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Abstract 

One of the key challenges in the domain of cloud computing is task scheduling and 

estimation of cloud workloads for time critical applications pertaining to constrained cloud 

resources. While effective task scheduling is necessary for balancing the load, workload 

forecasting is necessary to plan in advance the requirements of cloud platforms based on 

previous data so as to effectively utilize cloud resources. Often it is challenging to gather 

sufficient information about the tasks and hence allocating the tasks to virtual machines 

(VMs) in the most optimal way is non-trivial. In this paper, a hybrid task scheduling 

approach is proposed based on evolutionary algorithms. The first approach is the 

amalgamation of bat and particle swarm optimization (PSO) techniques. The scheduling 

approach also combines the processing time preemption (PTP) approach to schedule the 

source intensive tasks which allows to reduce the response time of the proposed system.  

The second approach is a machine learning based approach employing gradient descent 

with momentum (GDM). The evaluation of the proposed system has been done based on the 

response time and mean square error of the system. 

Keywords: Cloud Computing; Task Scheduling; Particle Swarm Optimization; Bat 

Optimization; Gradient descent with momentum (GDM); Processing time preemption (PET).  
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1.   Introduction 

Cloud computing has seen tremendous increase in terms of applications which need 

sophisticated computation or memory applications. Typically, such applications need on-

demand memory and/or computational resources. Virtual machines (VMs) are used to 

emulate a computer and are typically deployed on a host computer which seeks cloud 

based services. It is possible based on virtualization to create multiple VMs on a single 

physical machine with each VM having its own operating system (OS). Typically, a 

software termed as the hypervisor is used as a coordination link between the VM and the 

physical hardware. Cloud resources are constrained and hence it is mandatory to design 

algorithms which can render swift provisioning and release of the shared resources. This 

in turn makes it critical for the system to possess a low response time to avoid latencies. 
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To allocate and balance the requirements of clients, effective task scheduling is needed 

which fulfils the criteria of overall balancing of the system as well as maintaining least 

amounts of latency. Without loss of generality, it can be pointed out that due to the lack of 

substantial information about the tasks and dynamic allocation of resources, task 

scheduling is often a heuristic and multi-variate optimization problem. The planning for 

an upscale or downscale of resources is also required for load balancing which takes us to 

the other aspect of cloud resource management which is cloud workload forecasting. Since 

the data to be analysed is typically large for cloud computing applications, hence 

evolutionary algorithms have been employed off late for task scheduling purposes. In this 

paper, load balancing is executed employing a hybrid bat-particle swarm optimization 

(PSO) based approach. The response time has been computed for different tasks as the 

evaluation parameter for the proposed bat-PSO approach. The scheduling of tasks is done 

for a particular application that is to be scheduled on pre-created VMs.  

 

2. Related Work 

 

An energy-aware task scheduling has been proposed in literature [1]. The approach 

proposed an energy-aware run time scheduler to track and minimize the energy 

consumption of the scheduling process. Adaptive dispatch of tasks for the purpose of load 

balancing was proposed with Quality of Service (QoS) awareness for the cloud 

environment [2]. A forecasting model for host CPU utilization was proposed using neural 

networks by Duggan et al. [3]. The approach showed that the forecasting task can be 

modelled as a time series prediction problem and can be accomplished by using recurrent 

neural networks. The concept of deep learning was used for resource allocation and 

management of power [4]. Zuo proposed multi-queue based scheduling based on task 

classification [5]. The approach showed that classification and clustering of tasks prior to 

scheduling outperforms conventional heuristic approaches for the same purpose. The 

concept of a time series model for cloud data centres and cloud workloads was explored 

[6,7]. The approach showed that it is challenging to find trends in the complex data sets 

pertaining to cloud computing due to the lack of correlation and repetitive patterns in the 

data. This can be done employing machine learning algorithms which can optimize a 

multiobjective function. The most effective techniques can be gradient descent and back 

propagation [10,11]. It has been shown that the gradient descent with momentum 

outperforms the conventional gradient descent in terms of the accuracy and number of 

execution iterations [12]. Thus, the empirical challenges remain to be the effective 

scheduling of tasks in conjugation with models which could forecast future workload with 

high accuracy [13,14]. The proposed work tries to design a scheduling algorithm based on 

the bat-pso algorithms and envisages to attain lesser response time compared to existing 

heuristic techniques [16]. Additionally, the proposed approach also aims at designing a 

workload forecasting model for cloud workloads which would attain higher accuracy of 

workload forecasting in comparison with existing approaches [15,16]. The following 
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section explains the task scheduling model for the proposed system with an objective to 

reduce the response time and hence the latency of the system [17-20].  

 

3. The Task Scheduling Model 

 

The modeling of the proposed system is done based on the allotment of the tasks in a 

workflow to the different resources in a manner so as to minimize the make span and the 

response time. The first approach for task scheduling model is an amalgamation of the bat 

and PSO optimization techniques aiming at improving upon the performance of the pre-

existent PSO or bat optimization used individually. The second approach is the machine 

learning based approach with gradient descent with momentum (GDM). 

 

A. The Bat-PSO Based Approach  

 

The task scheduling is often an optimization problem with multiple solutions but the one 

which would optimize the cost function needs to be selected. The proposed approach 

employs a hybrid bat-PSO approach for optimizing the cost function [8,9]. The particle 

swarm optimization tries to mimic the movement of a flock of birds. The flock of birds 

represents the group of available solutions while individual birds represent a particular 

solution to the optimization problem. In each iteration, each of the solution checks its 

individual best and the group’s best and then decides and updates its best solution. Thus, 

the PSO is an iterative approach, mathematically governed by [8]: 

 

                  [  -       ] +     [  -       ]                                                (1) 

                                                                                                                            (2) 

                                                                          

Here, 

vel is the particle velocity 

k is the iteration  

   and    are learning factor values  

   is the particle position 

   and    are random number values 

w represents the weights  

   represents particle’s individual best position 

   represents group’s best position 

 

The following is the pseudocode for initializing the PSO algorithm for task scheduling: 

 //number of VMs 

 int m; 

 //number of cloudlets 

 int n; 

 int numberOfParticles = 10; 

 int numberOfIterations = 100; 

 Particle[] swarm; 
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 static Random ran = null; 

 public int[] getScheduledCloudLets(List<? extends Cloudlet> cloudletList, 

List<? extends Vm> vmList) { 

 

The Bat algorithm tries to mimic the behavior of bats based on their behavior of 

communicating and hunting [11,12]. Bat optimization suits workflow scheduling for cloud 

applications since such problems are NP hard (non-deterministic polynomial time 

hardness). It is predominantly a meta-heuristic approach for optimization of problems 

which are multi-variate in nature with multiple possible solutions typically resembling a 

task scheduling problem. The choice of the solution is made based on the best fit or 

optimization of parameters to minimize the cost function. The cost function in this case is 

the response time of the system which decides the delay of the system. 

The scheduling algorithm is explained below: 

Step. 1: Define the tasks     belonging to the resource S, mathematically given by: 

                                                                                                                          (3) 

Step 2: Bat population is initialized with n=1 and cost function (CF) is computed based on 

the recursive computation costs of tasks ‘T’ as: 

  [ ]    [       ]                                                                                                         (4) 

Here, k represents the task index. 

Step 3: Compute the Transmission Cost (CT) of tasks            considering all resources 

expended in the Set S. 

Here, the Transmission Cost (CT) is the cost of data transmission between two dependent 

resources and execution cost of tasks on different resources. 

Step 4: The total cost is computed as: 

   ∑        
 
                                                                                                              (5)  

Here, CC is the computational cost and CT is the transmission cost. 

The following is the pseudocode to compute the execution time of the cloudlets: 

   

//will calculate the execution time each cloudlet takes if it runs on one of the VMs 

  for (int i = 0; i < m; i++) { 

   Vm vm = vmlist.get(i); 

   double[] arr = new double[n]; 

   for (int j = 0; j < n; j++) { 

  Cloudlet cloudlet = cloudletList.get(j); 

    arr[j] = (double) cloudlet.getCloudletLength() /  

 

Step 5: The bats are rendered random velocities and corresponding to the different 

possible solutions based on the following relations: 

                                                                                                                  (6) 

and   

  
    

       
                                                                                                         (7) 

Here, k represents the present iteration, k-1 represents the past iteration, g represents the 

global best, f represents the frequency of communication between the bats, v represents the 

velocity of the bats and   represents the random vector  [   ]. 
 

The following is the pseudocode to implement the bat optimization: 
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{ 

        swarm.append(Particle()) 

        return ( "Swarm initialized.") 

    return swarm 

public instantantiate_map(obstacles) 

{ 

    new_map = [] 

    for (i=0;i<=100;i++) 

{ 

If(i==1) 

            new_map.append(1) 

        else 

{ 

            new_map.append(0) 

    return new_map  

} 

}  

} 

} 

Step 6.  Find the best solution X such that: 

         [  ]                                                                                                         (8)  

Here, min represents the minimum function,   represents for all values of    is the particle 

position, X is the set of all possible particles. 

The value of X is optimized using the PSO based on equations (1) and (2) to minimize 

the response time ‘T’ for the system and compute response time ‘T’. While using one 

technique individually such as the bat or the PSO can render its individual best, the 

amalgamation of two such approaches helps in minimizing the cost function further with 

respect to what can be achieved using only one technique. This is validated in the 

comparative results. 

Thus the proposed approach is a two-tier method for minimizing the response time and 

hence the latency. 

 

B. Processing Time Preemption 

 

The processing time pre-emption (PTP) based approach tires to rank the tasks depending 

upon the conditions of existing workload, estimated workload and available bandwidth of 

the VMs [13,14]. This approach finds out the present condition of the VMs pertaining to 

running of resource intensive task on the VMs. Prior to pre-empting a task, the condition 

of the VM is checked to ensure whether its condition is free or occupied. The pre-emptive 

approach is mathematically modeled as: 

Let E(t) denoted the time to finish the queued tasks for a VM in a state space of ‘T’. 

Thus, 

          
 

     
 

  

     ⏟            
       

  

     
                                                     (9) 

Here, t is the state space of time given by: 
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  [      ]                                                                                                                       (10)   

   is the time required to execute the task ‘m’ and     is the time required to execute the 

task ‘n’ 

Let P(n) denote the probability of m being the first task to be completed with a queue 

of ‘n’ tasks, then P(n) can be computed as: 

     
 

     
 

  

     
 K(                                                                                          (11) 

Here, the conditional probability of the event    is to be computed if it is assumed that n 

tasks are in the queue based on Baye’s theorem of conditional probability given by: 

 (
 

 
)  

 (
 

 
)     

    
                                                                                                           (12) 

Here, M and N are two random events, P(M) is the probability of occurrence or completion 

of task M, P(N) is the probability of occurrence or completion of task N,  (
 

 
) is the 

probability of occurrence of event M if event N has already occurred,  (
 

 
) is the 

probability of occurrence of event M if event N has already occurred. 

Let      denote the latency between the initializing of task ‘m’ and the completion of 

task ‘n’, then the latency can be computed in each iteration of the evolutionary algorithm 

as: 

       
    

                                                                                                               (13) 

Here,   
  denotes the starting time of task ‘m’ and   

  denotes the ending time of queued 

tasks ‘n’ 

The aim of the PET approach is to minimize the value of      for the entire span of the 

iterations of the evolutionary algorithm so as to attain least value of response time. The 

approach is explained in Fig. 1. 

 

 
Fig. 1. The Processing Time Preemption (PTP) architecture. 
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C. The PSO-GDM Based Approach 

 

While various machine learning algorithms are popular for optimizing a cost function, one 

of the most effective choices is the back-propagation algorithm. The back propagation 

approach is based on the recursive feedback of errors of each iteration to the machine 

learning model so as to treat is as one of the input vectors thereby enabling the machine 

learning model to learn from iterative errors [10]. This is one of the most effective ways to 

train a machine learning model to minimize the objective function [11].  

The GDM is a modified version of the gradient descent based approach in machine 

learning where the cost function is optimized employing a modified and faster version of 

the gradient descent approach [12]. In the PSO-GDM based approach, the weights of the 

PSO entities are governed by the GDM algorithm. The essence of this approach is the 

updating of the gradient vector g, in such a way that it reduces the errors with respect to 

weights in the fastest manner. The gradient is basically the rate of change of error with 

respect to weights. Typically in every regression learning algorithm, the aim is to reduce 

the errors as quickly as possible. This can be accomplished by increasing the value of the 

gradient ‘g’. 

Mathematically, let the gradient be represented by g and the descent search vector by 

p, then 

                                                                                                                               (14) 

Where,    denotes the gradient given by 
  

  
. The sub-script 0 represents the starting 

iteration and the negative sign indicates a reduction in the errors w.r.t. weights. 

The trade-off between the speed and accuracy is clearly given by the following relations: 

                   
 

 
                                                                                             (15) 

Here,      is the weight of the next iteration,    is the weight of the present iteration,    

is the gradient vector. 

 Since the error or cost function can be both positive as well as negative, hence squared 

error or mean squared errors are considered for minimization. The GD tries to minimize 

the cost function mathematically as [17,18]: 

             
 

 
∑ [     ]

  
                                                                                 (16)  

Here, w represents the weight,   represents the bias, y is the target or actual output, p is 

the predicted output and n is the number of samples over prediction. 

There are some inherent limitations of the gradient descent approach which are: 

1) Oscillations of the gradients  

2) Reduction in rate of convergence 

3) Higher overshoots 

Typically, the response time needs to be minimized by assigning the mean square error of 

the learning algorithm. The mean square error is defined as: 

    
 

 
∑   

  
                                                                                                                  (17) 

Here, mse stands for the mean square error, n is the number of errors in the iterative 

learning process, e is the value of the error. 

 The mean square error is computed as the metric to evaluate the error performance 

since computing the mean of the squared errors rules out the chance of cancellation of 
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negative and positive errors in the sum or simple mean computation. Typically it is 

envisaged to reduce the mse in the least number of iterations.  

The cost function is chosen to be the response time of the system [13]. Considering 

that the error of the system decreases with the number of iterations of training, the 

acceleration of the error gradient can be mathematically defined as: 

 ⃗    ⃗⃗⃗⃗⃗    ⃗⃗⃗⃗ ⃗                                                                                                                     (18) 

Here,  ⃗⃗⃗  is the net acceleration towards the maximum gradient,   ⃗⃗ ⃗⃗⃗ is the acceleration of 

the gradient in the x-direction and    ⃗⃗ ⃗⃗⃗ is the acceleration of the gradient in the y-direction.  

Thus to reach the maximum gradient, the oscillations need to be reduced. This can be 

done by reducing   ⃗⃗ ⃗⃗⃗ and somehow increasing   ⃗⃗ ⃗⃗⃗ 

Thus the decrease in vertical learning would end up as increase the horizontal learning 

which is equivalent to damping the vertical acceleration. The gradient descent with 

momentum tries to essentially accomplish this. Thus for GDM, in each iteration ‘k’, 

          are computed as: 

                                                                                                            (19) 

Similarly,  

                                                                                                               (20) 

And 

                                                                                                               (21) 

 

The weight is updated as: 

                                                                                                                     (22) 

and the bias is updated as:  

                                                                                                                       (23) 

Here, k represents the iteration number, w represents the weight,    represents the weight 

of the present iteration,      represents the weight of the next iteration,   is called the 

learning rate,   is called the friction parameter and       is called the accelerating 

parameter.  

It can be seen that the term       tends to increase the values of     and    . Thus 

it acts as an accelerating agent or accelerating parameter for the velocity terms    and 

  . The same holds true for the bias    too.   is called the friction parameter since the 

value of   is typically less than 1 and hence tends to reduce the velocity. Often   and   

are called the hyper parameters of learning [14]. The equation              

represents the fact that that the gradient descent   is smoothened out. The vertical 

acceleration is minimized with the aim to increase the vertical acceleration and in the 

process, the oscillations in the vertical acceleration or gradient are damped or smoothened 

out [15,16].  

       is the acceleration provided thereby increasing the momentum. Thus, this 

approach is called the gradient descent with momentum. The decrease in the overshoot or 

the vertical acceleration is responsible to impart momentum to the gradient by increasing 

the horizontal acceleration [17,18]. The concept of the acceleration of gradients is 

depicted in Fig. 2. It can be observed that as the vertical oscillations in gradient 

acceleration decrease, the horizontal acceleration increases in the GDM approach [19,20]. 

This suggests that the time of convergence and number of iterations would decrease in 

case of GDM as compared to the conventional GD [21]. 
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Fig. 2. The gradient of acceleration for GDM approach [22]. 

 

The pseudocode for the implementation of the GDM based approach is given below: 

[NNcloudmodel,Tr] = traingdm(NNcloudmodel, trinp', trout'); 

forecast = sim(NNcloudmodel, testinp')'; 

%%   

err=testout-forecast; % calculate error 

mse=(mean(err.^2)); 

errpct = (abs(err)./testout)*100; 

 

The execution time for a particular task is computed as: 

            ∑   
  

   
 

   

 
                                                                                                 (24) 

Here,            denotes the task of execution,   
 = 1 if task ‘i’ is assigned to VM ‘k’. Else 

  
 =0,    

  is the amount of data task ‘i’ assigns to VM ‘k’,     is the memory associated 

with VM ‘k’ 

If            is known, the overall execution time or response time can be computed as: 

          ∑           
 
                                                                                                 (25) 

Here, 

          is the response time, m is the total number of tasks. 

In case, a VM is overloaded with execution of a particular task ‘k’, migration of task to 

another VM is employed based on the following equation [16,17]: 

                                                                                                                   (26) 

Here,     is the workload capacity of a particular VM,     is the current or present 

workload of the VM and     is the workload of the queued tasks for the VM 

Migration of tasks form a particular VM is to be performed if the following relation is 

satisfied: 

                                                                                                                           (27) 

 

 



432 A Task Scheduling Approach for Cloud Environments 

 

4. Results and Discussion 

 

The cloud task scheduling has been implemented on the CloudSim 3.0 package in 

NetBeans. The parameters for the simulation of task scheduling are listed in Tables 1-3. 

The tables contain the data center details, task details and configuration details 

respectively. The evaluation parameters are the response time, the makespan, the number 

of iterations to reach convergence and mean square error. 

 
Table 1. Data Center configuration details. 
 

S. No. Characteristics Value 

1 Allocation Policy BAT+PSO 

2 Architecture X86 

3 OS windows 

4 Hypervisor Xen 

5 VM Migration Enabled 

6 Time Zoned 10.0 

7 Cost per BW 0.41 

8 Number of data center 01 

9 Number of processing unit 04 

10 Storage capacity 1 TB 

11 Total RAM 8GB 

 
Table 2. Task details. 
 

S. No. Characteristics Value 

1 User 1 

2 Task per minute 10 

3 Avg length of the task 50,000 bytes 

4 Avg Task file size 300 bytes 

5 Avg Task file output size 300 bytes 

 
Table 3. Configuration details. 
 

S.No. Characteristics Value 

1 Number of VM 10 

2 Avg Image size 1000 bytes 

3 RAM 512 MB 

4 Bandwidth 1000 mbps 

5 Scheduling Policy Dynamic workload 

 

It can be observed from the task details of tasks in Table 4 that the PSO has the 

maximum response time and the PSO+GDM based approach attains the least response 

time. The PSO+BAT has an intermediate response time. The response time is evaluated 

for three different tasks. 

The task scheduling done is for the same application that has been scheduled on pre-

created Virtual Machine, as is customary with SaaS offerings. These are the basic 

assumptions made for the task scheduling approach.   
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Fig. 3. Variation in the particle velocities in PSO. 

 

Fig. 3 depicts the variation in the particle velocities for the PSO approach. The crests 

and the troughs show the variation prior to settling to the stable velocities.  

 

Fig. 4. Variation in the gradient and validation checks as a function of iterations.  

 
The variation in the training states i.e. the gradient and the validation checks as a 

function of iterations is depicted in Fig. 4. The gradient can be observed to keep 

decreasing as the number of iterations keeps increasing. However, there are fluctuations in 
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the descent of the gradient. 

The termination condition for the gradient descent with momentum algorithm is based 

on the following conditions:  

1) The error becomes stable for the training process for 5-6 iterations, which leads 

the algorithm to decide to stop the training. The “val fail” or the validation fail 

condition stands for the condition that while the training is in progress, how many 

times the training error remains constant i.e. it is the number of iterations for 

which the error remains constant. 

2) If the error doesn’t reach stability, however the maximum number of iterations 

(considered 1000) here are over. 

The fulfilment of either of the two conditions stated above governs the condition for 

termination of training.  

 

 
Fig. 5. Variation in the mse checks as a function of iterations.  

 

Fig. 5 depicts the variation in the mse of the PSO+GDM approach as a function of 

iterations. It can be seen that as the iterations increase, the mse keeps decreasing 

monotonically prior to settling down around 50 iterations. 6 iterations are used as 

validation checks.  

In general, the iterations for optimizing the cost function or objective function is 

terminated based on the following condition: 

{ 

If iterations=Max iterations 

Terminate iterations 

Else if 
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Error stabilizes for validation checks  

Terminate iterations 

Else 

Continue optimization 

} 
Table 4. Response time for different approaches. 
 

Approach VMs RT Task1 RT Task2 RT Task3 

PSO 10 5 5 5 

BAT+PSO 10 2.8 1.9 1.9 

GDM+PSO 10 1.9 1.7 1.8 

Here, RT indicates the response time in ms. 

 

 

Fig. 6. Comparison of Response time for PSO and BAT+PSO approaches.  

 

 

Fig. 7. Comparison of Response time for PSO, BAT+PSO and GDM+PSO approaches.  
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Fig. 6 depicts the response time for task scheduling using the PSO and BAT+PSO 

approaches. Fig. 7 depicts the response time for task scheduling using the PSO, 

BAT+PSO and GDM+PSO approaches. It can be clearly observed that the proposed 

approach comprising of the BAT and PSO algorithms takes lesser response time 

compared to the PSO alone for the tasks thereby indicating faster response, lesser latency 

and improved efficiency. Moreover, the least response time corresponds to the 

GDM+PSO approach. 
 

 
Fig. 8. Comparison Memory Utilization for PSO, BAT+PSO and PSO+GDM approaches. 

 

Another important metric that governs the feasibility of a proposed approach is the 

memory utilization. The comparative memory utilization of the three different approaches 

is depicted in Fig. 8. It can be observed that the GDM+PSO approach has the maximum 

memory utilization which indicates that the GDM+PSO approach utilizes the memory 

resources most effectively. 
  

 

Fig. 9. Comparison CPU Utilization for PSO, BAT+PSO and PSO+GDM approaches.  
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Fig. 9 depicts the CPU utilization of the different approaches. It can be seen that the 

proposed PSO+GDM approach attains the maximum CPU utilization. It can be inferred 

from Figs. 8 and 9 that the CPU and memory utilization for the proposed GDM+PSO 

algorithm is the highest among the three heuristic approaches tested. While this indicates 

more computation capabilities of the machine dedicated to the algorithm, it is a trade-off 

to be considered to achieve higher speed or lesser latency for the system.  
 

6. Conclusion 

 

This paper proposes an evolutionary algorithm based approach for task scheduling in 

cloud computing. The benefit of using evolutionary algorithms is their ability of self-

organization and adaptive nature without the strict necessity to be coded explicitly. The 

approaches explored in this paper are the PSO, the BAT-PSO and the GDM+PSO. The 

evaluation parameters have been chosen as the response time, the memory utilization, the 

CPU utilization and mean square error. It can be observed from the results that both 

BAT+PSO and GDM+PSO outperform the PSO applied individually in terms of the 

performance metrics. Moreover, the GDM+PSO performs better than the BAT+PSO. The 

present work focusses on task scheduling in cloud environments. The future enhancement 

of the proposed approach can be predictive models for cloud workload estimation. This 

would help cloud providers to manage constrained resources more effectively for cloud 

environments. 
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