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Abstract 

We consider a harmonically trapped potential system driven by modulated signals with two 

widely different frequencies ω and Ω, where Ω >> ω. The forms of modulated signals are 

amplitude modulated (AM) and frequency-modulated (FM) signals. An amplitude-

modulated external signal is consisting of a low-frequency (ω) component and two high-

frequencies (Ω + ω) and (Ω − ω) whereas the frequency modulated signal consisting of the 

frequency components such as f sinωt cos(g cosΩt) and f sin(g cosΩt) cosωt. Depending 

upon the values of the parameters in the potential function, an odd number of potential wells 

of different depths can be generated. We numerically investigate the effect of these 

modulated signals on vibrational resonance (VR) in single-well, three-well, five-well and 

seven-well potentials. Different from traditional VR theory in the present paper, the 

enhancement of VR is made by the amplitudes of the AM and FM signals. We show the 

enhanced response amplitude (Q) at the low-frequency ω, showing the greater number of 

resonance peaks and non-decay response amplitude on the response amplitude curve due to 

the modulated signals in all the potential wells. Furthermore, the response amplitude of the 

system driven by the AM signal exhibits hysteresis and a jump phenomenon. Such behavior 

of Q is not observed in the system driven by the FM signal. 
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1.   Introduction 

Nonlinear systems are capable of displaying a variety of regular and irregular dynamics. 

Resonance is one of the fundamental phenomena exhibited by linear and nonlinear 

systems. In a dynamical system driven by an external periodic force, when the frequency 

of the force is varied, in a typical case, the amplitude of the oscillation decreases and 

reaches a significantly large value of a frequency and then decreases. The realization of 

maximum amplitude is called resonance. The effect of resonance is to produce a large 

amplitude oscillation. Resonance occurs in many branches of physics, engineering and 

biology. 

                                                 
 Corresponding author: veerchinnathambi@gmail.com 

Available Online 

J. Sci. Res. 13 (3), 797-807 (2021) 

JOURNAL OF  

SCIENTIFIC RESEARCH 

www.banglajol.info/index.php/JSR 
 
Publications 

 

http://dx.doi.org/10.3329/jsr.v13i3.52318
mailto:veerchinnathambi@gmail.com


798 Effect of Modulated Signals on Vibrational Resonance  

 

 Various types of resonance can be realized in nonlinear systems such as the stochastic 

resonance [1,2], coherence resonance [3,4], auto resonance [5,6], ghost resonance [7-9], 

chaos resonance [10,11], parametric resonance [12,13] and vibrational resonance [14-18]. 

The present paper is concerned with vibrational resonance. The phenomenon of 

vibrational resonance (VR) in which the system responds to a weak periodic signal can be 

enhanced by applying the high-frequency periodic perturbation of appropriate amplitude. 

The analysis of VR has received considerable interest in recent years because of its 

importance in a wide variety of contexts in science and engineering. This phenomenon 

was originally discovered by Landa and McClintok [14] in a bistable system. More 

recently, Oyeleke et al. [12] studied the occurrence of VR in the gyroscope model driven 

by dual-frequency forces such as a parametric excitation and an additive periodic force.  

In addition to the well-known method of tuning the strength of the high-frequency field in 

VR, they have shown that the occurrence of VR in this model when the low-frequency 

parametric excitation is tuned. Furthermore, they obtained a higher response amplitude 

and a wider response bandwidth when a low-frequency parametric excitation force 

cooperates with a high-frequency additive forcing.  Due to wide interest in the multi-

frequency signals, VR has been investigated in many systems, such as bistable system 

[19-22], monostable system [23], asymmetric system [24], spatially periodic potential 

system [25,26], time-delayed system [27] and many more.  

 Generally, in the VR studies, a nonlinear system driven by a weak periodic force, say, 

f sin ωt and a high-frequency force g sin Ωt with Ω >> ω, that is, the total external force 

is F (t) = f sin ωt + g sin Ωt. System response for different kinds of external force is an 

interesting topic and the article presented a non-conventional type of VR.  The prime aim 

of the present paper is to analyze VR first by an amplitude-modulated force FAM (t) = (f + 

2g cos Ωt) sin ωt which can also be written as FAM(t) = f sin ωt + g cos(Ω + ω)t + g 

cos(Ω- ω)t. When Ω >> ω, the amplitude modulated force FAM (t) can also be treated as 

consisting of a low-frequency force f sin ωt and two high-frequency force with 

frequencies (Ω + ω) and (Ω - ω). Then we analyze VR by the frequency-modulated force 

FFM (t) = f sin(ωt + g cos Ωt) which can also be written as FFM (t) = f sin ωt cos(g cos Ωt) 

+ f sin(g cos Ωt) cos ωt. Certain notable earlier studies on nonlinear systems are subjected 

to modulated signals with and without the restriction of Ω  ≫ ω  [18,28-32]. There are 

some interesting VR features in the harmonically trapped system driven by modulated 

signals (FAM(t)  or FFM(t)) compared to the case when it is driven by the force F1(t) = f sin 

ωt +g sin Ωt. When the system is subjected to the force F1(t), the response amplitude 

exhibits multiple peaks, the value at the resonance of the response amplitude Q(ω) = 

1/(dω), and approaches a non-zero limiting value when the amplitude of the high-

frequency signals is varied. Interestingly, in contrast to this result, when the system is 

subjected with the external force FAM(t) or FFM (t), multiple resonance peaks occur, where 

Q(ω) ≫ 1/(dω) at some resonance peaks and Q(ω) does not decay to zero even for very 

large values of g. Further, the response amplitude curve displays hysteresis and a jump 

phenomenon. These are the main results of this research work. 
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 The outline of the paper is as follows. In Section 2, we present the equation of motion 

of a harmonically trapped potential system with modulated signals. We study the effect of 

the parameter β on the shape of the potential and the number of equilibrium points. In 

Section 3, we numerically analyze the effect of modulated signals on VR in harmonically 

trapped potential system. First, we analyze the effect of AM signal and then FM signal on 

vibrational resonance. We observe single and multiple resonances with the variation of the 

control parameters g and Ω in all the signals. The conclusion is drawn in Section 4. 

 

2. Harmonically Trapped Potential System with Modulated Signals 

 

The equation of motion of a harmonically trapped potential system with Amplitude 

Modulated (AM) signal is given by 

  ̈      ̇    
          (         )                        (1) 

with the use of the formula                  (   )      (   )  ,  Eq.(1) takes 

the form 

  ̈      ̇    
                      (   )       (   )  ,      (2) 

and Frequency Modulated (FM) signal is given by 

  ̈      ̇    
                (         ),                         (3) 

with the expansion of    (          )          (      )     (        )     ,                  
Eq.(3) takes the form 

  ̈      ̇    
                   (       )      (      )          (4) 

Where ω0
2
 is the natural frequency, d > 0 is the damping parameter of the system and β is 

the constant parameter which plays the role of nonlinear parameter, f and g are the 

amplitudes of the signals, ω and Ω are the two frequencies of the signals with Ω >> ω. 

We call the systems with the amplitude modulated signal (Eq. 2) and frequency modulated 

signal (Eq. 4) as system-1 and system-2, respectively. Recently, many researchers studied 

the occurrence of vibrational resonance in a harmonically trapped potential system. 

Particularly, Abirami et al. [33] investigated the role of the shape of potentials on 

vibrational resonance, and Yang et al. [34] studied the effect of linear time-delay on 

vibrational resonance in a harmonically trapped potential system driven by a biharmonic 

force with two widely different frequencies ω and Ω with ω << Ω. In the present work, 

we are interested in studying numerically the effect of modulated signal on vibrational 

resonance in a harmonically trapped potential system with two widely different 

frequencies ω and Ω with ω << Ω. 
 The harmonically trapped potential satisfies the following form in the absence of 
damping is, 

 ( )   
 

 
  
                          

                                  (5) 

Depending upon the parameters ω0
2
 and β, we can generate an odd number of potential 

wells of different depths. Fig. 1 shows the shapes of the potential for four fixed values of 

β with ω0
2
 = 1. From Fig. 1 we can clearly observe, the number of potential wells changes 

from one to three, three to five, and five to seven with the increase of β values from 3 to 5, 
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5 to 15, and 15 to 20. Further an increase of β, we can generate an odd number of potential 

wells. The equation for the root of the trapped potential system is 

  
                                                                                   (6) 

X
*
 = 0 is always the root of the equation (6). Since the potential is symmetrical about x = 

0, x
*
 is also a root equation (6). It is not easy to find an analytical expression for x

*
 from 

Eq. (6). However, we can determine all the roots of Eq. (6) numerically by employing 

Newton-Raphson method. Depending on the values of β the system has 4n- 3, n = 1, 2, 

3..., number of equilibrium points while V(x) has (2n -1), n = 1, 2, 3..., potential wells. At 

β = (4n-1) π , n = 1, 2, 3, ..., the number of potential wells and equilibrium points change 

will occur. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1. The shape of the potential  (Eq. 5) with ω0
2 = 1 for four  values of   β. 

 

3. Effect of Modulated Signals on VR in a Harmonically Trapped Potential System 

 

In the present work, we study the effect of modulated signals on VR in system-1 and 

system-2 numerically. To compute the response amplitude (Q) of the slow component X 

of x(t), we numerically integrate the systems (1) and (2) using fourth-order Runge- Kutta 

method with time step size (2π/ω)/1000. The first 10
3 

drive cycles are left as transient and 

the value of x(t) corresponding to the next 500 drive cycles are used to compute the 

response amplitude (Q). From the numerical solution of x(t), the response amplitude (Q) is 

computed from the equations,  

   
 

  
∫  ( )      
  

 
   ,                         (7a) 

   
 

  
∫  ( )      
  

 
   ,                         (7b) 
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where T = 2π/ω is the period of the response and n is taken as 500. Then    

 √   
    

 . In all the systems (1) and (2), we fix the values of the parameters as ω0
2
 = 1.0, 

d = 0.5, ω = 0.1, Ω = 1.0, 5.0 and β = 3,5,15 and 20. 

 

3.1. Analysis of response amplitude Q with an AM signal 

 

In this section, we numerically analyze the occurrence of VR with an AM signal for a 

parameter value of β and treat the amplitude (g) and frequency (Ω) of the high-frequency 

signal as the control parameters. We analyze the effect of AM signal for two frequencies 

ratio, namely, Ω/ω = 10 and Ω/ω = 50 with f = 0.1 and ω =0.1. First, we study the 

occurrence of VR for the frequency ratio Ω/ω = 10. For this frequency ratio, the evolution 

of the response amplitude Q versus the signal amplitude g is shown in Fig. 2 for f = 0.1, ω 

= 0.1, and four values of β, such as β = 3, 5, 15, 20. In Fig. 2, for β = 3 (single-well 

potential (Fig. 1a)) and β = 5 (three-well potential (Fig. 1b)), no resonances occur when g 

< 1.6005 (solid line) and g < 2.619 (dashed curve) and multiple resonances occur when g 

> 1.6005 and g > 2.619. But for β = 15 (five-well potential (Fig. 1c)) and β = 20 (seven- 

well potential (Fig. 1d)), no resonances occur in the interval 0 < g < 7.7227 and 0 < g < 

10.2924 and multiple resonances occur when g > 7.7227 and 10.2924 which are 

represented by dotted and dashed dot curves in Fig. 2. For the frequency ratio Ω/ω = 10, it 

is clearly noticed that as β (number of potential wells) increases, the non-resonant region 

also increases, which is evident in Fig. 2. Next, we study the occurrence of VR for the 

frequency ratio Ω/ω = 50. The corresponding numerical results are shown in Fig. 3. Fig. 3 

shows the variation of numerically computed Q against the control parameter g for the 

frequency ratio Ω/ω = 50 with ω = 0.1, f = 0.1 and β= 3, 5, 15, 20. In Figs. 3(a) and 3(b) 

for β= 3 and β= 5, g linearly increases with Q, and no resonance takes place. For β= 15, no 

resonances occur in the interval 0 < g < 5:7986 and further increase of g multiple 

resonances are observed when g > 5.7986. For β = 20, resonance is not observed in the 

interval 0 < g < 2.3651 and multiple resonances occur when g > 2.3651. Due to the effect 

of AM signal, for the frequency ratio Ω/ω= 10, VR is observed for all the potential well 

but for the frequency ratio Ω/ω = 50, VR is not observed in single-well and three-well 

potentials, and it is observed in five-well and seven-well potentials. Further Q(ω) is >> 

1/(dω) not only at the first resonance but also for a wide range of values of g. An 

enhanced response amplitude at the low-frequency (ω) can be achieved by applying two 

high-frequency forces. Interestingly, and in contrast to this result, when the system is 

driven by the force F1(t), multiple resonance peaks occur for a wide range of values of g 

and value at the resonance is Q = 1/dω. But an enhanced response amplitude at the low-

frequency (ω) can be achieved by applying only one high-frequency force. 
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Fig. 2. Response amplitude Q versus the control parameter g for the frequency ratio Ω/ω = 10 and 

four values of β in the system-1. The values of β for solid, dashed, dotted, dashed, and dot curves 

are 3,5, 15 and 20, respectively. The rest of the parameters fixed at ω0
2 = 1.0, d = 0.5, f = 0.1, ω = 

0.1 and Ω = 1.0. 

 

The system (1) exhibits hysteresis and jump phenomenon when the control parameter 

g is varied smoothly from small to a larger and then back to a smaller. As an example, we 

analyze this phenomenon for β = 20 (seven-well potential (Fig. 1d)). Fig. 4(a) presents Q 

obtained by varying g in the forward and reverse directions. We can clearly observe 

hysteresis and a jump phenomenon. Fig. 4(b) shows the magnification of Q curve in the 

interval g є [8,10]. Q is found to follow different paths as indicated by an arrow when g is 

varied in the forward and reverse directions. Such behavior of Q is observed in all 

potential wells except single-well potential. 

 

 

 

 

 

 
 

 

 

 
 

Fig. 3. Response amplitude Q versus the control parameter g for the frequency ratio Ω/ω = 50 and 

four values of β in the system-1. The values of β for solid, dashed, dotted, dashed, and dot curves 

are 3,5, 15 and 20, respectively. The rest of the parameters fixed at ω0
2 = 1.0, d = 0.5, f = 0.1, ω = 

0.1 and Ω = 5.0. 

 

We describe the response curve in Fig. 3 for β = 15 (dotted curve). Fig. 5 shows the 

trajectory plots for a few values of g in the interval [0,20] for ω = 0.1, Ω = 5.0 and β = 

15. For 0 < g < 10 the orbits are confined to one well only. There is no cross-well motion 

(Figs. 5(a) and 5(b)). At g > 10.0, the orbit lies in one well during the one-half cycle of 

the drive cycle of the low-frequency signal, and in the other wells during the residual half 

of the cycle is shown in Figs. 5(c) and 5(d) for g = 15.0 and g = 20.0. That is, the particle 

transmits between the two wells regularly with the period of the low-frequency signal. 

This is the principle that the weak low-frequency signal is amplified in VR. 
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Fig. 4. (a) Response amplitude curves obtained by varying the control parameter g from 6 to 12 

(continuous curve) and 12 to 6 (dashed curve) for the seven-well trapped potential system driven by 

an AM signal.  (b) Magnification of the Q(ω) curves in the interval g є [8,10] indicating hysteresis 

and jumps in Q. The parameter values of system1 as in Fig. 3. 

 

Next, we analyze the influence of the parameter Ω on resonance for small and large 

amplitudes (g) of the AM signal, namely, g = 0.2 and g = 2.0 with β = 3, 5, 15, 20. The 

results are presented in Figs. 6 and 7. The variation of Q versus Ω is plotted in Fig. 6 for g 

= 0.2 and four values of β, namely, β = 3, 5, 15, 20. For g = 0.2, we notice only one 

resonance at Ω = 0.2 for all values of β, but a maximum of the Q decreases with the 

increase of β values, which is clearly evident in Fig. 6. That is, as the number of potentials 

well increases, the maximum value of the response amplitude Q decreases. For example, 

for single-well potential (β = 3.0), Qmax = 0.6, for three-well potential (β = 5), Qmax = 

0.3981, for five-well potential (β = 15), Qmax = 0.1256 and for seven-well potential (β = 

20), Qmax = 0.0984. For g = 2.0, the number of resonances decreases with the increase of 

β values, shown in Fig. 7. 

For example, in Fig. 7(a), for β = 3, six resonances occur when Ω < 2.0 and no 

resonances occur for Ω > 2.0. For β = 5, single resonance is observed in the interval     0 

< Ω < 0.4678. No resonances occur in the interval 0.4678 < Ω < 1.4258 and 2.2431 < Ω 

< 5.0. Two resonances occur in the interval 1.4258 < Ω < 2.2431 which is clearly evident 

in Fig. 7(b). For β = 15 and 20 only one resonance is observed at Ω = 0.25 but Qmax 

decreases when β increases, which is clearly seen in Fig. 7(c) and Fig. 7(d). 
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Fig. 5. Trajectory plots for different values of high frequency amplitude g with β = 15 in the system-

1. The rest of the parameters fixed at ω0
2 = 1.0, d = 0.5, f = 0.1, ω = 0.1 and Ω = 5.0. 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 6. Response amplitude Q versus the control parameter Ω for four values of β in the system-1. 

The values of β for the curves 1, 2, 3 and 4 are 3, 5, 15 and 20 respectively. The rest of the 

parameters fixed at  ω0
2 = 1.0, d = 0.5, f = 0.1, ω = 0.1 and g = 0.2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Response amplitude Q versus the control parameter Ω for four values of β in the system-1. 

The rest of the parameters fixed at ω0
2 = 1.0, d = 0.5, f = 0.1, ω = 0.1 and g = 5.0. 
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3.2.  Analysis of  response amplitude Q with FM signal 

 

In this section, we study the effect of FM signal on VR in system-2. We numerically 

analyze the influence of the parameters g and Ω on resonance for single-well (β = 3), 

triple-well (β = 5), five-well (β = 15) and seven-well (β = 20) potentials in system-2. Fig. 

8 presents the results. Fig. 8(a) shows the variation of the response amplitude Q with g for 

single-well (β = 3), triple-well (β = 5), five-well (β = 15) and seven-well (β = 20) 

potentials with the frequency’s ratio Ω /ω= 10. For all the potential wells, resonance 

occurs at g = 3.839, but the corresponding maximum of the Q values decreases while 

increases the number of potential wells. The variation of the response amplitude Q with g 

for frequencies ratio Ω/ω= 50 is reported in Fig. 8(b). For single-well (β = 3.0) and triple-

well (β = 5.0) potentials, no resonance is observed. Single resonance is observed for five-

well (β = 15) and seven-well (β = 20) potentials at g = 3.088, but Qmax decreases with the 

increase of a number of potential wells, which is clearly evident in Fig. 8. The dependence 

of Q on the frequency (Ω) of the FM signal is studied in Fig. 9 for single-well (β = 3), 

triple-well (β = 5), five-well (β = 15) and seven-well (β = 20) potentials in system-2 with 

g = 0.2 and g = 2.0. Fig. 9(a) presents the curves of the response amplitude Q versus the 

high frequency Ω of the FM signal for single-well (β = 3), triple-well (β = 5), five-well (β 

= 15) and seven-well (β = 20) potentials in system-2 with g = 0.2, f = 0.1 and ω = 0.1. 

Fig. 9(a) shows that there are only a few Ω make the response amplitude Q achievable at 

the maxima for the different potential wells. We call the signal frequency Ω, which makes 

the response amplitude Q reach its maximum as the optimal high frequency. With the 

increase of the frequency of the high-frequency signal, the curve in one period (in Fig. 

9(a)) turns to double peaks, as is shown in Fig. 9(b) for g = 2.0. It is similar to the period-

doubling bifurcation that is a bifurcation behavior in the random dynamics. In addition, it 

can be found that the appearance of the peak is approximated equal to the cycle of the 

high-frequency signal. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8. Response amplitude Q versus the control parameter g for four values of β with (a) Ω = 1.0 

and (b) Ω = 5.0 in the system-2. The values of β for the curves 1,2,3 and 4 are 3,5, 15 and 20 

respectively. The rest of the parameters fixed at  ω0
2 = 1.0, d =0.5, f = 0.1 and  ω = 0.1. 
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Fig. 9.  Response amplitude Q versus the control parameter Ω for four values of β with (a) g = 0.2 

and (b) g = 2.0 in the system-2. The values of β for the curves 1,2,3 and 4 are 3,5, 15 and 20 

respectively. The rest of the parameters fixed at ω0
2 = 1.0, d =0.5, f = 0.1 and ω = 0.1. 

 

4.  Conclusion 

 

The effect of modulated signal on the vibrational resonance in a harmonically trapped 

potential system is numerically studied in this paper. We consider two forms of modulated 

signals such as amplitude modulated signal and frequency-modulated signals. Depending 

upon the parameters ω0
2
 and β, V (x) admit an odd number of potential wells. We 

numerically analyzed the effect of modulated signals on vibrational resonance in systems 

(1-2) for single-well, three-well, five-well, and seven-well potentials. The influence of the 

parameter such as g and Ω on these potential wells is studied. Based on numerical 

analysis, single resonance and multiple resonances are observed in certain parametric 

ranges. Due to modulated signals, considerable enhancement in the weak periodic signal 

occurs in all the potential wells. Hysteresis and a jump phenomenon is observed in the 

system-1, but such behavior is not observed in system-2. We believe that the results 

reported in these systems will lead to the detailed analysis of other types of resonance 

such as stochastic, coherence, and auto resonance in the systems (1-2), resulting in the 

further understanding of these resonances and their applications. 
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