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Abstract 
 

A two-dimensional natural convection flow of a viscous incompressible and electrically 
conducting fluid past a vertical impermeable flat plate is considered in presence of a 
uniform transverse magnetic field. Here the viscosity is taken as dependent on temperature 
whereas the thermal conductivity is assumed constant. We also investigate the effect of 
magnetic field on the natural convection flow of a viscous incompressible and electrically 
conducting fluid. The effect of variable viscosity and magnetic field on local skin friction, 
the rate of heat transfer and the profiles for velocity as well as viscosity in the entire free 
convection regime are presented and discussed. 
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1. Introduction 
 
Studies of forced, free and mixed convection flow of a viscous incompressible fluid, in the 
absence of magnetic field, along a vertical surface have extensively been conducted by 
Sparrow and Gregg [1], Merkin [2], Loyed and Sparrow [3]. Hunt and Wilks [4] 
introduced a group of continuous transformations computation for the boundary layer 
equations between the similarity regimes for mixed convection flow. In the case of 
similarity regimes Hunt and Wilks [4] recognized ζ (= Grx/Rex

2, where Grx is the local 
Grashof number and Rex is the local Reynolds number), a governing parameter for the 
flow from a vertical plate. Forced convection exists as when ζ goes to zero, which occurs 
at the leading edge, and the free convection limit, can be reached at large values ofζ. 
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Perturbation solutions have been developed in both the cases, since both the forced 
convection and free convection limits admit similarity solution. Empirical patching of two 
perturbation solutions have also been carried out to provide a uniformly valid solution by 
Raju et al. [5] which covers the whole range of the values of ζ. They obtained a finite 
difference solution applying an algebraic transformation Z = 1/(1+ζ2). Considering the 
free convection as a perturbation quantity has developed many solutions. Tingwi et al. [6] 
have also studied the effect of forced and free convection along a vertical flat plate with 
uniform heat flux by considering that the buoyancy parameter ζp to be Grx/Rex

5/2. The 
solutions were obtained for the small buoyancy parameter taking into the account of the 
perturbation technique. 

Because of its application for MHD natural convection flow in the nuclear engineering 
where convection aids the cooling of reactors, the natural convection boundary layer flow 
of an electrically conducting fluid up a hot vertical wall in the presence of strong magnetic 
field has been studied by several authors, such as Sparrow and Cess [7], Reley [8] and 
Kuiken [9]. Simultaneous occurrence of buoyancy and magnetic field forces in the flow of 
an electrically conducting fluid up a hot vertical flat plate in the presence of a strong cross 
magnetic field was studied by Sing and Cowling [10] who had shown that regardless of 
strength of applied magnetic field there will always be a region in the neighborhood of the 
leading edge of the plate where electromagnetic forces are unimportant. Creamer and Pai 
[11] and Singh et al. [12] presented a similarity solution for the above problem with 
uniform heat flux by formulating it in terms of both a regular and inverse series 
expansions of characterizing coordinate that provided a link between the similarity states 
closed to and far from the leading edge. Hossain and Ahmed [13] studied the combined 
effect of the free and forced convection with uniform heat flux in the presence of strong 
magnetic field. An analysis was made by Rat and Chaudhary [14] for the steady two-
dimensional, laminar boundary layer flow of a viscous, incompressible, electrically 
conducting fluid near a stagnation point of stretching sheet in the presence of magnetic 
field. It was considered that the sheet is stretched in its own plane with velocity and 
temperature proportional to the distance from the stagnation point. Samad and 
Mohebujjaman [15] had investigated the effect of a chemical reaction of an electrically 
conducting viscous incompressible fluid on the flow over a linearly stretching vertical 
sheet in the presence of heat and mass transfer as well as a uniform magnetic field which 
is normal to the sheet with heat generation/absorption. MHD free convection in the 
present of temperature-dependent heat source in a viscous incompressible fluid confined 
between a long vertical wavy wall and a parallel flat wall in slip flow regime with 
constant heat flux at the flat wall was studied by Taneja and Jain [16]. Hossain et al [17] 
also investigated the MHD free convection flow along a vertical porous flat plate with a 
power law surface temperature in the presence of a variable transverse magnetic field 
employing two different methods namely (i) perturbation methods for small and large 
values of the scaled stream-wise transpiration velocity variable ξs (= V0 √(2x/νU∞, where 
V0 is the transpiration velocity) and (ii) the finite difference together with the Keller box 
method [18]. Wilks [19] recognized a parameterξ, defined by ξ = (σH0

2/ρ∞)2x/gβ(T0-T∞) 
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to investigate the MHD free convection flow about a semi-infinite vertical plate in a 
strong cross magnetic field. The work of that follows reformulates the problem in terms of 
coordinates expansions with respect to a non-dimensional characteristic length which is 
fundamental to the problem in its reflection to the relative magnitudes of buoyancy and 
magnetic forces at varying locations along the plate. A step by step numerical solution has 
been obtained to supplement the series solutions for small and largeξ. The effect of 
variable viscosity is considered for the flow and heat transfer on MHD natural convection 
in micropolar fluids was studied by El-Hakiem and Abdou [20]. Studies of the effects of 
variable viscosity, heat and mass transfer on nonlinear MHD mixed convection flow in a 
porous medium over a wedge with chemical reaction and heat radiation in the presence of 
suction or injection was conducted by Kandasamy et al. [21]. 

In the above analysis, the solutions for the problem, Wilks [19] used only series 
solutions method for the case of constant viscosity and constant thermal conductivity. 
Ahmmed [22] studied the works of Wilks [19] for the three cases and obtained solutions 
using series solution method and finite difference method. The solutions of Ahmmed [22] 
showed an excellent agreement with the solution of Wilks [19]. Here we consider 
viscosity as variable which depends on temperature and finally we obtain ordinary 
differential equations by introducing appropriate coordinate transformations. We solve the 
ordinary differential equations by series solution method for small magnetic field 
parameter, asymptotic solution for large values of magnetic field parameter and finite 
difference method for all values of this parameter. The effect of the viscosity variation 
parameter and magnetic field parameter on the skin friction and rate of heat transfer are 
given in the tabular form. We also draw the velocity profiles, the viscosity profile for 
different values of the viscosity variation parameter and magnetic field parameter. 
 
2. The Governing Equations             

 
We consider the steady two dimensional laminar free convection boundary layer flow of a 
viscous incompressible and electrically conducting fluid with temperature dependent 
viscosity but constant thermal conductivity. Here we make the assumptions that (i) the 
plate is vertically semi-infinite and impermeable (ii) the transverse magnetic field of 
strength H0 is uniformly distributed. The basic equations in the case of variable viscosity 
are as given below [22]: 
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 with the boundary conditions 
 

     
 

∞→
=y 0

→→
===

∞ yTTu
TTvu

as,0
at,0 0         (4) 

Here u, v is the velocity components associated with the direction of increase of 
coordinates x and y measured along and normal to the vertical plate (see Fig. 1). T is the 
temperature of the fluid in the boundary layer, g is the acceleration due to gravity, β is the 
coefficient of thermal expansion, κ is the thermal conductivity, ρ∞ is the density of the 
fluid, cp is the specific heat at constant pressure and T∞ is the temperature of the ambient 
fluid μ is the viscosity of the fluid depending on temperature defined in equation (5). 
Since the viscosity decreases with the increase of temperature. Following Gray at al.[23], 
Mehta and Sood[24], Kafoussias and Williams [25] and Kafoussias et al. [26], we assume 
the temperature dependent viscosity μ can be of the form 

 

εθμ
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1
1
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          (5) 
 
where    θ =T-T∞ 
 

Here ε is the viscosity variation parameter which is positive for heating, negative for 
cooling and zero for constant viscosity of the fluids, μ0 is the constant viscosity.  
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Fig. 1. The flow configuration and coordinate system. 
 
 

We observe that the Eqs. (2) and (3) together with the boundary conditions (4) are 
non-linear partial differential equations. In the following section the solution methods for 
these equations are discussed details. 
 
3. Solution for All ξ  
 
Now we introduce the following transformations of the equation (6) to the Eqs. (2) and (3)  
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and we get the following equations 
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with the no-slip boundary conditions 
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Here the coefficient of skin-friction, τ, and the coefficient of the rate of heat transfer, 
Q are defined as follows.  
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4.  Solution Near the Leading Edge for Small ξ 

For small ξ from the equations (7) and (8) we approximate the following equations 
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where the boundary conditions (9) remains the same.  
 

To get the solutions of the above Eqs. (10) and (11) we use the 2nd and 3rd order series 
solution and the finite difference method. 
 

Series solution method 

For series solution we consider the following series 
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where f0, θ0 are the well known free convection similarity solutions for flow around a 
constant temperature semi-infinite vertical plate and where f1,θ1 are effectively the first 
order correction and f2,θ2 are effectively second order correction to the flow due to the 
presence of magnetic field. 

Using (12) and (13) in (10) and (11) respectively we get the following equations: 
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Here skin friction and the rate of heat transfer are be of the following form  
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5.  For Large ξ  Solution 

For large ξ from the Eqs. (7) and (8) we can approximate the following equations 
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For convenient here we can write the expression for τ and Q as given bellow 

)0,(2/1 ξξτ f ′′= −   

)0,(2/1 ξθξ ′= −Q   

 Here the skin friction and the rate of heat transfer for all the three cases are given in 
Table 1 and Table 2, respectively. 

 
6. Result and Discussion 
 
In this section we discuss the results obtained from the solution of the equations governing 
the MHD free convection flow of a viscous incompressible and electrically conducting 
fluid with temperature depend viscosity and constant thermal conductivity in the presence 
of uniformly distributed transverse magnetic field along the impermeable vertical flat 
plate. The solutions of the governing non-similar equations are obtained by three distinct 
methods, the extensive series solution method for small ξ, the implicit finite difference 
method or simply Keller box method for all ξ and asymptotic solution method for large ξ.  
 
     Table 1. Numerical values of skin friction coefficient obtained by different methods  
     for different ε  with with Pr = 0.05. 
 

ξ ε = 0.5 ε =1.0 
series finite asymptotic series finite asymptotic 

0.10 0.7898 0.8187  0.9354 0.9342  
0.20 0.8987 0.9881  1.0361 1.0341  
0.30 0.9482 0.9697  1.1208 1.1189  
0.40 0.9872 0.9994  1.1543 1.1568  
0.50 1.0162 1.0178  1.1999 1.1887  
0.60 1.0392 1.0294  1.2265 1.2178  
0.70 1.0582 1.0365  1.2483 1.2399  
0.80 1.0743 1.0407  1.2669 1.2544  
0.90 1.0885 1.0428  1.2832 1.2699  
1.00 1.1011 1.0443  1.2978 1.2747  
3.00  0.9943 1.0610  1.6247 1.6523 
4.00  0.9707 1.0199  1.7504 1.8060 
5.00  0.9534 0.9896  1.9801 1.9820 
6.0  0.9399 0.9672  2.1758 2.1790 
7.0  0.9294 0.9511  2.2942 2.2950 
8.0  0.9210 0.9385  2.3599 2.3604 
9.0  0.9142 0.9289  2.5459 2.5462 
10.0  0.9206 0.9207  2.8824 2.8823 
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The solutions of the present problem with wide range of the pertinent parameter ξ are 
obtained by the finite difference method. The effect of the viscosity variation parameter ε 
on the local skin friction and the local rate of heat transfer coefficient Q against the 
magnetic field parameter ξ for the low prandtl number fluid with Pr = 0.05 (for lithium) 
are depicted in the Table 1 and in the Table 2 respectively. This problem is appropriate 
not only for lithium but also for any other fluid of very low prandtl number. 

 
Table 2. Numerical values rate of heat transfer coefficient obtained by different methods for 
different ε  with with Pr = 0.05. 
 

ξ ε = 0.5 ε =1.0 
series finite asymptotic series finite asymptotic 

0.10 0.2125 0.2119  0.2052 0.2025  
0.20 0.1736 0.1713  0.1762 0.1642  
0.30 0.1534 0.1602  0.1559 0.1442  
0.40 0.1410 0.1406  0.1426 0.1396  
0.50 0.1303 0.1355  0.1328 0.1211  
0.60 0.1226 0.1272  0.1251 0.1134  
0.70 0.1164 0.1204  0.1188 0.1071  
0.80 0.1111 0.1147  0.1135 0.1018  
0.90 0.1065 0.1097  0.1090 0.0972  
1.00 0.1026 0.1054  0.1050 0.0931  
3.00  0.0660 0.0724  0.0533 0.0544 
4.00  0.0575 0.0617  0.0452 0.0458 
5.00  0.0516 0.0544  0.0388 0.0392 
6.0  0.0471 0.0487  0.0333 0.0341 
7.0  0.0435 0.0451  0.0285 0.0294 
8.0  0.0407 0.0419  0.0252 0.0261 
9.0  0.0383 0.0391  0.0225 0.0233 
10.0  0.0363 0.0371  0.0206 0.0207 

 
 
From Table 1 it can be seen that the skin friction increase due to the increase of 

viscosity variation parameter ε and this increase is sufficiently large in the downstream 
regime that the  regime far away from the leading edge. It is clear from Table 2 that the 
rate of heat transfer decrease due to increasing values of the viscosity variation parameter. 
In Tables 1 and 2, we see that the series solution converge to the finite difference method 
solution for small values of ξ and the asymptotic solutions converge with the solutions of 
finite difference for large ξ. As for example if ξ = 0.2, the result from the series solution 
and finite difference are much closed and for ξ = 10, the result from the asymptotic 
solution and finite difference are much closed. Again the increasing values of the 
magnetic field parameter ξ the values of both the skin friction and the rate of heat transfer 
decrease. 
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The profiles for velocity and viscosity defined in Eqs. (26) and (27) for velocity and 
viscosity, respectively are shown in Fig. 2 and Fig. 3 for different values of ξ and ε. 
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Fig. 3. Viscosity profiles for different 
values of ξ and ε against η. 

Fig. 2. Velocity profiles for different 
values of ξ and ε against η. 

From Fig. 2 it can be seen that the velocity profiles increase due to the increase of 
viscosity variation parameter, ε and it smoothly decreases at the downstream regime. 
Further one can see that the velocity profiles decrease due to increase of magnetic field 
parameterξ.  We observe that there exists a maximum for each of ε,  i.e. for ε = 0.0, 1.0 
and 2.0. The corresponding local maxima occur at η ~ 1.583, 1.237 and 1.144 with ξ = 
2.0.  Similarly we see that there exist different local maxima for different graphs of the 
velocity profiles for all other values of ξ =0, 5 and 10 with ε = 0.0, 1.0 and 2.0 
respectively againstη  near the surface of the vertical plate. Fig. 3 shows that the profiles 
for viscosity decrease with increasing values of both the viscosity variation parameter ε 
and the magnetic field parameter ξ.  But the effect is not significant at the surface of the 
plate. All these profiles tend to a limiting value on the profile for ε = 0.0 which is unity.  
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