| = 16, 32, 64 and 

     for the 1
st
, 2

nd
, 3

rd
 and the  th

 generations respectively. Similarly, the number of 

edges of the other edge sets are given by |  ( )|  32, 96, 224 and       

  ;|  ( )|   128, 384, 896 and           ; and |  ( )|  84, 264, 616 and 

        for the 1
st
, 2

nd
, 3

rd
 and the  th

 generations. Further, |  ( )|     for all the 

generations. Here   is the number of growth of the dendrimers. 

 

Fig 1. Structure of polyacetal dendrimer with a polyhedral oligomeric silsesquioxane (POSS) core 

[24]. 
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2.1. Theorem 1 

 

Let G be the Schematic representation of third-generation polyacetal dendrimer [24]. Then 

the first Zagreb index   ( ), the second Zagreb index   ( ), the second modified 

Zagreb index   ( )
  and the reduced second Zagreb index    ( ) for   are 

1.   ( )        
        

2.   ( )        
        

3.   ( )
  

   

 
    

   

 
  

4.    ( )       
       

Proof 

Using the edge partitions of the schematic representation of polyacetal dendrimer and by 

the formulas of different version of the Zagreb indices, we get  
1.   ( )  ∑ (     )    ( )  

              |  ( )|(   )  |  ( )|(   )  |  ( )|(   )  |  ( )|(   )  |  ( )|(   ) 
                            

2.   ( )  ∑ (     )    ( )  

              |  ( )|(   )  |  ( )|(   )  |  ( )|(   )  |  ( )|(   )  |  ( )|(   ) 
                            

3.   ( )
  ∑

 

    
    ( )  

              |  ( )|
 

   
 |  ( )|

 

   
 |  ( )|

 

   
 |  ( )|

 

   
 |  ( )|

 

   
 

              
   

 
    

   

 
  

4.    ( )  ∑ (    )(    )    ( )  

                 |  ( )|(   )(   )  |  ( )|(   )(   )  |  ( )|(   )(   )
 |  ( )|(   )(   )  |  ( )|(   )(   ) 

                 (          ). 

 

2.2. Theorem 2 

 

Let G be the schematic representation of third-generation polyacetal dendrimer [24]. Then 

the Randić index  ( ), the reciprocal Randić index   ( )and the reduced reciprocal 

Randić index    ( ) for   are 

 

1.  ( )  (
 

√ 
 
  

√ 
 
  

√ 
   )     (

  

√ 
 
  

√ 
 
  

√ 
   )  

2.   ( )  ( √    √    √     )   (  √    √    √     )  
3.    ( )  (      √ )   (      √    √ )  

Proof. 

Using the edge partitions of the polyacetal dendrimer and by the formulas of different 

version of the Randić indices, we get  

1.  ( )  ∑
 

√    
    ( )  

              |  ( )|
 

√   
 |  ( )|

 

√   
 |  ( )|

 

√   
 |  ( )|

 

√   
 |  ( )|

 

√   
  

              (
 

√ 
 
  

√ 
 
  

√ 
   )     (

  

√ 
 
  

√ 
 
  

√ 
   )  

2.   ( )  ∑ √        ( )  
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               |  ( )|√    |  ( )|√    |  ( )|√    |  ( )|√    |  ( )|√    

           ( √    √    √     )   (  √    √    √     )  

3.    ( )  ∑ √(    )(    )    ( )  

                 |  ( )|√(   )(   )  |  ( )|√(   )(   )  |  ( )|√(   )(   )

 |  ( )|√(   )(   )  |  ( )|√(   )(   ) 

  (      √ )   (      √    √ ). 

 Now we consider the polyester dendrimer from sequential click coupling of 

asymmetrical monomers. By observing the structure as shows in Fig. 2, we inferred three 

partitions of the edge set which are: 
  ( )  *      ( )              +  
  ( )  *      ( )              +, 
  ( )  *      ( )        +  
  ( )  *      ( )              + . 
  ( )  *      ( )        +.  
The number of edges of the edge set   ( ) are given by |  ( )| = 4, 8, 16 and      for 

the 1
st
, 2

nd
, 3

rd
 and the  th

 generations respectively. Similarly, the number of edges of the 

other edge sets are given by |  ( )|  12, 36, 84 and         ;  |  ( )|   31, 87, 

199 and         ; |  ( )|  22, 66, 184 and            and |  ( )|  4, 12, 28 

and         for the 1
st
, 2

nd
 , 3

rd
  and the  th

 generations. Here   is the number of 

growth of the dendrimers. 

 

2.3. Theorem 3 

 

Let   be thethird-generation polyester dendrimer from sequential click coupling of 

asymmetrical monomers [24]. Then the first Zagreb index   ( ), the second Zagreb 

index   ( ), the second modified Zagreb index   ( )
  and the reduced second Zagreb 

index    ( ) for   are  
1.   ( )       

       
2.   ( )       

       

3.   ( )
  

   

 
    

   

  
  

4.    ( )      
      

 

Proof. 

Using the edge partitions of the polyester dendrimer from sequential click coupling of 

asymmetrical monomers and by the formulas of different version of the Zagreb indices, 

we get  
1.   ( )  ∑ (     )    ( )  

              |  ( )|(   )  |  ( )|(   )  |  ( )|(   )  |  ( )|(   )  |  ( )|(   ) 
                           

2.   ( )  ∑ (     )    ( )  

              |  ( )|(   )  |  ( )|(   )  |  ( )|(   )  |  ( )|(   )  |  ( )|(   ) 
                          

3.   ( )
  ∑

 

    
    ( )  

              |  ( )|
 

   
 |  ( )|

 

   
 |  ( )|

 

   
 |  ( )|

 

   
 |  ( )|
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4.    ( )  ∑ (    )(    )    ( )  

                 |  ( )|(   )(   )  |  ( )|(   )(   )  |  ( )|(   )(   )
 |  ( )|(   )(   )|  ( )|(   )(   ) 

                 (        ). 

 
Fig. 2. Structure of polyester dendrimer [24]. 

 

2.4. Theorem 4 

 

Let   be the third-generation polyester dendrimer from sequential click coupling of 

asymmetrical monomers [24]. Then the Randić index  ( ), the reciprocal Randić index 

  ( ) and the reduced reciprocal Randić index    ( ) for   are 

1.  ( )  (√  
  

√ 
 
  

√ 
 
  

 
)     (

  

√ 
 
  

√ 
 
  

 
)  

2.   ( )  ( √    √    √    )   (  √    √    )  
3.    ( )  (     √ )   (     √ )  

Proof:  

Using the edge partitions of the structure and by the formulas of different version of the 

Randić indices, we get 

1.  ( )  ∑
 

√    
    ( )  

              |  ( )|
 

√   
 |  ( )|

 

√   
 |  ( )|

 

√   
 |  ( )|

 

√   
 |  ( )|

 

√   
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              (√  
  

√ 
 
  

√ 
 
  

 
)     (

  

√ 
 
  

√ 
 
  

 
)  

2.   ( )  ∑ √        ( )  

               |  ( )|√    |  ( )|√    |  ( )|√    |  ( )|√    |  ( )|√    

          ( √    √    √    )   (  √    √    )  

3.    ( )  ∑ √(    )(    )    ( )  

                 |  ( )|√(   )(   )  |  ( )|√(   )(   )  |  ( )|√(   )(   )

 |  ( )|√(   )(   )  |  ( )|√(   )(   ) 

                 (     √ )   (     √ ). 

 
Fig. 3. Structure of polyamidoamine (PAMAM) dendrimer [25]. 

 
Finally, we consider the polyamidoamine (PAMAM) dendrimer [25]. By observing the 

structure as it shows in Fig. 3, we inferred four partitions of the edge set which are: 
  ( )  *      ( )              +  
  ( )  *      ( )              +  
  ( )  *      ( )        +  

  ( )  *      ( )              + . 
The number of edges of the edge set   ( ) are given by |  ( )| = 6, 24, 96 and 

 

 
     for the 1

st
, 2

nd
, 3

rd
 and the  th

 generations respectively. Similarly, the number of 

edges of the other edge sets are given by |  ( )|  9, 45, 189 and        ;  

|  ( )|   27, 135, 567 and        ; and |  ( )|  30, 138, 570 and          for 

the 1
st
, 2

nd
 , 3

rd
  and the  th

 generations. Here   is the number of growth of the dendrimers. 

 

2.5. Theorem 5 

 

Let G be the Schematic representation of the second-generation poly (amidoamine) 

dendrimer. Then the first Zagreb index   ( ), the second Zagreb index   ( ), the 
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second modified Zagreb index   ( )
  and the reduced second Zagreb index    ( ) for 

  are 
1.   ( )       

         
2.   ( )       

         

3.   ( )
           

  

 
  

4.    ( )      
       

 

Proof. 

Using the edge partitions of the second-generation poly (amidoamine) dendrimer and by 

the formulas of different versions of the Zagreb indices, we get  
1.   ( )  ∑ (     )    ( )  

              |  ( )|(   )  |  ( )|(   )  |  ( )|(   )  |  ( )|(   ) 
                            

2.   ( )  ∑ (     )    ( )  

              |  ( )|(   )  |  ( )|(   )  |  ( )|(   )  |  ( )|(   ) 
                            

3.   ( )
  ∑

 

    
    ( )  

              |  ( )|
 

   
 |  ( )|

 

   
 |  ( )|

 

   
 |  ( )|

 

   
 

                       
  

 
  

4.    ( )  ∑ (    )(    )    ( )  

                 |  ( )|(   )(   )  |  ( )|(   )(   )  |  ( )|(   )(   )
 |  ( )|(   )(   ) 

                            

 
2.6. Theorem 6 

Let   be the schematic representation of thesecond-generation poly (amidoamine) 

dendrimer. Then the Randić index  ( ), the reciprocal Randić index   ( ) and the 

reduced reciprocal Randić index    ( ) for   are 

1.  ( )  (
 

 √ 
 

 

√ 
 

 

√ 
 
 

 
)      (

 

√ 
 

 

√ 
 
 

 
)  

2.   ( )  (
 

√ 
  √   √    )    ( √   √    )  

3.    ( )  (   √ )    (   √ )  
 
Proof. 

Using the edge partitions of the Schematic representation of the second-generation poly 

(amidoamine) dendrimer and by the formulas of different versions of the Randić indices, 

we get  

1.  ( )  ∑
 

√    
    ( )  

              |  ( )|
 

√   
 |  ( )|

 

√   
 |  ( )|

 

√   
 |  ( )|

 

√   
  

              (
 

 √ 
 
 

√ 
 
 

√ 
 
 

 
)      (

 

√ 
 
 

√ 
 
 

 
)  

2.   ( )  ∑ √        ( )  

               |  ( )|√    |  ( )|√    |  ( )|√    |  ( )|√    
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           (
 

√ 
  √   √    )    ( √   √    )  

3.    ( )  ∑ √(    )(    )    ( )  

                 |  ( )|√(   )(   )  |  ( )|√(   )(   )  |  ( )|√(   )(   )

 |  ( )|√(   )(   ) 

  (   √ )    (   √ ). 

 

3. Conclusion 

In this work, we considered three types of dendrimers; polyacetal dendrimers with POSS 

core, the polyester dendrimers and polyamidoamine dendrimer which are used in drug 

delivery and Zagreb index and the Randić index were calculated using the edge set 

partitions to these dendrimers. These two indices are the mostly used vertex degree based 

topological indices in the field of drug design and developments. We also calculated the 

other versions of the Zagreb index such as the second Zagreb index, the second modified 

Zagreb index and the reduced second Zagreb index and the other versions of the Randić 

indices such as the reciprocal Randić index and the reduced reciprocal Randić index for 

these dendrimers. Closed formulas for all these indices were derived. A deep insight in the 

topological structure of these dendrimers could be found by these results. 
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