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Abstract 

Squeezing in the difference of the fields in degenerate four- and five-wave interaction 

processes is studied. It is shown that the difference squeezing can be led to normal 

squeezing of the field for uncorrelated modes. It is found that the amplitude-squared 

squeezing of the fundamental mode directly converted into the normal squeezing of the 

signal mode in the four-wave interaction process and amplitude-cubed of the fundamental 

directly converted into the normal squeezing of the signal mode in the five-wave interaction 

process. Detection of higher-order squeezing in these processes is also studied. It is 

observed that difference squeezing responds nonlinearly to the number of pump photons and 

found greater in the stimulated process than in spontaneous one. Difference squeezing exists 

only in certain domain value of pump photons. It is inferred that the multi-photon absorption 

process is more suitable for the generation of optimum squeezed light. 
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1.   Introduction 

Squeezed states of light [1-6] is one of the examples of nonclassical light. They can be 

expressed by complex amplitude, which describes both the magnitude and the phase of the 

field. The amplitude of the electric field of a mode of the electromagnetic field is not a 

fixed quantity; there are always quantum residual fluctuations, called zero-point 

fluctuation. In a coherent state, the fluctuations in the quadrature components are equal 

and are randomly distributed in the field quadrature components. On the other hand, it is 

possible to reduce fluctuations in one quadrature component than a coherent state at the 

expense of increased fluctuations in the other quadrature component. These states are 

called squeezed states. It has drawn greater attention of the community due to its low-

noise fluctuation in any quantum state [7,8] with an application in optical 
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telecommunication [9], quantum cryptography [10,11], an interferometric technique [12], 

amplification of signals [13], computing [14] and development of techniques for making 

higher-order correlation measurements in quantum optics [15,16]. Recently several 

workers have obtained theoretical as well as experimental evidence of squeezed states in 

various nonlinear optical processes such as parametric amplification [17,18], harmonic 

generations [19-23], multi-photon processes [24-29], and others [30-34]. More recently, 

higher-order squeezing has been studied by Prakash and Mishra in some other optical 

processes [35-37] for improving the performance of many optical devices and optical 

communication networks. Garcia Fernandez et al. [38] and Mishra et al. [39, 40] have 

worked on higher-order nonclassical states in single-mode and their use in detecting 

nonclassical light. Further, another type of higher-order squeezing, called sum and 

difference squeezing was proposed by Hillery [41] for the two modes and generalized to 

include three modes [42] as well as an arbitrary number of modes for sum and difference 

squeezing [43-45]. Prakash et al. [46] studied enhancement and generation of sum 

squeezing in two-mode light in mixing with coherent light using a beam splitter. Truong 

et al. [47] and Wang et al. [48] have recently given the concept of higher-order 

nonclassical properties and intermodal entanglement in the two-mode photon added 

squeezed state in a lucid manner. More recently Mukherjee et al. [49] have reported the 

idea that sum-and-difference squeezing is possible in harmonic generation processes. Giri 

et al. [50] have pointed out sum squeezing in frequency up conversion process and Mishra 

et al. [51] have given the concept of the generation of sum-and difference-squeezing by 

the beam splitter having third-order nonlinear material. 

 The present paper is to extend our theoretical study on the concept of squeezing in the 

difference of the fields in degenerate four- and five-wave interaction processes. The paper 

is organized as follows: Section 2 gives the definition of normal and higher-order 

squeezing. We establish the analytic expression in the difference of the fields in 

degenerate four-wave and five-wave mixing processes in sections 3 and 4 respectively. 

Section 5 incorporates results and discussion. Finally, we conclude the paper in section 6. 

2. Definition of Normal and Higher-Order Squeezing 

2.1. Amplitude squeezing of single mode  

The squeezing is the reduction of quantum fluctuations in one quadrature at the expense of 

other one. It may be characterized by its real and imaginary parts as  

 †1
ˆˆ

2

1ˆ AAX 







                                                                                                (1) 

and    †2
ˆˆ

2

1ˆ AA
i

X 







 .                                                                                              (2) 

where  ̂     ̂            and  ̂      ̂              are the slowly varying 

operators with time t and  ̂   ̂  are creation (annihilation) operators of the 

electromagnetic field with frequency .  
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Equations (1) and (2) obey the commutation relation as 

 
2

ˆ,ˆ 21

i
XX  . (3) 

and the uncertainty relation ( ħ = 1) is 

4

1
  

2
X̂Δ 

1
X̂Δ  .  (4) 

where   ̂  and   ̂  are the uncertainties in the quadrature operators  ̂  and  ̂  

respectively.  

A state is squeezed in the  ̂  direction if   ̂   
 ⁄  and is squeezed in the  ̂  direction 

if   ̂   
 ⁄ . 

2.2. Amplitude-squared and amplitude-cubed squeezing of single mode 

Amplitude-squared squeezing of single mode 

Amplitude-squared and amplitude-cubed squeezing of single mode are the type of higher-

order squeezing. It is the higher powers of the field amplitude [20,21]. 

The amplitude-squared squeezing of the field may be defined as  

 †22

1 ÂÂ
2

1
Ŷ 








    (5) 

and    †22

2 ÂÂ
i2

1
Ŷ 








 .                                                                            (6)                            

where the symbols have as usual meanings. 

These operators follow the commutation relation 

   1ˆ2ˆ,ˆ ˆ21 
A

NiYY . (7) 

where  ̂ ̂   ̂  ̂ is the number operator in pump mode.   

The equation (7) leads to the uncertainty relation (ħ = 1) 

2

1
N̂ŶΔ ŶΔ

Â21  . (8) 

where   ̂  and   ̂  are the uncertainties in the quadrature operators  ̂  and  ̂  

respectively. 

Amplitude-squared squeezing exist if     

2

1
N̂)Ŷ(

Â

2

i  , where i = 1 or 2. (9) 

Amplitude-cubed squeezing of single mode 

The amplitude-cubed squeezing of the field may be defined as 
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  ÂÂ
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   (10) 

and   †33

2 ÂÂ
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.                                                  (11) 

Equations (10) and (11) satisfy the commutation relation 

  




  6

ˆ
ˆ92

ˆ
ˆ9

2
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NZ,Z .  (12) 

and equation (12) leads to the uncertainty relation (ħ = 1) 

21 ẐΔ ẐΔ 6ˆ9ˆ9
4

1
ˆ

2
ˆ 

AA
NN  (13) 

where   ̂  and   ̂  are the uncertainties in the quadrature operators  ̂  and  ̂  

respectively. 

Amplitude-cubed squeezing exist if     

6ˆ9ˆ9
4

1
)Ẑ( ˆ

2
ˆ

2

i 
AA

NN , where i = 1 or 2. (14) 

The state when satisfies equations (9) and (14) exhibits non-classical features.  

3. Squeezing in the Difference of the Fields in Degenerate Four-Wave Interaction 

Process 

The degenerate four-wave energy level model is shown in Fig. 1, in which the process 

involving absorption of two pump photons of frequency 1 each and emission of one 

Stokes photon of frequency 2 and one signal photon at frequency 3  to the initial state.  

 Let us define difference of the fields having frequency 1 and 2 with creation 

(annihilation) operators  ̂   ̂  and  ̂   ̂  respectively, through variables  ̂  and  ̂ as 

 BABAV ˆˆˆˆ
2

1ˆ †2†2

1 







  (15) 

and    BABA
i

V ˆˆˆˆ
2

1ˆ †2†2

2 







 .     (16) 

The operators  ̂  and  ̂  satisfy the commutation relation as 

   2
ˆˆˆˆˆ21
ˆˆˆ2ˆˆ4

2
ˆ,ˆ

AABBA
NNNNN

i
VV   .     (17) 

and the uncertainty relation (ħ = 1) 

2
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4

1ˆˆ
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where  ̂   ̂  ̂ and  ̂   ̂  ̂ are the photon number operator.  

         

 

 

 

 

 

 

 

 

 

 

Fig. 1. Four-wave energy level diagram. 

 

Difference squeezing in  ̂  direction exists if 

  2
ˆˆˆˆˆ

2
ˆˆˆ2ˆˆ4

4

1ˆ
AABBAj NNNNNV  ,  where j = 1 or 2.              (19) 

From Fig. 1, the interaction Hamiltonian can be written as  

)ˆˆˆˆˆˆ(ˆˆˆˆˆˆˆ 2†††2†

3

†

2

†

1 cbacbagccbbaaH   . (20) 

where  ̂   ̂ ,  ̂   ̂  and  ̂   ̂  are the creation (annihilation) operators of the pump field 

( ̂-mode), Stokes field ( ̂-mode) and signal field ( ̂-mode) respectively and g is the 

coupling constant per second. The field operators can be expressed as  ̂   ̂          , 

 ̂   ̂           and  ̂   ̂           with the relation 21 - 2 = 3 under short 

interaction time ‘t’ and gt<<1. 

Using interaction Hamiltonian of equation (20) in coupled Heisenberg equation of motion  

  Â ,Ĥ  i  
t

Â
  

.

Â 



 ,  (ħ = 1).                                                      (21) 

we obtain CBAig ˆˆˆ2 †
.

Â  . (22)                          

Similarly   
†

Ĉ
2

Âig -  
.
B̂ . (23) 

and 
†

B̂
2

Âig -  

.

Ĉ   (24) 

Using equations (22) and (23) in equation (24), we obtain 

 CNNNNNgC
AABBA
ˆˆˆˆ2ˆˆ4ˆ 2

ˆˆˆˆˆ

2


   .                                                        (25) 

In the interaction Hamiltonian the coupling constant is used |g|
2 

in place of g
2
 for real 

value. Using short interaction time and keep terms up to second-order in ‘gt’ in the 

Taylor’s expansion, we get 
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  ..............................)0(ˆ
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)0(ˆ)0(ˆ)(ˆ
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 CtCtCtC
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Use of equations (24) and (25) in equation (26), gives 
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  (28)                  

where the operators at t = 0 represents  ̂     ̂ throughout the paper.  

In order to examine the existence of squeezing in the signal mode, we define  

)]t(Ĉ(t)Ĉ[
2
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Using equations (27) and (28) in equations (29) and (30) we obtain 
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At t = 0 the modes  ̂ and  ̂ are uncorrelated, then equations (31) and (32) may be written 

as,  
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If the  ̂ mode is initially in a coherent state, then  
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Equations (33) and (34) reduce to 

  



















 








 2

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ2

ˆ
ˆ

ˆ
ˆ4

4

12

2
ˆ22

4

12
)(

ˆ1
ˆ

A
N

A
N

B
N

B
N

A
NVtgt

C
X     (36) 



N. Sahu et al., J. Sci. Res. 13 (2), 377-394 (2021) 383 

 

and    



















 








 2

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ2

ˆ
ˆ

ˆ
ˆ4

4

12

1
ˆ22

4

12
)(

ˆ2
ˆ

A
N

A
N

B
N

B
N

A
NVtgt

C
X .   (37)

 

We rewrite equations (36) and (37) as follows 
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These equations (38) and (39) establish the relation between difference squeezing and 

normal squeezing of the signal mode in the degenerate four-wave interaction process. It 

may be inferred that if the input state is difference squeezed in the  ̂  or  ̂  direction, then 

difference-frequency generation will produce an output, and will lead to normal squeezing 

in  ̂   or  ̂   respectively. It is shown that difference squeezing can be turned into normal 

squeezing.  

 Further, to study the squeezing in signal mode, let us assume Stokes mode as a 

constant and represent a constant term m for  ̂ and  ̂  so that the change in the  ̂-mode is 

negligible.  

Hence equation (24) becomes 
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where  ̂  ̂ and  ̂  ̂ define in equations (5) and (6). 

At t = 0, the modes are uncorrelated, then equations (44) and (45) becomes  
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and 
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Using equation (35), then we obtain 
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Equations (48) and (49) establish the relation between amplitude-squared squeezing and 

normal squeezing of the signal mode in degenerate four-wave interaction process when 

the Stokes mode taken as constant term. That means the signal  ̂ mode is squeezed in the 

 ̂   direction if the  ̂ mode is amplitude-squared squeezed in the  ̂  ̂ direction and the 

signal  ̂ mode is squeezed in the  ̂   direction if the  ̂ mode is amplitude-squared 

squeezing in the  ̂  ̂ direction. That is, if a fundamental mode with amplitude-squared 

squeezing propagates through a nonlinear medium then normal squeezing will generate in 

the signal mode. It is shown that amplitude-squared squeezing can be changed into normal 

squeezing. These results suggest a method for the detection of difference squeezing and 

amplitude-squared squeezing by degenerate four-wave interaction process.  

 

4. Squeezing in the Difference of the Fields in Degenerate Five-Wave Interaction 

Process 

In degenerate five-wave energy level model, shown in Fig. 2, the process involving 

absorption of three pump photons of frequency 1 each and emission of one Stokes 

photon of frequency 2 and one signal photon at frequency 3 to the initial state.      

 Let us define difference of the fields having frequency 1 and 2 with creation 

(annihilation) operators  ̂   ̂  and  ̂   ̂  respectively, through variables  ̂  and  ̂  as 

 BABAW ˆˆˆˆ
2

1ˆ †3†3

1 







                  (50) 

and    BABA
i

W ˆˆˆˆ
2

1ˆ †3†3

2 







 .  (51) 

The operators  ̂  and  ̂ follow the commutation relation as 

   3
ˆˆ

2
ˆˆˆˆˆ

2
ˆ21

ˆˆ2ˆ3ˆ6ˆˆ9ˆˆ9
2

ˆ,ˆ
AAABBABA

NNNNNNNN
i

WW  .                  (52) 

and leads to the uncertainty relation (ħ = 1) 

3
ˆˆ

2
ˆˆˆˆˆ

2
ˆ21

ˆˆ2ˆ3ˆ6ˆˆ9ˆˆ9
4

1ˆˆ
AAABBABA

NNNNNNNNWW  .  (53) 
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where  ̂   ̂  ̂ and  ̂   ̂  ̂ are the number operator. 

Difference squeezing in  ̂  direction exists if the condition follows 

  3
ˆˆ

2
ˆˆˆˆˆ

2
ˆ

2 ˆˆ2ˆ3ˆ6ˆˆ9ˆˆ9
4

1ˆ
AAABBABAj NNNNNNNNW  , where j=1or 2.  (54)                       

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 2. Five-wave energy level diagram. 

 

From Fig. 2, the interaction Hamiltonian can be written as  

)ˆˆˆˆˆˆ(ˆˆˆˆˆˆˆ 3†††3†

3

†

2

†

1 cbacbagccbbaaH   . (55) 

Here  ̂,  ̂ and  ̂ are slowly varying operators defined as  ̂   ̂          ,  ̂  

 ̂           and  ̂   ̂           with the relation 31 - 2 = 3.  

Using interaction Hamiltonian of equation (55) in coupled Heisenberg equation of motion 

(21),  

we obtain  

CBAig ˆˆˆ3 †2
.

Â  .               (56)                          

Similarly 
†

Ĉ
3

Âig -  
.
B̂  (57) 

and 
†

Ĉ
3

Âig -  
.
B̂  (58) 

Using equations (56) and (57) in equation (58), we obtain 

 CNNNNNNNNgC
AAABBABA
ˆˆˆ2ˆ3ˆ6ˆˆ9ˆˆ9ˆ 3

ˆˆ
2
ˆˆˆˆˆ

2
ˆ

2



 .     (59) 

Use of equations (58) and (59) in equation (26), gives 
















2

22
†ˆ3ˆˆˆ

tg
BA- igtC(t)C  CNNNNNNNN

AAABBABA
ˆˆˆ2ˆ3ˆ6ˆˆ9ˆˆ9 3

ˆˆ
2
ˆˆˆˆˆ

2
ˆ     (60) 
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and  
















2

22
ˆ3†ˆ†† tg
BAigtC(t)C   †3

ˆˆ
2
ˆˆˆˆˆ

2
ˆ

ˆˆˆ2ˆ3ˆ6ˆˆ9ˆˆ9 CNNNNNNNN
AAABBABA

 .
 
(61) 

Using equations (60) and (61) in equations (29) and (30) we obtain 
















2

22

)
2
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ˆ)(
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Wtg

C
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C
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and 
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


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2

22
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ˆ)(
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3
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2
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2
ˆ

ˆˆˆ2ˆ3ˆ6ˆˆ9ˆˆ9  (63) 

Since at t = 0 the modes  ̂ and  ̂ are uncorrelated, then equations (62) and (63) becomes 

as,  

   2ˆ1

3
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2
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2
ˆ
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2
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(64) 

and  
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     (65) 

Using equation (35) then equations (64) and (65) reduces to 
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and   
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We rewrite equations (32) and (33) as follows 

  
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and   



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These equations (68) and (69) give the relation between difference squeezing and normal 

squeezing of the signal mode in the degenerate five-wave interaction process. In other 

words, it may be stated that if the input state is difference squeezed in the  ̂  or  ̂  

direction, then difference-frequency generation will produce an output, and will lead to 

normal squeezing in  ̂   or  ̂   respectively. It is found that difference squeezing can be 

converted into normal squeezing.  
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 To study the squeezing in signal mode, let us assume Stokes mode as a constant and 

represent a constant term m for  ̂ and  ̂ so that the change in the  ̂ mode is negligible.  

Hence equation (58) becomes 

m
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Âig -  
.
Ĉ  (70) 
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 .                              (71) 

Use of equations (70) and (71) in equation (26), gives 
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Using equations (72) and (73) in equations (29) and (30) we get 

C
Xm

A
N

A
N

tg

A
Zmtg

C
Xt

C
X ˆ1

2 ˆ6
ˆ

ˆ9
2
ˆ

ˆ9
2

22

ˆ2
ˆ

ˆ1
ˆ)(

ˆ1
ˆ 




















  (74) 

and 
C

Xm
A

N
A

N
tg

A
Zmtg

C
Xt

C
X ˆ2

2 ˆ6
ˆ

ˆ9
2
ˆ

ˆ9
2

22

ˆ1
ˆ

ˆ2
ˆ)(

ˆ2
ˆ 




















 .   (75) 

where  ̂  ̂  and  ̂  ̂ define in equations (10) and (11). 

Since the modes are uncorrelated at t = 0, then equations (74) and (75) becomes  
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Using equation (35), then we obtain 
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Equations (78) and (79) establish the relation between amplitude-cubed squeezing and 

normal squeezing of the signal mode in degenerate five-wave interaction process when the 

Stokes mode taken as constant term. That means the signal  ̂ mode is squeezed in the  ̂   

direction if the  ̂ mode is amplitude-cubed squeezed in the  ̂  ̂ direction and the signal  ̂ 

mode is squeezed in the  ̂   direction if the  ̂ mode is amplitude-cubed squeezing in the 

 ̂  ̂ direction. That is, if a fundamental mode with amplitude-cubed squeezing propagates 

through a nonlinear medium then normal squeezing will generate in the signal mode. It is 

shown that amplitude-cubed squeezing can be converted into normal squeezing. These 

findings suggest a method of detection for difference squeezing as well as amplitude- 

cubed squeezing by degenerate five-wave interaction process. 

 

5. Results and Discussion 

 

We plotted a graph (Fig. 3) between left hand side of equation (38) or (39) say DSV and 

| |  having different values of | |  with typical values    ̂  
     ̂  

  (
 

 
) so that it 

could satisfy the equation (19). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Variation of difference squeezing DSV with | | in degenerate four-wave interaction process 

(|gt|2 =10-6 and | | = 0, 5, 10, 15). 

 

The curves infer that the difference squeezing exists and responds nonlinearly to the 

number of pump photons. It shows that when | | is increasing the degree of difference 

squeezing is first increasing i.e. DSV is getting more negative until a critical value of | |  

and then it is decreasing and finally disappears i.e. DSV turns out to be positive. These 

findings agree with the result of Truong et al. [47]. 

 Let us denote left hand side of equation (68) or (69) by DSW and plot a graph (Fig. 4) 

with |α|
2 

having different values of | |  and typical values    ̂  
     ̂  

  (
 

 
) so 

that it could satisfy the equation (54).
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 The plot (Fig. 4) shows that the difference squeezing responds nonlinearly to the 

pump photons. It is seen that when | |  is increasing the degree of difference squeezing 

DSW is getting more negative until a critical value of | | ; but subsequently, it is 

decreasing and finally disappears i.e. DSW turns out to be positive. These results agree with 

the result of Wang et al. [48]. Hence, difference squeezing exists only in certain domain 

value of pump photons. Comparing Figs. 3 and 4, we inferred that the depth of non-

classicality is increasing with an increase of | | . Hence in stimulated interaction 

squeezing is more pronounced than spontaneous one. It is also seen that difference 

squeezing is more in the five-wave interaction process than the corresponding squeezing 

in the four-wave interaction process. Hence it is inferred that higher multi-photon 

absorption process is suitable for the generation of optimum squeezed light. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Variation of difference squeezing DSW with | | in degenerate five-wave interaction process 

(|gt|2 =10-6 and | | = 0, 5, 10, 15). 

 

 To study higher–order squeezing, we denote the right hand side of equations (48) and 

(78) respectively by DSV′ and DSW′ and plots with |  |  as shown in Figs. 5 and 6. 

 

 

 

 

 

 

 

 

 

 

 



390 Squeezing in the Difference  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Variation of the squeezing DSV′ with |gt|2 (when m2 = 4 = Constant) in degenerate four-wave 

interaction process. 

 

 The steady decrease of the curves (Figs. 5 and 6) show that the degree of squeezing 

increases nonlinearly with the increase of the number of photons (||
2
). This confirms that 

the squeezed states are associated with large number of pump photons. It also confirmed 

that the higher order squeezing is directly associated with the coupling of the field and 

interaction time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Variation of the squeezing DSW′ with |gt|2 (when m2 = 4 = Constant) in degenerate five-wave 

interaction process. 
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A comparison between Figs. (5) and (6) shows greater noise reduction in amplitude-

cubed (i.e. in degenerate five-wave interaction process) than in amplitude-squared (i.e. in 

degenerate four-wave interaction process), having same number of photons. Hence the 

third-order will give more squeezed laser light than the second-order.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7. Variation of the squeezing DS in signal mode with |α|2 in degenerate four-wave mixing 

process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Variation of the squeezing DS′ in signal mode with |α|2 in degenerate five-wave mixing 

process. 

 

 Now taking |gt|
2
 =10

-6
 and plot a graph of equations (48) and (78) respectively by DS 

and DS′ with | |  having Stokes mode as constant value m
2
 = 4 and 9 (arbitrary values). 

Figs. 7 and 8 show that the squeezing increases with the increase of number of pump 

photons ||
2
 as well as with increase of value of constant m

2
 in Stokes mode. It is also 
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inferred that squeezing is more in five-wave interaction process than the corresponding 

squeezing in four-wave interaction process. 

 

6. Conclusion  

 

In this paper, we observed that difference squeezing of the optical fields can be converted 

into normal squeezing by degenerate multi-wave (four & five) interaction process.  

 It is shown that the difference squeezing responds nonlinearly to the pump photons 

and is found to be dependent on the coupling of the field amplitude and interaction time. It 

is found that the squeezing increases with the increase of number of pump photons ||
2
 as 

well as with increase of value of constant m
2
 in Stokes mode. It is shown that squeezing is 

more pronounced in stimulated process than the corresponding squeezing in spontaneous 

process having same number of photons. This also confirms that the squeezed states are 

associated with large number of photons. 

 It is found that when number of photons is increasing the degree of difference 

squeezing is getting more negative until a critical value of | | ; but subsequently, it is 

decreasing and finally disappears. Hence, difference squeezing exists only in certain 

domain value of pump photons.  

 When an amplitude-squared squeezing of the fundamental mode propagates through a 

nonlinear medium then normal squeezing will generate in the signal mode of the 

degenerate four-wave interaction process. Similarly, amplitude-cubed squeezing of the 

fundamental mode generates normal squeezing in the signal mode of the degenerate five-

wave interaction process. Thus, the nonlinear interaction (signal mode) converts higher-

order squeezing into normal squeezing. It suggests a method for the detection of higher-

order squeezing in the degenerate multi-wave interaction process. It is shown that greater 

noise reduction in amplitude-cubed (i. e. in degenerate five-wave interaction process) than 

in amplitude-squared (i. e. in degenerate four-wave interaction process), having the same 

number of photons. Hence third-order will give more squeezed laser light than the second-

order. Therefore, the difference squeezing is more in the five-wave interaction process 

than the corresponding difference squeezing in the four-wave interaction process. Hence it 

is inferred that the higher photon absorption process is suitable for the generation of 

optimum squeezed light. 

 The above findings stated that the process with higher-order nonlinearity i. e. multi-

photon absorption in pump mode is more suitable for the generation of optimum squeezed 

light. These results also suggest ways in selecting a suitable process for obtaining greater 

noise reduction in optical systems and can be useful in high-quality optical 

telecommunication [52]. 

 

References 

 
1. D. Stoler, Phys. Rev. D1, 3217 (1970). https://doi.org/10.1103/PhysRevD.1.3217 

2. H. P. Yuen, Phys. Rev. A13, 2226 (1976). https://doi.org/10.1103/PhysRevA.13.2226 

3. D. F. Walls, Nature 306, 141 (1983). https://doi.org/10.1038/306141a0 

https://doi.org/10.1103/PhysRevD.1.3217
https://doi.org/10.1103/PhysRevA.13.2226
https://doi.org/10.1038/306141a0


N. Sahu et al., J. Sci. Res. 13 (2), 377-394 (2021) 393 

 

4. R. Loudon and P.L. Knight, J. Mod. Opt. 34, 709 (1987). 

https://doi.org/10.1080/09500348714550721 

5. V. V. Dodonov, J. Opt. and B: Quant. Semiclass. Opt. 4, R1 (2002). 

https://doi.org/10.1088/1464-4266/4/1/201 

6. J. Perina, Quantum Statistics of Linear and Nonlinear Optical Phenomena (Kluwer, Dordrecht, 

1991) Chapters 9 and 10. https://doi.org/10.1007/978-94-011-2400-3 

7. B. E. A. Saleh and M. C. Teich, Phys. Rev. Lett. 58, 2656 (1987). 

https://doi.org/10.1103/PhysRevLett.58.2656 

8. Special Issue on Squeezed States, J. Mod. Opt. 34 (1987). 

9. H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory 24, 657 (1978). 

https://doi.org/10.1109/TIT.1978.1055958 

10. C. H. Bennett, G. Brassard, and N. D. Mermin, Phys. Rev. Lett. 68, 557 (1992). 

https://doi.org/10.1103/PhysRevLett.68.557 

11. J. Kempe, Phys. Rev. A 60, 910 (1999). https://doi.org/10.1103/PhysRevA.60.910 

12. C. M. Caves, Phys. Rev. D 23, 1693 (1981). https://doi.org/10.1103/PhysRevD.23.1693 

13. H. Yao, M. Jide, T. Laike, H. Yanfang, W. Yun, and Y. Zhiyong, Acta Photonica Sin. 30, 1194 

(2001). 

14. M. Chongshan, X. Dingguo, and A. Yuying, Acta Photonica Sin. 31, 412 (2002). 

15. C. K. Hong and L. Mandel, Phys. Rev. A, 32, 974 (1985). 

https://doi.org/10.1103/PhysRevA.32.974 

16. D. K. Giri and P. S. Gupta, J. Mod. Opt. 52, 1769 (2005). 

https://doi.org/10.1080/09500340500073065 

17. L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, Phys. Rev. Lett. 57, 2520 (1986). 

https://doi.org/10.1103/PhysRevLett.57.2520 

18. M. Fernee, P. Kinsler, and P. D. Drummond, Phys. Rev. A 51, 864 (1995). 

https://doi.org/10.1103/PhysRevA.51.864 

19. L. Mandel, Opt. Commun. 42, 437 (1982). https://doi.org/10.1016/0030-4018(82)90283-8 

20. M. Hillery, Opt. Commun. 62, 135 (1987). https://doi.org/10.1016/0030-4018(87)90097-6 

21. Y. B. Zhan, Phys. Lett. A 160, 498 (1991). https://doi.org/10.1016/0375-9601(91)91055-I 

22. J. Perina, V. Perinova, and J. Kodousek, Opt. Commun. 49, 210 (1984). 

https://doi.org/10.1016/0030-4018(84)90266-9 

23. S. Kielich, R. Tanas, and R. Zawodny, J. Opt. Soc. Am. B 4, 1627 (1987). 

https://doi.org/10.1364/JOSAB.4.001627 

24. M. D. Reid and D. F. Walls, Opt.Commun. 50, 406 (1984).  

 https://doi.org/10.1016/0030-4018(84)90111-1  

25. M. D. Reid and D. F. Walls, Phys. Rev. A, 31, 1622 (1985). 

https://doi.org/10.1103/PhysRevA.31.1622 

26. J. Perina, V. Perinova, C. Sibilia, and M. Bertolotti, Opt. Commun. 49, 285 (1984). 

https://doi.org/10.1016/0030-4018(84)90193-7 

27. M. S. K. Razmi and J. H. Eberly, Opt. Commun. 76, 265 (1990).  

 https://doi.org/10.1016/0030-4018(90)90297-7 

28. D. K. Giri and P. S. Gupta, Opt. Commun. 221, 135 (2003).  

 https://doi.org/10.1016/S0030-4018(03)01464-0 

29. D. K. Giri and P. S. Gupta, Mod. Phys. Lett. B 22, 219 (2008). 

https://doi.org/10.1142/S0217984908014705 

30. C. K. Hong and L. Mandel, Phys. Rev. Lett. 54, 323 (1985). 

https://doi.org/10.1103/PhysRevLett.54.323 

31. J. Perina and J. Krepelka, J. Mod. Opt. 38, 2137 (1991). 

https://doi.org/10.1080/09500349114552231 

32. M. Hillery Phys. Rev. A, 45, 4944 (1992). https://doi.org/10.1103/PhysRevA.45.4944 

33. A. Kumar and P. S. Gupta, Quant. Semiclass. Opt. 7, 835 (1995).  

 https://doi.org/10.1088/1355-5111/7/5/005 

34. A. Kumar and P. S. Gupta, Quant. Semiclass. Opt. 8, 1053 (1996).  

https://doi.org/10.1080/09500348714550721
https://doi.org/10.1088/1464-4266/4/1/201
https://doi.org/10.1007/978-94-011-2400-3
https://doi.org/10.1103/PhysRevLett.58.2656
https://doi.org/10.1109/TIT.1978.1055958
https://doi.org/10.1103/PhysRevLett.68.557
https://doi.org/10.1103/PhysRevA.60.910
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1103/PhysRevA.32.974
https://doi.org/10.1080/09500340500073065
https://doi.org/10.1103/PhysRevLett.57.2520
https://doi.org/10.1103/PhysRevA.51.864
https://doi.org/10.1016/0030-4018(82)90283-8
https://doi.org/10.1016/0030-4018(87)90097-6
https://doi.org/10.1016/0375-9601(91)91055-I
https://doi.org/10.1016/0030-4018(84)90266-9
https://doi.org/10.1364/JOSAB.4.001627
https://doi.org/10.1016/0030-4018(84)90111-1
https://doi.org/10.1103/PhysRevA.31.1622
https://doi.org/10.1016/0030-4018(84)90193-7
https://doi.org/10.1016/0030-4018(90)90297-7
https://doi.org/10.1016/S0030-4018(03)01464-0
https://doi.org/10.1142/S0217984908014705
https://doi.org/10.1103/PhysRevLett.54.323
https://doi.org/10.1080/09500349114552231
https://doi.org/10.1103/PhysRevA.45.4944
https://doi.org/10.1088/1355-5111/7/5/005


394 Squeezing in the Difference  

 

 https://doi.org/10.1088/1355-5111/8/5/010 

35. H. Prakash and D. K. Mishra, J. Phys. B: At. Mol. Opt. Phys. 38, 665 (2005). 

https://doi.org/10.1088/0953-4075/38/6/005 

36. H. Prakash and D. K. Mishra, Opt. lett. 35, 2212 (2010). https://doi.org/10.1364/OL.35.002212 

37. D. K. Mishra, Opt. Commun. 283, 3284 (2010). https://doi.org/10.1016/j.optcom.2010.04.007 

38. P. G. -Fernandez, L. S. D. L. Terreros, F. J. Bermejo, and J. Santoro, Phys. Lett. A 118, 400 

(1986). https://doi.org/10.1016/0375-9601(86)90269-0 

39. H. Prakash and D. K. Mishra, J. Phys. B: At. Mol. Opt. Phys. 39, 2291 (2006). 

https://doi.org/10.1088/0953-4075/39/9/014 

40. K. A. Mishra and V. Kumar, Opt. Quant. Electron. 52:68, 309 (2020). 

https://doi.org/10.1007/s11082-020-02374-w 

41. M. Hillery, Phys. Rev. A 40, 3147 (1989). https://doi.org/10.1103/PhysRevA.40.3147 

42. A. Kumar and P. S. Gupta, Quant. Semiclass. Opt. 10, 485 (1998).  

 https://doi.org/10.1088/1355-5111/10/3/007 

43. D. K. Giri and P. S. Gupta, Mod. Phys. Lett. B 19, 1261 (2005). 

https://doi.org/10.1142/S0217984905009146 

44. M. K. Olsen and R. J. Horowicz, Opt. Commun. 168, 135 (1999).  

 https://doi.org/10.1016/S0030-4018(99)00340-5 

45. N. B. An and V. Tinh, Phys. Lett. A 270, 27 (2000).  

 https://doi.org/10.1016/S0375-9601(00)00292-9 

46. H. Prakash and D. K. Mishra, Eur. Phys. J. D 45, 363 (2007). 

https://doi.org/10.1140/epjd/e2007-00264-8 

47. D. M. Truong, H. T. Xuan, and N. A. Ba, Int. J. Theor. Phys. 53, 899 (2014).  

48. S. Wang, L.-L. Hou, and X.-F. Xu, Opt. Commun. 335, 108 (2015). 

https://doi.org/10.1016/j.optcom.2014.09.018 

49. A. Mukherjee, A. Giri, B. Sarkar, and B. Sen, Int. Res. J. Basic Appl. Sci. 1, 39 (2016).  

50. D. K. Giri and B. K. Choudhary, Int. J. Opt., 2020, 1 (2020). 

https://doi.org/10.1155/2020/2852865 

51. K. K. Mishra, G. Shukla, D. Yadav, and D. K. Mishra Opt. Quant. Electron. 52:186, 1 (2020). 

https://doi.org/10.1007/s11082-020-02303-x 

52. D. K. Giri, R. P. Singh, and A. Bandyopadhyay, Opt. Quant. Electron. 46, 1127 (2014). 

https://doi.org/10.1007/s11082-013-9843-5 

 

 

 

 

 

 

https://doi.org/10.1088/1355-5111/8/5/010
https://doi.org/10.1088/0953-4075/38/6/005
https://doi.org/10.1364/OL.35.002212
https://doi.org/10.1016/j.optcom.2010.04.007
https://doi.org/10.1016/0375-9601(86)90269-0
https://doi.org/10.1088/0953-4075/39/9/014
https://doi.org/10.1007/s11082-020-02374-w
https://doi.org/10.1103/PhysRevA.40.3147
https://doi.org/10.1088/1355-5111/10/3/007
https://doi.org/10.1142/S0217984905009146
https://doi.org/10.1016/S0030-4018(99)00340-5
https://doi.org/10.1016/S0375-9601(00)00292-9
https://doi.org/10.1140/epjd/e2007-00264-8
https://doi.org/10.1016/j.optcom.2014.09.018
https://doi.org/10.1155/2020/2852865
https://doi.org/10.1007/s11082-020-02303-x
https://doi.org/10.1007/s11082-013-9843-5

