

A Task Scheduling Approach for Cloud Environments Employing

Evolutionary Algorithms

B. Lakhani*, A. Agrawal

Department of CSE, Medicaps University, Indore, (M.P.), India

Received 25 October 2020, accepted in final revised form 12 February 2021

Abstract

One of the key challenges in the domain of cloud computing is task scheduling and

estimation of cloud workloads for time critical applications pertaining to constrained cloud

resources. While effective task scheduling is necessary for balancing the load, workload

forecasting is necessary to plan in advance the requirements of cloud platforms based on

previous data so as to effectively utilize cloud resources. Often it is challenging to gather

sufficient information about the tasks and hence allocating the tasks to virtual machines

(VMs) in the most optimal way is non-trivial. In this paper, a hybrid task scheduling

approach is proposed based on evolutionary algorithms. The first approach is the

amalgamation of bat and particle swarm optimization (PSO) techniques. The scheduling

approach also combines the processing time preemption (PTP) approach to schedule the

source intensive tasks which allows to reduce the response time of the proposed system.

The second approach is a machine learning based approach employing gradient descent

with momentum (GDM). The evaluation of the proposed system has been done based on the

response time and mean square error of the system.

Keywords: Cloud Computing; Task Scheduling; Particle Swarm Optimization; Bat

Optimization; Gradient descent with momentum (GDM); Processing time preemption (PET).

© 2021 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.

doi: http://dx.doi.org/10.3329/jsr.v13i2.49944 J. Sci. Res. 13 (2), 423-438 (2021)

1. Introduction

Cloud computing has seen tremendous increase in terms of applications which need

sophisticated computation or memory applications. Typically, such applications need on-

demand memory and/or computational resources. Virtual machines (VMs) are used to

emulate a computer and are typically deployed on a host computer which seeks cloud

based services. It is possible based on virtualization to create multiple VMs on a single

physical machine with each VM having its own operating system (OS). Typically, a

software termed as the hypervisor is used as a coordination link between the VM and the

physical hardware. Cloud resources are constrained and hence it is mandatory to design

algorithms which can render swift provisioning and release of the shared resources. This

in turn makes it critical for the system to possess a low response time to avoid latencies.

*
 Corresponding author: bhawanalakhani27@gmail.com

Available Online

J. Sci. Res. 13 (2), 423-438 (2021)

JOURNAL OF

SCIENTIFIC RESEARCH

www.banglajol.info/index.php/JSR

Publications

http://dx.doi.org/10.3329/jsr.v13i2.49944
mailto:bhawanalakhani27@gmail.com

424 A Task Scheduling Approach for Cloud Environments

To allocate and balance the requirements of clients, effective task scheduling is needed

which fulfils the criteria of overall balancing of the system as well as maintaining least

amounts of latency. Without loss of generality, it can be pointed out that due to the lack of

substantial information about the tasks and dynamic allocation of resources, task

scheduling is often a heuristic and multi-variate optimization problem. The planning for

an upscale or downscale of resources is also required for load balancing which takes us to

the other aspect of cloud resource management which is cloud workload forecasting. Since

the data to be analysed is typically large for cloud computing applications, hence

evolutionary algorithms have been employed off late for task scheduling purposes. In this

paper, load balancing is executed employing a hybrid bat-particle swarm optimization

(PSO) based approach. The response time has been computed for different tasks as the

evaluation parameter for the proposed bat-PSO approach. The scheduling of tasks is done

for a particular application that is to be scheduled on pre-created VMs.

2. Related Work

An energy-aware task scheduling has been proposed in literature [1]. The approach

proposed an energy-aware run time scheduler to track and minimize the energy

consumption of the scheduling process. Adaptive dispatch of tasks for the purpose of load

balancing was proposed with Quality of Service (QoS) awareness for the cloud

environment [2]. A forecasting model for host CPU utilization was proposed using neural

networks by Duggan et al. [3]. The approach showed that the forecasting task can be

modelled as a time series prediction problem and can be accomplished by using recurrent

neural networks. The concept of deep learning was used for resource allocation and

management of power [4]. Zuo proposed multi-queue based scheduling based on task

classification [5]. The approach showed that classification and clustering of tasks prior to

scheduling outperforms conventional heuristic approaches for the same purpose. The

concept of a time series model for cloud data centres and cloud workloads was explored

[6,7]. The approach showed that it is challenging to find trends in the complex data sets

pertaining to cloud computing due to the lack of correlation and repetitive patterns in the

data. This can be done employing machine learning algorithms which can optimize a

multiobjective function. The most effective techniques can be gradient descent and back

propagation [10,11]. It has been shown that the gradient descent with momentum

outperforms the conventional gradient descent in terms of the accuracy and number of

execution iterations [12]. Thus, the empirical challenges remain to be the effective

scheduling of tasks in conjugation with models which could forecast future workload with

high accuracy [13,14]. The proposed work tries to design a scheduling algorithm based on

the bat-pso algorithms and envisages to attain lesser response time compared to existing

heuristic techniques [16]. Additionally, the proposed approach also aims at designing a

workload forecasting model for cloud workloads which would attain higher accuracy of

workload forecasting in comparison with existing approaches [15,16]. The following

B. Lakhani et al., J. Sci. Res. 13 (2), 423-438 (2021) 425

section explains the task scheduling model for the proposed system with an objective to

reduce the response time and hence the latency of the system [17-20].

3. The Task Scheduling Model

The modeling of the proposed system is done based on the allotment of the tasks in a

workflow to the different resources in a manner so as to minimize the make span and the

response time. The first approach for task scheduling model is an amalgamation of the bat

and PSO optimization techniques aiming at improving upon the performance of the pre-

existent PSO or bat optimization used individually. The second approach is the machine

learning based approach with gradient descent with momentum (GDM).

A. The Bat-PSO Based Approach

The task scheduling is often an optimization problem with multiple solutions but the one

which would optimize the cost function needs to be selected. The proposed approach

employs a hybrid bat-PSO approach for optimizing the cost function [8,9]. The particle

swarm optimization tries to mimic the movement of a flock of birds. The flock of birds

represents the group of available solutions while individual birds represent a particular

solution to the optimization problem. In each iteration, each of the solution checks its

individual best and the group’s best and then decides and updates its best solution. Thus,

the PSO is an iterative approach, mathematically governed by [8]:

 [-] + [-] (1)

 (2)

Here,

vel is the particle velocity

k is the iteration

 and are learning factor values

 is the particle position

 and are random number values

w represents the weights

 represents particle’s individual best position

 represents group’s best position

The following is the pseudocode for initializing the PSO algorithm for task scheduling:

 //number of VMs

 int m;

 //number of cloudlets

 int n;

 int numberOfParticles = 10;

 int numberOfIterations = 100;

 Particle[] swarm;

426 A Task Scheduling Approach for Cloud Environments

 static Random ran = null;

 public int[] getScheduledCloudLets(List<? extends Cloudlet> cloudletList,

List<? extends Vm> vmList) {

The Bat algorithm tries to mimic the behavior of bats based on their behavior of

communicating and hunting [11,12]. Bat optimization suits workflow scheduling for cloud

applications since such problems are NP hard (non-deterministic polynomial time

hardness). It is predominantly a meta-heuristic approach for optimization of problems

which are multi-variate in nature with multiple possible solutions typically resembling a

task scheduling problem. The choice of the solution is made based on the best fit or

optimization of parameters to minimize the cost function. The cost function in this case is

the response time of the system which decides the delay of the system.

The scheduling algorithm is explained below:

Step. 1: Define the tasks belonging to the resource S, mathematically given by:

 (3)

Step 2: Bat population is initialized with n=1 and cost function (CF) is computed based on

the recursive computation costs of tasks ‘T’ as:

 [] [] (4)

Here, k represents the task index.

Step 3: Compute the Transmission Cost (CT) of tasks considering all resources

expended in the Set S.

Here, the Transmission Cost (CT) is the cost of data transmission between two dependent

resources and execution cost of tasks on different resources.

Step 4: The total cost is computed as:

 ∑

 (5)

Here, CC is the computational cost and CT is the transmission cost.

The following is the pseudocode to compute the execution time of the cloudlets:

//will calculate the execution time each cloudlet takes if it runs on one of the VMs

 for (int i = 0; i < m; i++) {

 Vm vm = vmlist.get(i);

 double[] arr = new double[n];

 for (int j = 0; j < n; j++) {

 Cloudlet cloudlet = cloudletList.get(j);

 arr[j] = (double) cloudlet.getCloudletLength() /

Step 5: The bats are rendered random velocities and corresponding to the different

possible solutions based on the following relations:

 (6)

and

 (7)

Here, k represents the present iteration, k-1 represents the past iteration, g represents the

global best, f represents the frequency of communication between the bats, v represents the

velocity of the bats and represents the random vector [].

The following is the pseudocode to implement the bat optimization:

B. Lakhani et al., J. Sci. Res. 13 (2), 423-438 (2021) 427

{

 swarm.append(Particle())

 return ("Swarm initialized.")

 return swarm

public instantantiate_map(obstacles)

{

 new_map = []

 for (i=0;i<=100;i++)

{

If(i==1)

 new_map.append(1)

 else

{

 new_map.append(0)

 return new_map

}

}

}

}

Step 6. Find the best solution X such that:

 [] (8)

Here, min represents the minimum function, represents for all values of is the particle

position, X is the set of all possible particles.

The value of X is optimized using the PSO based on equations (1) and (2) to minimize

the response time ‘T’ for the system and compute response time ‘T’. While using one

technique individually such as the bat or the PSO can render its individual best, the

amalgamation of two such approaches helps in minimizing the cost function further with

respect to what can be achieved using only one technique. This is validated in the

comparative results.

Thus the proposed approach is a two-tier method for minimizing the response time and

hence the latency.

B. Processing Time Preemption

The processing time pre-emption (PTP) based approach tires to rank the tasks depending

upon the conditions of existing workload, estimated workload and available bandwidth of

the VMs [13,14]. This approach finds out the present condition of the VMs pertaining to

running of resource intensive task on the VMs. Prior to pre-empting a task, the condition

of the VM is checked to ensure whether its condition is free or occupied. The pre-emptive

approach is mathematically modeled as:

Let E(t) denoted the time to finish the queued tasks for a VM in a state space of ‘T’.

Thus,

 ⏟

 (9)

Here, t is the state space of time given by:

428 A Task Scheduling Approach for Cloud Environments

 [] (10)

 is the time required to execute the task ‘m’ and is the time required to execute the

task ‘n’

Let P(n) denote the probability of m being the first task to be completed with a queue

of ‘n’ tasks, then P(n) can be computed as:

 K((11)

Here, the conditional probability of the event is to be computed if it is assumed that n

tasks are in the queue based on Baye’s theorem of conditional probability given by:

 (

)

 (

)

 (12)

Here, M and N are two random events, P(M) is the probability of occurrence or completion

of task M, P(N) is the probability of occurrence or completion of task N, (

) is the

probability of occurrence of event M if event N has already occurred, (

) is the

probability of occurrence of event M if event N has already occurred.

Let denote the latency between the initializing of task ‘m’ and the completion of

task ‘n’, then the latency can be computed in each iteration of the evolutionary algorithm

as:

 (13)

Here,
 denotes the starting time of task ‘m’ and

 denotes the ending time of queued

tasks ‘n’

The aim of the PET approach is to minimize the value of for the entire span of the

iterations of the evolutionary algorithm so as to attain least value of response time. The

approach is explained in Fig. 1.

Fig. 1. The Processing Time Preemption (PTP) architecture.

B. Lakhani et al., J. Sci. Res. 13 (2), 423-438 (2021) 429

C. The PSO-GDM Based Approach

While various machine learning algorithms are popular for optimizing a cost function, one

of the most effective choices is the back-propagation algorithm. The back propagation

approach is based on the recursive feedback of errors of each iteration to the machine

learning model so as to treat is as one of the input vectors thereby enabling the machine

learning model to learn from iterative errors [10]. This is one of the most effective ways to

train a machine learning model to minimize the objective function [11].

The GDM is a modified version of the gradient descent based approach in machine

learning where the cost function is optimized employing a modified and faster version of

the gradient descent approach [12]. In the PSO-GDM based approach, the weights of the

PSO entities are governed by the GDM algorithm. The essence of this approach is the

updating of the gradient vector g, in such a way that it reduces the errors with respect to

weights in the fastest manner. The gradient is basically the rate of change of error with

respect to weights. Typically in every regression learning algorithm, the aim is to reduce

the errors as quickly as possible. This can be accomplished by increasing the value of the

gradient ‘g’.

Mathematically, let the gradient be represented by g and the descent search vector by

p, then

 (14)

Where, denotes the gradient given by

. The sub-script 0 represents the starting

iteration and the negative sign indicates a reduction in the errors w.r.t. weights.

The trade-off between the speed and accuracy is clearly given by the following relations:

 (15)

Here, is the weight of the next iteration, is the weight of the present iteration,

is the gradient vector.

 Since the error or cost function can be both positive as well as negative, hence squared

error or mean squared errors are considered for minimization. The GD tries to minimize

the cost function mathematically as [17,18]:

∑ []

 (16)

Here, w represents the weight, represents the bias, y is the target or actual output, p is

the predicted output and n is the number of samples over prediction.

There are some inherent limitations of the gradient descent approach which are:

1) Oscillations of the gradients

2) Reduction in rate of convergence

3) Higher overshoots

Typically, the response time needs to be minimized by assigning the mean square error of

the learning algorithm. The mean square error is defined as:

∑

 (17)

Here, mse stands for the mean square error, n is the number of errors in the iterative

learning process, e is the value of the error.

 The mean square error is computed as the metric to evaluate the error performance

since computing the mean of the squared errors rules out the chance of cancellation of

430 A Task Scheduling Approach for Cloud Environments

negative and positive errors in the sum or simple mean computation. Typically it is

envisaged to reduce the mse in the least number of iterations.

The cost function is chosen to be the response time of the system [13]. Considering

that the error of the system decreases with the number of iterations of training, the

acceleration of the error gradient can be mathematically defined as:

 ⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗ (18)

Here, ⃗⃗⃗ is the net acceleration towards the maximum gradient, ⃗⃗ ⃗⃗⃗ is the acceleration of

the gradient in the x-direction and ⃗⃗ ⃗⃗⃗ is the acceleration of the gradient in the y-direction.

Thus to reach the maximum gradient, the oscillations need to be reduced. This can be

done by reducing ⃗⃗ ⃗⃗⃗ and somehow increasing ⃗⃗ ⃗⃗⃗

Thus the decrease in vertical learning would end up as increase the horizontal learning

which is equivalent to damping the vertical acceleration. The gradient descent with

momentum tries to essentially accomplish this. Thus for GDM, in each iteration ‘k’,

 are computed as:

 (19)

Similarly,

 (20)

And

 (21)

The weight is updated as:

 (22)

and the bias is updated as:

 (23)

Here, k represents the iteration number, w represents the weight, represents the weight

of the present iteration, represents the weight of the next iteration, is called the

learning rate, is called the friction parameter and is called the accelerating

parameter.

It can be seen that the term tends to increase the values of and . Thus

it acts as an accelerating agent or accelerating parameter for the velocity terms and

 . The same holds true for the bias too. is called the friction parameter since the

value of is typically less than 1 and hence tends to reduce the velocity. Often and

are called the hyper parameters of learning [14]. The equation

represents the fact that that the gradient descent is smoothened out. The vertical

acceleration is minimized with the aim to increase the vertical acceleration and in the

process, the oscillations in the vertical acceleration or gradient are damped or smoothened

out [15,16].

 is the acceleration provided thereby increasing the momentum. Thus, this

approach is called the gradient descent with momentum. The decrease in the overshoot or

the vertical acceleration is responsible to impart momentum to the gradient by increasing

the horizontal acceleration [17,18]. The concept of the acceleration of gradients is

depicted in Fig. 2. It can be observed that as the vertical oscillations in gradient

acceleration decrease, the horizontal acceleration increases in the GDM approach [19,20].

This suggests that the time of convergence and number of iterations would decrease in

case of GDM as compared to the conventional GD [21].

B. Lakhani et al., J. Sci. Res. 13 (2), 423-438 (2021) 431

Fig. 2. The gradient of acceleration for GDM approach [22].

The pseudocode for the implementation of the GDM based approach is given below:

[NNcloudmodel,Tr] = traingdm(NNcloudmodel, trinp', trout');

forecast = sim(NNcloudmodel, testinp')';

%%

err=testout-forecast; % calculate error

mse=(mean(err.^2));

errpct = (abs(err)./testout)*100;

The execution time for a particular task is computed as:

 ∑

 (24)

Here, denotes the task of execution,
 = 1 if task ‘i’ is assigned to VM ‘k’. Else

 =0,

 is the amount of data task ‘i’ assigns to VM ‘k’, is the memory associated

with VM ‘k’

If is known, the overall execution time or response time can be computed as:

 ∑

 (25)

Here,

 is the response time, m is the total number of tasks.

In case, a VM is overloaded with execution of a particular task ‘k’, migration of task to

another VM is employed based on the following equation [16,17]:

 (26)

Here, is the workload capacity of a particular VM, is the current or present

workload of the VM and is the workload of the queued tasks for the VM

Migration of tasks form a particular VM is to be performed if the following relation is

satisfied:

 (27)

432 A Task Scheduling Approach for Cloud Environments

4. Results and Discussion

The cloud task scheduling has been implemented on the CloudSim 3.0 package in

NetBeans. The parameters for the simulation of task scheduling are listed in Tables 1-3.

The tables contain the data center details, task details and configuration details

respectively. The evaluation parameters are the response time, the makespan, the number

of iterations to reach convergence and mean square error.

Table 1. Data Center configuration details.

S. No. Characteristics Value

1 Allocation Policy BAT+PSO

2 Architecture X86

3 OS windows

4 Hypervisor Xen

5 VM Migration Enabled

6 Time Zoned 10.0

7 Cost per BW 0.41

8 Number of data center 01

9 Number of processing unit 04

10 Storage capacity 1 TB

11 Total RAM 8GB

Table 2. Task details.

S. No. Characteristics Value

1 User 1

2 Task per minute 10

3 Avg length of the task 50,000 bytes

4 Avg Task file size 300 bytes

5 Avg Task file output size 300 bytes

Table 3. Configuration details.

S.No. Characteristics Value

1 Number of VM 10

2 Avg Image size 1000 bytes

3 RAM 512 MB

4 Bandwidth 1000 mbps

5 Scheduling Policy Dynamic workload

It can be observed from the task details of tasks in Table 4 that the PSO has the

maximum response time and the PSO+GDM based approach attains the least response

time. The PSO+BAT has an intermediate response time. The response time is evaluated

for three different tasks.

The task scheduling done is for the same application that has been scheduled on pre-

created Virtual Machine, as is customary with SaaS offerings. These are the basic

assumptions made for the task scheduling approach.

B. Lakhani et al., J. Sci. Res. 13 (2), 423-438 (2021) 433

Fig. 3. Variation in the particle velocities in PSO.

Fig. 3 depicts the variation in the particle velocities for the PSO approach. The crests

and the troughs show the variation prior to settling to the stable velocities.

Fig. 4. Variation in the gradient and validation checks as a function of iterations.

The variation in the training states i.e. the gradient and the validation checks as a

function of iterations is depicted in Fig. 4. The gradient can be observed to keep

decreasing as the number of iterations keeps increasing. However, there are fluctuations in

434 A Task Scheduling Approach for Cloud Environments

the descent of the gradient.

The termination condition for the gradient descent with momentum algorithm is based

on the following conditions:

1) The error becomes stable for the training process for 5-6 iterations, which leads

the algorithm to decide to stop the training. The “val fail” or the validation fail

condition stands for the condition that while the training is in progress, how many

times the training error remains constant i.e. it is the number of iterations for

which the error remains constant.

2) If the error doesn’t reach stability, however the maximum number of iterations

(considered 1000) here are over.

The fulfilment of either of the two conditions stated above governs the condition for

termination of training.

Fig. 5. Variation in the mse checks as a function of iterations.

Fig. 5 depicts the variation in the mse of the PSO+GDM approach as a function of

iterations. It can be seen that as the iterations increase, the mse keeps decreasing

monotonically prior to settling down around 50 iterations. 6 iterations are used as

validation checks.

In general, the iterations for optimizing the cost function or objective function is

terminated based on the following condition:

{

If iterations=Max iterations

Terminate iterations

Else if

B. Lakhani et al., J. Sci. Res. 13 (2), 423-438 (2021) 435

Error stabilizes for validation checks

Terminate iterations

Else

Continue optimization

}
Table 4. Response time for different approaches.

Approach VMs RT Task1 RT Task2 RT Task3

PSO 10 5 5 5

BAT+PSO 10 2.8 1.9 1.9

GDM+PSO 10 1.9 1.7 1.8

Here, RT indicates the response time in ms.

Fig. 6. Comparison of Response time for PSO and BAT+PSO approaches.

Fig. 7. Comparison of Response time for PSO, BAT+PSO and GDM+PSO approaches.

436 A Task Scheduling Approach for Cloud Environments

Fig. 6 depicts the response time for task scheduling using the PSO and BAT+PSO

approaches. Fig. 7 depicts the response time for task scheduling using the PSO,

BAT+PSO and GDM+PSO approaches. It can be clearly observed that the proposed

approach comprising of the BAT and PSO algorithms takes lesser response time

compared to the PSO alone for the tasks thereby indicating faster response, lesser latency

and improved efficiency. Moreover, the least response time corresponds to the

GDM+PSO approach.

Fig. 8. Comparison Memory Utilization for PSO, BAT+PSO and PSO+GDM approaches.

Another important metric that governs the feasibility of a proposed approach is the

memory utilization. The comparative memory utilization of the three different approaches

is depicted in Fig. 8. It can be observed that the GDM+PSO approach has the maximum

memory utilization which indicates that the GDM+PSO approach utilizes the memory

resources most effectively.

Fig. 9. Comparison CPU Utilization for PSO, BAT+PSO and PSO+GDM approaches.

B. Lakhani et al., J. Sci. Res. 13 (2), 423-438 (2021) 437

Fig. 9 depicts the CPU utilization of the different approaches. It can be seen that the

proposed PSO+GDM approach attains the maximum CPU utilization. It can be inferred

from Figs. 8 and 9 that the CPU and memory utilization for the proposed GDM+PSO

algorithm is the highest among the three heuristic approaches tested. While this indicates

more computation capabilities of the machine dedicated to the algorithm, it is a trade-off

to be considered to achieve higher speed or lesser latency for the system.

6. Conclusion

This paper proposes an evolutionary algorithm based approach for task scheduling in

cloud computing. The benefit of using evolutionary algorithms is their ability of self-

organization and adaptive nature without the strict necessity to be coded explicitly. The

approaches explored in this paper are the PSO, the BAT-PSO and the GDM+PSO. The

evaluation parameters have been chosen as the response time, the memory utilization, the

CPU utilization and mean square error. It can be observed from the results that both

BAT+PSO and GDM+PSO outperform the PSO applied individually in terms of the

performance metrics. Moreover, the GDM+PSO performs better than the BAT+PSO. The

present work focusses on task scheduling in cloud environments. The future enhancement

of the proposed approach can be predictive models for cloud workload estimation. This

would help cloud providers to manage constrained resources more effectively for cloud

environments.

Acknowledgments

The authors acknowledge the creative suggestions of the faculty members of the

department of Computer Science and Engineering, Medicaps University, Indore. The

authors are also thankful to the management of Medicaps University for the conducive

environment provided for research in the institute premises.

References

1. F. Juarez, J. Ejarque, and R. M. Badia, Future Generat. Computer Syst. 78, 257 (2018).

https://doi.org/10.1016/j.future.2016.06.029

2. L. Wang and E. Gelenbe, IEEE Transact. Cloud Computing 6, 33 (2018).

https://doi.org/10.1109/TCC.2015.2474406

3. M. Duggan, K. Mason, J. Duggan, A. Howley, and E. Barrett, Predicting Host CPU Utilization

in Cloud Computing using Recurrent Neural Networks – Proc. of 12th Int. Conf. for Internet

Technology and Secured Transactions (ICITST), IEEE (2018).

https://doi.org/10.23919/ICITST.2017.8356348

4. N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang, A Hierarchical Framework

of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning,

Proc. of 37th Int. Conf. on Distributed Computing Systems (ICDCS) (2017).

https://doi.org/10.1109/ICDCS.2017.123

5. L. Zuo, S. Dong, L. Shu, C. Zhu, and G. Han, IEEE Syst. J. 12 , 1518 (2016).

https://doi.org/10.1109/JSYST.2016.2542251

https://doi.org/10.1016/j.future.2016.06.029
https://doi.org/10.1109/TCC.2015.2474406
https://doi.org/10.23919/ICITST.2017.8356348
https://doi.org/10.1109/ICDCS.2017.123
https://doi.org/10.1109/JSYST.2016.2542251

438 A Task Scheduling Approach for Cloud Environments

6. Y. Hu, B. Deng, F. Peng, and D. Wang, Workload Prediction for Cloud Computing Elasticity

Mechanism – Proc. of Int. Conf. on Cloud Computing and Big Data Analysis (ICCCBDA)

(2016).

7. J. Xue, F. Yan, R. Birke, L. Chen, T. Scherer, and E. Smirni, PRACTISE: Robust Prediction of

Data Center Time Series - Proc. of 2015 11th Int. Conf. on Network and Service Management

(CNSM) (2015). https://doi.org/10.1109/CNSM.2015.7367348

8. F. Ramezani, J. Lu, and F. Hussain, Int. J. Parallel Programm. 42, 739 (2014).

https://doi.org/10.1007/s10766-013-0275-4

9. S. Sagnika, S. Bilgaiyan, and B. Mishra, Workflow Scheduling in Cloud Computing

Environment using Bat Algorithm – Proc. of 1st Int. Conf. on Smart System, Innovations and

Computing (2018) pp. 149-163. https://doi.org/10.1007/978-981-10-5828-8_15

10. L. Bottou, Stochastic Gradient Descent Tricks, Neural Networks: Tricks of the Trade - Lecture

Notes in Computer Science (2012) 7700, pp. 421-436. https://doi.org/10.1007/978-3-642-

35289-8_25

11. J. Fliege, A. Vaz, and L. N. Vicente, J. Optimization Methods Software 34, 949 (2019).

https://doi.org/10.1080/10556788.2018.1510928

12. W. Liu, L. Chen, Y. Chen, and W. Zhang, IEEE Transact. Parallel Distributed Syst. 31, 1754

(2020). https://doi.org/10.1109/TPDS.2020.2975189

13. J. Kumar and A. Singh, Future Generation Comput. Syst. 81, 41 (2018).

https://doi.org/10.4324/9780203732380

14. M. B. Gawali and S. K. Shinde, J. Cloud Computing 7, ID 4 (2018).

https://doi.org/10.1186/s13677-018-0105-8

15. S. Raghavan, P. Sarwesh, C. Marimuthu, and K. Chandrasekaran, Bat Algorithm for

Scheduling Workflow Applications in Cloud – Proc. on Int. Conf. on Electronic Design,

Computer Networks & Automated Verification (EDCAV) (2015).

https://doi.org/10.1109/EDCAV.2015.7060555

16. M. Demirci, A Survey of Machine Learning Applications for Energy-Efficient Resource

Management in Cloud Computing Environments – Proc. of 14th Int. Conf. on Machine

Learning and Applications (ICMLA) (2015). https://doi.org/10.1109/ICMLA.2015.205

17. S. Abdelwahab, B. Hamdaoui, M. Guizani, and A. Rayes, IEEE Internet Things J. 1, 276

(2014). https://doi.org/10.1109/JIOT.2014.2325071

18. S. Islam, J. Keunga, K. Lee, and A. Liu, Autonomic Scaling of Cloud Computing Resources

using BN-based Prediction Models – Proc. of 2nd Int. Conf. on Cloud Networking (CloudNet)

(2012).

19. E. Gelenbe, R. Lent, and M. Douratsos, Choosing a Local or Remote Cloud – Proc. of 2nd

Sympos. on Network Cloud Computing and Applications (2012).

https://doi.org/10.1109/NCCA.2012.16

20. M. Taheri, Z. Kamran, 2-Phase Optimization Method for Energy Aware Scheduling of Virtual

Machines in Cloud Data Centers – Proc. of Int. Conf. for Internet Technology and Secured

Transactions (2011).

21. S. Garg, K. Srinivasa, and R. Buyya, SLA-Based Resource Provisioning for Heterogeneous

Workloads in a Virtualized Cloud Datacenter – Proc. of Int. Conf. on Algorithms and

Architectures for Parallel Processing (2011) pp. 371-384. https://doi.org/10.1007/978-3-642-

24650-0_32

22. https://www.coursera.org/lecture/deep-neural-network/gradient-descent-with-momentum-

y0m1f (September 9, 2020)

https://doi.org/10.1109/CNSM.2015.7367348
https://doi.org/10.1007/s10766-013-0275-4
https://doi.org/10.1007/978-981-10-5828-8_15
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1080/10556788.2018.1510928
https://doi.org/10.1109/TPDS.2020.2975189
https://doi.org/10.4324/9780203732380
https://doi.org/10.1186/s13677-018-0105-8
https://doi.org/10.1109/EDCAV.2015.7060555
https://doi.org/10.1109/ICMLA.2015.205
https://doi.org/10.1109/JIOT.2014.2325071
https://doi.org/10.1109/NCCA.2012.16
https://doi.org/10.1007/978-3-642-24650-0_32
https://doi.org/10.1007/978-3-642-24650-0_32
https://www.coursera.org/lecture/deep-neural-network/gradient-descent-with-momentum-y0m1f
https://www.coursera.org/lecture/deep-neural-network/gradient-descent-with-momentum-y0m1f

