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Abstract 

 

Graph labeling problem has been broadly studied in recent past for its wide applications, in 

mobile communication system for frequency assignment, radar, circuit design, X-ray 

crystallography, coding theory, etc. An L211-labeling  (L211L) of a graph G = (V, E) is a 

function γ : V → Z∗ such that |γ(u) − γ(v)| ≥ 2, if d(u, v) = 1 and |γ(u) − γ(v)| ≥ 1, if  d(u, v) = 1 

or 2, where  Z∗  be the set of non-negative integers and d(u, v) represents the distance between 

the nodes u and v. The L211L numbers of a graph G, are denoted by λ2,1,1(G) which is the 

difference between largest and smallest labels used in L211L. In this article, for circular-arc 

graph (CAG) G we have proved that λ2,1,1(G) ≤ 6∆ − 4, where ∆ represents the degree of the 

graph. Beside this we have designed a polynomial time algorithm to label a CAG satisfying 

the conditions of L211L. The time complexity of the algorithm is O(n∆2), where n is the 

number of nodes of the graph G. 
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1. Introduction 

 

Graph labeling problems is one of the most important problems in discrete mathematics to 

solve real life problems. Different types of graph labeling problems such as node labeling, 

edge labeling, LrstL, graceful labeling, harmonic labeling, anti-magic labeling, magic 

labeling, total vertex irregular labeling, etc. are studied by many researchers. Nowadays 

graph domination problem is an important problem of graph theory [2]. 

An L211L of a graph G = (V, E) is a function γ from  its  node  set  V  to  Z∗ such that 

|γ(u) − γ(v)| ≥ 2 if d(u, v) = 1, |γ(u) − γ(v)| ≥ 1 if d(u, v) = 1 or 2. The L211L number, 
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λ2,1,1(G), of G is the least non-negative integer λ such that G has a L211L of span λ. Graph 

labeling problem has been extensively studied in the past [1,7,8,11-17,19-24]. Different 

bounds for  λ3,2,1(G)  and  λ4,3,2,1(G) were obtained for various type of graphs. Clipperton et 

al. showed λ3,2,1(G) ≤ ∆
3
 + ∆

2
 + 3∆ for any graph [6]. Later, Chia et al. [5] improved this 

upper bound to λ3,2,1(G) ≤ ∆
3
+2∆ for any graph [5]. Lui and Shao studied the L321L of 

planer graph and showed that λ3,2,1(G) ≤ 15(∆
2
 −∆+1) [9]. Also, Amanathulla et al. shown 

that λ0,1(G) ≤ ∆ and λ1,1(G) ≤ 2∆ for CAGs [10]. In 2020, Rana have studied graph a new 

variation of graph labeling problem [3,4]. Also, in 2020, Amanathulla et al. have 

studied L(3,2,1)-labeling of trapezoid graph and obtained good result for it [18]. 

 In this article, for CAGs G, it is shown that λ2,1,1 ≤ 6∆ − 4. Also an algorithm is 

designed to label a CAG by maintaining L211L condition. The time complexity of the 

algorithm is also calculated.  

 

2. Preliminaries and Notations  

 

A graph is a CAG if there exists a family FA of arcs around a circle and a one-to-one 

correspondence between nodes of G and arcs FA, such that two distinct nodes are adjacent 

in G if and only if there corresponding arcs intersect in FA. Such a family of arcs is called 

an arc representation for G.  It is noted that an arc Fp of FA and a node tp of V are one and 

same thing. A CAG and its corresponding circular-arc representation are shown in Fig. 1. 

The degree of a node tp is denoted by d(tp) and is defined by the maximum number of 

nodes which are adjacent to tp. The degree of a CAG G, denoted by ∆, is the maximum 

degree of all nodes of G. Let F = {F1, F2, F3, . . . , Fn} be a set of arcs around a circle. 

While going in a clockwise direction, the point at which we first encounter an arc is called 

the starting point of the arc. Similarly, the point at which we leave an arc is called the 

finishing point of the arc. 

 

Notations: Let G be a CAG having set of arcs F, we define the following objects: 

(i) L(Fk): the set of labels which are used before labeling the arc Fk, Fk ∈ F . 

(ii) L
i
(Fk): the set of labels which are used to label the nodes at distance i (i =  1, 2, 3) 

from the arc Fk, before labeling the arc Fk, Fk ∈ F. 

(iii) Livl
(Fk): the set of all valid labels to label the arc Fk satisfying the condition of 

distance ‘one’, ‘one and two’, ‘one, two and three’ of L211L from the arc Fk, before labeling 

Fk, for (i = 1, 2, 3) respectively. 

(iv) fj :  the label of the arc Fj , Fj ∈ A. 

(v) L: the label set. 

 

3. L(2,1,1)-Labeling of Circular-Arc Graphs 

 

In this portion, some lemmas related to the proposed algorithm have been presented. Also, to 

label a CAG satisfying L211L an algorithm is proposed. Also we have calculated the 

time complexity of the proposed algorithm. 
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Fig. 1. A CAG and its corresponding circular-arc representation. 

 

Lemma 1.  For a CAG G, |L
i
(Fk)| ≤ 2∆ − 2, i = 2, 3 for any arc Fk ∈ F . 

 

Proof. Case 1: Let i = 2 and let G be a CAG and Fk be any arc of G. Also let 

|L
2
(Fk)| = r. This indicates that r distinct labels have been used to label the two distanced 

arcs from the arc Fk, before labeling the arc Fk. 

     Since, the degree of the graph G is ∆ so, Fk is adjacent to at most ∆ arcs of G. Again, 

since G is a CAG, among the arcs those are adjacent to Fk, there must exists at most two 

arcs (the arcs of maximum length) in opposite direction of the arc Fk, each of which are 

adjacent to at most ∆−1 arcs (except Fk) of G, obviously these arcs are at distance two from 

Fk. In figure 2, all the two distances nodes of Fk are adjacent to either Fk1  or Fk2 . Except Fk, 

Fk1  is adjacent at most ∆ − 1 arcs. Similarly, except Fk, 
2kF   is adjacent at most ∆ − 1 

arcs. Hence, r ≤ 2(∆ − 1), i.e. |L (Fk)| ≤ 2∆ − 2. 

 

Case 2: Let i = 3 and let G be a CAG and Fk be any arc of G and let |L
3
(Fk)| = s. This 

shows that s distinct three distanced labels are used to label the arcs from the arc Fk, before 

labeling the arc Fk. 

Since, ∆ is the degree of the graph G so, Fk is adjacent to at most ∆ arcs of G. Again 

since G is a CAG, among the arcs those are adjacent to Fk, there must exists at most two 

arcs (the arcs of maximum length) in opposite direction of the arc Fk, each of which are 

adjacent to at most ∆ arcs of G. In figure 2, Fk1 and Fk2 are those arcs each of which are 

adjacent to at most ∆ arcs of G. Among the arcs those are adjacent to Fk1 and of distance 

two from Fk, there exists at most one arc (the arcs of maximum length) which is adjacent 

to at most ∆ − 1 arcs (expect Fp1 ) obviously these arcs are at distance three from Fk. Again 

among the arcs which are adjacent to Fk2 and of distance two from Fk, there exists at most 

one arc (the arcs of maximum length) which is adjacent to at most ∆ − 1 arcs (except Fp2 ), 

obviously these arcs are at distance three from Fk. In Fig. 2, all the three distances arcs are 

adjacent to either Fp1  or Fp2 .  Except Fk1, Fp1  is adjacent at most ∆ − 1 arcs. Similarly, 

except Fk2, Fp2  is adjacent at most ∆ − 1 arcs. Hence, s ≤ 2(∆ − 1), i.e. |L (Fk)| ≤ 2∆ − 2. 

 

Lemma 2. For a CAG G, L
i
(Fk) ⊆ L(Fk), for any arc Fk of G and i = 1, 2, 3 
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Proof. Any label used to label a CAG G belong to L(Fk). So any label l ∈ L
i
(Fk) 

implies l ∈ L(Fk), for i = 1, 2, 3.  Hence L
i
(Fk) ⊆ L(Fk), for any  arc Fk of G and      i 

= 1, 2, 3. 

Lemma 3. L
kvl

(Fj) is the non empty largest set satisfying the condition of distance 1, ..., k for 

k = 1, 2, 3 of L211L, where l ≤ p for all l ∈ L
kvl

(Fj ) and p = max{L(Fj)}+ 2, for any Fj 

∈ A and k = 1, 2, 3. 

Proof.  Since, L
i
(Fj) ⊆ L(Fj) for i = 1, 2, 3 (by Lemma 2) and p = max{L(Fj)}+ 2, so 

|p − li| ≥ 2 for any li ∈ L
i
(Fj), i = 1, 2, 3.  Therefore,  p ∈ L

kvl
(Fj) for k = 1, 2, 3. 

Therefore, L
kvl

(Fj) is non empty set for k = 1, 2, 3. 

 

 
Fig. 2.  A CAG. 

 

Again, let C be an arbitrary set of labels satisfying the condition of distance one, two and three of 

L211L, where l ≤ p for all l ∈ C.  Also, let c ∈ C.  Then |c−li | ≥ 2 for any li ∈ L1(Fj ) and |c − li | ≥ 1 for 

any li ∈ Li(Fj ) for i = 2, 3.  Thus, c ∈ Lkvl(Fj ), for k = 1, 2, 3. So c ∈ C implies c ∈ Lkvl(Fj), for k = 1, 

2, 3. Therefore, C ⊆ Lkvl(Fj), for k = 1, 2, 3. Since, C is arbitrary, so Lkvl(Fj) is the largest set of labels 

satisfying the condition of distance 1, ..., k for k = 1, 2, 3 of L211L, where l ≤ p for all l   Lkvl(Fj) for 

k = 1, 2, 3. 

Now, we discuss about the upper bound of λ2,1,1(G) for a CAGs. 

 

Theorem 1. For any CAG G, λ2,1,1(G) ≤ 6∆ − 4. 

 

Proof. Let G be a CAG having n nodes and the set of arcs F = {F1, F2, F3, . . . , Fn}. Let L(Fk) = {0, 1, 2, 

. . . , 6∆ − 4}, where Fk   F . Then |L(Fk)| = 9∆ − 5. Now λ2,1,1(G) ≤ 6∆− 4, if we can prove that the 

label in the set L(Fk) is sufficient to label all the arcs of G. Suppose, we are going to label the arc Fk 

by L211L. We  know  that |L1(Fk)| ≤ ∆. So, in the extreme unfavorable cases at least (6∆ − 3) − 2∆ = 

4∆ − 3 labels of the set L(Fk) are available satisfying the condition of distance one of L211L. Also, 

since |L2(Fk)| ≤ 2∆ − 2, (by Lemma 1). So in the worst cases at least (4∆ − 3) − (2∆ − 2) = 2∆ − 1 
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labels of the set L(Fk) are available satisfying the condition of distance one and two of L211L. 

Again, since |L3(Fk)| ≤ 2∆ − 2, (by Lemma 1), so in the most unfavorable cases at least one (viz: 

(2∆−1)−(2∆−2) = 1) label of the set L(Fk) is available satisfying L211L condition. Since Fk is 

arbitrary, so we can label any arc of the CAG satisfying L211L condition by using the labels from 

the set L(Fk). 

If we take L(Fk) so that L(Fk) ⊆ {0, 1, 2, . . . , 6∆ − 4} and we are going to label the arc Fk by 

L211L, then by similar arguments, it follows that the set L(Fk) may or may not contain a label 

satisfying L211L condition. Hence, λ2,1,1(G) ≤ 6∆ − 4. 

Algorithm L211 

Input: A set of ordered arcs F = {F1, F2, F3, . . . , Fn} of a CAG. 

Output: fj, the L211-label of Fj, j = 1, 2, 3, . . . , n. 

Initialization: f1 = 0; 

L(F2) = {0} ; 

for each j = 2 to n − 1 compute L1(Fj ), L2(Fj ) and L3(Fj ) for i = 0 to r, where r = max{L(Fj )} + 

2 

for k = 1 to |L1(Fj )| 

if |i − lk | ≥ 2, then L1vl(Fj ) = {i} //where lk   L1(Fj )// 

end for;  

end for; 

for k = 1 to 2 

for m = 1 to |Lkvl(Fj )| for n = 1 to |Lk+1(Fj )| 

if |lm − pn| ≥ 1, then Lk+1vl(Fj) = {lm} //where lm   Lkvl(Fj) and pn   

Lk+1(Fj) // 

end for;  

end for; 

end for; 

fj =min{L3vl(Fj )}; 

L(Fj+1) = L(Fj ) {fj}; 

end for; 

for i = 0 to s,  

where s = max{L(Fn)} + 2 for k =1   

to L1(Fn)| 

if |i − lk| ≥ 2, then L1vl(Fn) = {i} //where lk   L1(Fn)// 

end for; 

end for; 

for k = 1 to 2 

for m = 1 to |Lkvl(Fn)| 

for q = 1 to |Lk+1(Fn)| 

if |lm − pq| ≥ 1, then Lk+1vl(Fn) = {lm} //where lm   Lk+1vl(Fn) and 

pq   Lk+1(Fn) // 

end for; 

end for; 

fn =min{L3vl(Fn)};  

L = L(Fn)   {fn};  

end L211. 
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Theorem 2. The Algorithm L211 correctly labels the nodes of a CAG using L211L 

condition. 

Proof. Let F = {F1, F2, F3, . . . , Fn}, also let f1 = 0, L(F2) = {0}. Suppose, we are going to 

label the arc Fj   F . L
kvl

(Fj) is the non empty largest set satisfying the condition of 

distance 1, ..., k for k = 1, 2, 3, of L211L, where l ≤ p for all  l   L
kvl

(Fj) and p = 

max{L(Fj )}+ 2, for any Fj   A and k = 1, 2, 3 (by Lemma 3). Also, no label l L
3vl

(Fj )  

and  l ≤ p satisfying  the  condition  of  L211L of  graph.  So  the  labels  on the set are the only 

valid labels for Fj, which is less than or equal to p and satisfying L211L condition. 

Our aim is to label the arc Fj by using as few labels as possible, satisfying L211L 

condition.  So  fj  =  q,  where  q = min{L
3vl

(Fj )}. Now  q  is  the  least  label  for  Fj , 

because no label less than q satisfies L211L condition. Since, Fj is arbitrary so this 

algorithm spent minimum number of labels to label any arc of a CAG satisfying L211L 

condition and λ2,1,1(G) = max{L(Fn)   {fn}}. 

 

Theorem 3. A CAG can be L211-labeled using O(n∆2) time. 

 

Proof. Let L be the label set and |L| be its cardinality. According to the algorithm L211,  |Li(Fk)| ≤ 

|L| for  i =  1, 2, 3,  for  any  Fk    A,  and  also  r  ≤ 6∆ − 2,  where r = max{L(Fj )} + 2.  So we can 

compute  L1vl(Fj ) using at most |L|(6∆ − 2) time, i.e.  using at most O(∆|L|) time.  Also, |Lkvl(Fj )| 

≤ 6∆ − 4 for k = 1, 2, so for each k = 1, 2, Lk+1vl(Fj) can be computed using at most |L|(6∆ − 4) time, 

i.e. using at most O(∆|L|) time. This process is repeated for n − 1 times. So the time complexity for the 

algorithm L211 is O((n − 1)∆|L|) = O(n∆|L|). Since, |L| ≤ 6∆ − 3, therefore the running time for the 

algorithm L211 is O(n∆2). 

 

Illustration of Algorithm L211 

Let us consider the CAG of Fig. 3 to illustrate Algorithm L211. 

For this graph, F = {F1, F2, F3, . . . , F13} and ∆=3. fj 

= the label of the arc Fj, for j = 1, 2, 3, . . . ,13. f1 = 

0, L(F2) = {0}. 

Iteration 1: j = 2. 

L1(F2) = {0}, L2(F2) =  , L3(F2) =  . 

L1vl(F2) = {2}, L2vl(F2) = {2}, L3vl(F2) = {2}. 

Therefore, f2 = min{L3vl(F2)} = 2 and L(F3) = L(F2)   {f2} = {0}   {2} = {0, 2}. 

Iteration 2: j = 3. 

L1(F3) = {0}, L2(F3) = {2}, L3(F3) =  . 

L1vl(F3) = {2, 3, 4}, L2vl(F3) = {3, 4}, L3vl(F3) = {3, 4}. 

So f3 = min{L3vl(F3)} = 3 and L(F4) = L(F3)   {f3} = {0, 2, }   {5} = {0, 2, 3}. 

Iteration 3: j = 4. 

L1(F4) = {3}, L2(F4) = {0}, L3(F4) = {2}. 

L1vl(F4) = {0, 1, 5}, L2vl(F4) = {1, 5}, L3vl(F4) = {1, 5}. 

Therefore, f4 = min{L3vl(F4)}=1 and L(F5) = L(F4)   {f4} = {0, 2, 3}   {1} ={0, 1, 2, 

3}. 
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Iteration 4: j = 5. 

L1(F5) = {1, 3}, L2(F5) = {0, 2}, L3(F5) =  . 

L1vl(F5) = {5}, L2vl(F5) = {5}, L3vl(F5) = {5}. 

Therefore, f5 = min{L
3vl

(F5)} = 5 and L(F6) = L(F5)   {f5} = {0, 1, 2, 3}   {5} 

={0, 1, 2, 3, 5}. 

 
Fig. 3. A CAG labeled by L211L, the number within the circle represents the label of the 

corresponding nodes. 

 
In this way f6 = 7, f7 = 4 f8 = 0, f9 = 2, f10 = 5, f11 = 1, f12 = 4 and f13 = 6. 

The nodes and the label of the corresponding nodes are shown below: 

Nodes 
1t  2t

 

3t  4t

 

5t  6t  7t  8t

 

9t  10t  11t  12t  13t  

L211-labels 0 2 3 1 5 7 4 0 2 5 1 3 6 

 

4. Conclusion 

 

In this article, we have computed the upper bound of L211L for CAG, and have proved 

that λ2,1,1(G) ≤ 6∆ − 4. This upper bound is very closed to the exact value of L211L 

number of CAG and this is the first upper bound for CAG. Also, an algorithms is 

designed to L211-label for CAGs. The time complexity for this algorithm is O(n∆
2
). 
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