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Abstract 

 
The paper presents an approach to detect and control the focus of attention of the suspect 

using his/her eye gaze and head movement direction to build up an automatic interrogation 

system- specially to detect lies. To this point, we classified interrogation conversation into 

different criteria and identified the fatal ones. At first, we conducted psychological 

experiments on the sampled population to detect the different parameters connected with 

various symptoms when the suspect tells lies and build our knowledgebase with the results. 

This knowledgebase helps the system to make strategic decisions and to optimize accuracy. 

A monitoring camera captures continuous interrogation and feeds the frames to our 

proposed system. 3D head tracker is used to track the head from image and Active Shape 

Model (ASM) is utilized to localize face points. Vector Field of Image Gradient (VFIG) is 

calculated to track the eyeball and its rotation within the eye area. Random eye and head 

movement, change of eyebrow at the critical level of questionnaire provide us the 

possibility of detecting lies. Finally, experiments are conducted in a controlled environment 

to validate our psychological findings.   

 

Keywords: Lie detection; Visual focus of attention; Eye center localization; Gaze detection; 

Sustained attention.  
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1.   Introduction 

 

Head and eye gaze behavior is a very interesting research topic for many years in 

psychology and in the computer vision community. Especially in the field of suspects‟ 

visual focus of attention (VOFA) [1,2] detection, this study has become a part of active 

research in order to detect lies [3]. However, there are very little works by which suspect‟s 

visual attention may be controlled accurately through human machine interface (HMI) and 

Human Posture Recognition [4]. Generally, humans have very poor ability in detecting 
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deceit and hostile intent, with accuracy rate of 40-60 % [5]. However, when one is being 

deceitful, she/he is making up something in the brain. This results in increased brain 

activity and rapid physiological responses which can be measured on the face (including 

facial blood flow pattern). Humans do not possess the ability to control these 

physiological responses to emotions. Stress causes abrupt changes in local skin 

temperature and distinctive facial signatures which provides the main key to lie detection. 

Some previous researches on lie detection systems used Polygraph [6-8]. It was 

developed in 1921 which measures and records several physiological indices such as 

blood pressure, pulse, respiration and skin conductivity and tries to find correlation 

between these measurements. However, it is highly invasive, very slow (requires several 

experts) and cannot be used in covert operations (where the suspect is unaware about the 

experiments.) At present there are several techniques in vogue [9-14]. But most of them 

use body sensors or high cost thermal cameras. Their detection accuracy is also low. 

Humans have a well-defined “rigid” skull structure and facial muscle structure - this 

means there are finite numbers of facial expressions a human can perform. These are 

called Facial Action Units (FACS) and there are 46 such Action Units. To this point, our 

proposed technique finds out the best parameters of lie detection from visual domain, such 

as- Random Eye Movement, changes in the orientation of head and shape of eyebrow 

changes etc. Based on this, we shall create our knowledgebase to store how people reacted 

in different stimuli. This knowledgebase will help us to detect the phase of questionnaire 

(performed while interrogation) and its corresponding possibility of lie.  A low-cost USB 

camera captures continuous video of the suspect while interrogation and feeds it to our 

proposed system. A multistage computer vision approach has been utilized to track the 

most critical parameters that show the symptoms of lie. Our proposed technique is cost 

effective and unbiased. It also provides proper video evidence of interrogation. The 

proposed system can be a helpful tool to the existing interrogation system. 

 

2. Lie Detection 

 

Human characteristics are very popular in nature. It is very tough to detect the insights of 

a human, especially when he is telling lies. For the case of an interrogation environment, 

the problem becomes tougher because the suspect keeps himself ready for some common 

question. In our approach, we classify the answers of the victim in four major criteria as 

follows- 
 

Criteria (1, 1): The suspect has done it and also admits it. It would be considered as 

“True.” For example, if the suspect has stolen and told that “Yes, I have done it.” 

 

Criteria (1, 0): The suspect has done it but denying it. It would be considered as “False.” 

For example, if the suspect has stolen and told that “No, I have not done it.” 
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Criteria (0, 1): The suspect has not done it but pretending that he has done it. It would be 

considered as “False.” For example, if the suspect does not have a red shirt but if he says 

“Yes, I have.”  

Criteria (0, 0): The suspect has not done it but is denying it. It would be considered as 

“True.” For example, if the suspect does not have a red shirt and if he says “No, I don‟t 

have.”  

 

In our approach Criteria (1, 1) and Criteria (0, 0) are considered TRUE and hence, they 

are to be bypassed by the system. But Criteria (1, 0) and Criteria (0, 1) are considered as 

FALSE and must be tracked by the system. 

Now when the interrogation begins, even the weakest liar can overcome our test 

without showing any external symptoms because at first s/he is ready to fight with some 

of the ready answers. However, interrogation means a chain of questions and to support 

one lie the suspect must tell another lie. With the course of time it becomes tougher for the 

suspect to answer with his/her ready wit. So, weak liars cannot sustain with the “Chain of 

Lie.” and shows some external symptoms. And the symptoms are very obvious for the 

criteria (0, 1). The reason behind this fact is that, if anyone claims to do something that 

s/he has not done, he needs to imagine that situation at first before answering about it. 

While imagination there is a change in body language showing symptoms of a possible 

lie. Our main goal is to track those symptoms to detect a lie. To this point we have 

classified the symptoms in three major criteria- 

 

Symptom Type-1: The suspect provides a very random movement of his eye which is a 

clear indication of his nervousness. S/he also moves his eyeball to the upper right corner 

of his eye area as an indication that s/he is thinking of something.  

 

Symptom Type-2: The suspect provides a head movement. In most cases for the weak 

liar, it is tough for him/her to continue the conversation with direct eye contact with the 

interrogator. Too much loss of direct eye contact is a clear indication of telling a lie. To 

avoid the direct eye contact, the suspect moves his/her head downward. Sometimes s/he 

also makes a frequent head movement. 

 

Symptom Type-3: The suspect changes the shape of his eyebrow as an indication of his 

worry. Now if we can detect Symptom Type-1, 2 or 3, we can say that there is a 

possibility that the suspect is telling a lie. To confirm the possibility, we need to compare 

it with our knowledgebase. The knowledgebase is the storehouse of symptoms provided 

by different suspects at different levels of questionnaire obtained from our manual 

interrogation. Each of the questions in the questionnaire is marked as Phase 1, 2,…, N etc. 

The symptoms offered by the suspects are also age variant. The teenagers are generally 

impatient and cannot remain calm and hence provide useful and clear as well as useless 

symptoms while interrogations. But the aged groups provide very low levels of symptoms 

which are very hard to track. So to build our knowledgebase to store how people react 

while telling a lie, we need to consider our samples from different age groups. The 
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statistics from the samples will help us to get the threshold value to confirm a lie. Since, 

human emotion is the prime parameter of our lie detection strategy; we classify our crime 

pattern as follows- 

 

Crime Type-1: Emotion is connected with the crime. In this situation there is no 

economic profit. Any type of revenge or avenge (for example killing for extra marital 

relationship) can be considered as Type -1 crime. Here the suspects show more symptoms 

of telling a lie. 

 

Crime Type-2: The crime is done only for economic profit, there is no emotional issue. 

Any type of fraud activities such as stealing, cheating, abduction, mugging etc. can be 

considered as crime Type 2. Here the suspects show less symptoms. A questionnaire for 

this type of crime (for stealing in this case) may be as follows: 

 
Table 1. Questionnaire for Crime Type 2. 

 

Now we see that the suspect provides external symptoms at different levels of questions. 

The changed focus of attention offered by the suspect is our key to lie detection. The 

overall system is depicted in Fig. 1. 

 
3. Visual Focus of Attention Detection 

 

3.1. Method overview 

 

At first a camera or sensor is needed to detect the VFOA of the suspect. Then the captured 

video frames are fed one by one to an intelligent system. Thereafter, each video frame is 

converted into grey scale for easier processing and analyzed each video frame pixel by 

pixel. These analyzed data is used to detect the loss of attention if the suspect changes 

his/her VFOA to another direction.  How the head direction of the suspect is changed 

while telling a lie is observed from our psychological tests. The minimum deviation of the 

head orientation of the suspect can be considered as a clue to detect lie because suspects 

change the tilt/pan angle of their head while telling a lie. A step by step approach to detect 

the head movement and Random Eye Movement (REM) as discussed below. 

Phase Possible Question  Possible Answer Symptom 

Possibility 

1 Have you done this? No NO 

2 Where were you last day? At my village home LOW 

3 What were you doing at 10.00am? Playing cards LOW 

4 Who were with you? My other cousins. NO 

5 What does your cousin do? They study in school. NO 

6 Last day was not a vacation. What were 

they doing with you in school time? 

They had a fever and did 

not go to school. 

HIGH 

7 Both of them had a fever? May be HIGH 
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Fig. 1. Programming flow chart. 

 

3.1.1. Head pose detection 

 

The main goal of head pose detection is to track the head from the continuous image 

whether the head is in movement or not. In our present work, we have used the Seeing 

Machine‟s faceAPI [15] to detect and track the head pose, hp of the target person. To 

detect the head, we have used a haar cascade classifier as a 3-D head tracker [16]. We 

draw a rectangle outside of the head. For Symptom Type-2, the suspect moves the head 

within this head rectangle. The orientation of the middle of the face line within this face 

rectangle clearly defines the head movement at a particular direction as proposed in [17]. 

If the suspect turns his face downwards without moving his head then the change of the 

orientation of the nose point with respect to the face rectangle is considered as an 

alternative to measure the Symptom Type-2. 

 

3.1.2. Face points extraction by active shape model 

 

Our modelling method works by examining the statistics of the coordinates of the labeled 

points in the head rectangle. In order to be able to compare equivalent points from 

different shapes, they must be aligned with respect to a set of axes. We achieve the 

required alignment by scaling, rotating and translating the shape so that they correspond 

as closely as possible. In our presented approach, it is desirable to minimize a weighted 
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sum of squares of distances between equivalent points on different shapes. Finally, the 

facial feature points are extracted from the active shape model [18]. 

 

3.1.3. Iris center detection 

 

The facial feature points are utilized to detect the eye regions roughly from the face. The 

VFIG is used to detect the iris center. The VFIG iris center detection technique is 

described as follows: 

Let Ic be the possible iris center and Igi be the gradient vector in position Ixi. If Idi is the 

normalized displacement vector, then it should have some absolute orientation as the 

gradient Igi. We can determine the optical center Ic* of the iris (darkest position of the eye) 

by computing the dot products of Idi and Igi and finding the global maximum of the dot 

product over the eye image: 

 

Ic* = argmax Ic {
  

 
∑ 

        }                                                                             (1) 

Where, P = (Idi 
T
 Igi)

 2
 

Idi = (Ixi -Ic) / (|| Ixi -Ic||2) 

i = 1, 2,..., N and the displacement vector Idi  is scaled to unit length in order to obtain 

an equal weight for all pixel positions in the image. 

We create an eye rectangle around our eye. The fluctuation of the coordinate of the 

eyeball within this eye rectangle provides us a clue transient attention detection as 

proposed by Debnath [17] and thereby, also provides a clue to Symptom Type-1. 

 

3.1.4. Eyebrow Movement Detection 

 

The American psychologist Gibson gave the concept of optical flow in 1940 [19]. To 

materialize the visual stimulus provided to animals, he considered the pattern of apparent 

motion in a visual scene. The considered motion is caused by the relative speed between 

the observer and the scene. To estimate the optical flow of the eyebrow we need the 

sequences of the ordered images. This approach tries to evaluate the motion between the 

two consecutive images taken at time t and t + Δt. In our approach, we have used the 

Lucas-Kanade method [20]. For a pixel under consideration, it considers the optical flow 

constant in its neighborhoods. Using the least square criterion, it solves all the optical flow 

equations for all of the neighborhood pixels. To distinguish among different image 

elements, we have used The Shi and Tomasi corner detection algorithm [21]. In our 

proposed work, the eye area has been considered the Region of Interest (ROI), where the 

change of the shape of the eyebrow is detected. 
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3.2. Field of view of the suspect 

 

The field of view (FOV) of the suspect is divided into three regions: 

● Central Field of View (CFV): 

This FOV exists at the center of the human FOV. This zone is set to a 30° cone shaped 

area (75° to 105°). 

● Near Peripheral Field of View (NPFV): 

It is defined as the 45° fan shaped area on the both sides of CFV zones. At the right 

side of CFV (30° to 75°) it is defined as the right near peripheral field of view (RNPFV) 

and at the left right side of CFV (105° to 150°) it is defined as the left near peripheral field 

of view (LNPFV).  

● Far Peripheral Field of View (FPFO):  

This FOV exists on both sides at the edge of the human FOV. The right side of the 

RNPFV (-35° to 30°) is known as the right far peripheral field of view (RFPFV) and on 

the left side (-145° to 150°) is known as left far peripheral field of view (LFPFV). 

 
Fig.  2. Field of View (FOV) of the suspect.  

4. Data Collection and Experiments 

 

4.1. Data collection for knowledgebase creation 

 

People of different ages show different levels of body language while telling lies. To 

validate it, we collected data with different age groups.  There were a total of 20 

participants. We divided them according to their age into four consecutive groups as 

follows: 

Group-1 (10 to 14 years old): Four members with the age 11, 11, 12 and 13 years, 

respectively. 

Group-2(15 to 19 years old): Four members with the age 16, 16, 18 and 19 years, 

respectively. 

Group-3(20 to 24 years old): Four members with the age 23, 24, 24 and 24 years, 

respectively. 

Group-4(25 to 29 years old): Four members with the age 25, 26, 27 and 28 years, 

respectively. 
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They were interrogated with the same questionnaire (priorly unknown to them) and 

instructed them to tell lies instantly. The resulting symptoms were tracked very carefully. 

The summarized results of age variant symptom analysis are given in Table 2. 
 

Table 2. Age variant symptom analysis. 
 

 
Head Rotation 

Eye 

Rotation 

Group 1 3 2 

Group 2 3 1 

Group 3 2 2 

Group 4 1 0 

 

We conducted several experiments to detect the level of questionnaire (Phase) at which 

the suspect shows external symptoms. There were 3 unpaid participants (2 male, 1 female) 

who were staffs at Bangladesh Army University of Engineering and Technology (mean 

age 27 years and standard deviation 0.775 years). To avoid the influence of the 

interrogator (which may change the possibility of exhibiting external symptoms), we used 

Zoom application software to interrogate the subjects online. Some images taken while 

experiments are given below- 

 
 

Fig.  3.  Experiments to track eyeball rotation to detect Symptom Type-1. 
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They were interrogated with the same questionnaire and the external symptoms (rotation 

of head, eye, change of eyebrow) were monitored very carefully. We collected as follows.  

Table 3. External symptoms detection. 
 

 Suspect 1 Suspect 2 Suspect 3 

Phase 1    

Phase 2 1 1 0 

Phase 3   1 

Phase 4    

Phase 5 2 1 2 

Phase 6 1 1 1 

Phase 7 2 1 1 

 

To trace the relationship between Crime Type-1 and 2 with emotion, we conducted two 

separate experiments in the controlled environment. We set the threshold value of 

sustained symptoms to be greater than 3 sec. Less than 3 sec will be considered as 

transient symptoms. The summary of the collected data is given in Table 4. 

 
Table 4. Crime Type 1 and 2 detections. 
 

 Suspect 1 Suspect 2 Suspect 3 

EXP 1 
Transient 1 0 1 

Sustained 2 1 2 

EXP 2 
Transient 0 1 1 

Sustained 1 1 0 

 

4.2. Data collection for symptom detection 

 

To validate the performance of the system in controlled environment, we went through 

several experiments. At first to detect the eyeball rotation within the eye area, the 

participants were asked to look within the LNPFV and RNPFV with keeping their head in 

stable state, that means in CFV with varying duration. The illumination of the room was 

200 Lux and the distance from the camera was 0.5 m. After that, to track the head 

rotation, they were asked to rotate their head with varying rotation time i.e. 1, 2 and 3 sec 

respectively. They were also asked to move their eyebrow (shrink or expand it) so that it 

can be tracked by the optical flow feature. The average video duration is 3 min with 

average 12 frames per sec.  

  

5. Performance Evaluation 

 

In our lie detection technique, we detected Symptom Type-1 (st1) based on random 

fluctuation of eye movement. The Accuracy of detection while interrogation is expressed 

as- 
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Accuracyst1= 
                                    

                                     
                                                 (1) 

Based on equation (1), we get the Fig. 4 which shows the eye rotation detection accuracy 

for varying eye rotation time. Similarly, Symptom Type-2 is tracked based on random 

head movement or change in the orientation of head. The accuracy is expressed as: 

Accuracyst2= 
                                     

                                      
                                               (2) 

Based on equation (2), we get the Fig. 5 which shows the head rotation detection accuracy 

for varying head rotation time. Symptom Type-3 is tracked with the change in the shape 

of the eyebrow by implementing Optical Flow Feature in the ROI. The detection accuracy 

is expressed as: 

Accuracyst3= 
                                        

                                         
                                        (3) 

 

The accuracy of Symptom Type-3 has been illustrated in Fig. 6. 

 
Fig.  4. Accuracy measurement of Symptom Type -1 detection. 

 
Fig. 5. Accuracy measurement of Symptom Type -2 detection. 
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Fig. 6. Accuracy measurement of Symptom Type -3 detection accuracy. 

 
6. Conclusion 

 

We aimed at detecting lies to build up an automatic interrogation system by tracking the 

visual focus of attention of the suspect. At first, we created a knowledgebase gleaned from 

manual experiments to define different parameters of suspicious behavior during telling 

lies and to optimize the accuracy. From the experimental results it can be concluded that 

the accuracy of Symptom Types-1 and -2 is dependent on transient duration. And the 

accuracy increases linearly with the duration. However, Symptom Type-3 detection 

accuracy depends on the gender of the suspect. The reason is that the width of the female 

suspect‟s eyebrow is less than that of the male suspect. So, it becomes harder to track the 

change in shape of eyebrows using optical flow features. We conducted our experiments 

in a controlled environment which may not match with the results of real-life 

environments. We leave this for our future research. 
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