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Abstract 

The Sandor-Smarandache function, due to Sandor, has drawn the attention of the researchers 

soon after its introduction. The new Smarandache-type arithmetic function, denoted by SS 

(n), involves binomial coefficients. Sandor found SS(n) when n (  3) is an odd integer. It 

has been shown that the function has a simple form even when n is even and not divisible by 

3. In earlier papers, some closed-form expressions of SS(n) have been derived for particular 

cases of n. Still, some unexplored results are needed to settle down the function. So, this 

study finds more forms of SS(n), starting from the function SS(24m). Particular attention has 

been focused on the functions SS(120m), SS(840m), SS(9240m) and SS(120120m). 
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1.   Introduction 

In the late 1970s, the Romanian-American mathematician, Florentin Smarandache, 

proposed a new arithmetic function called the Smarandache function after him and is 

denoted by S(n). Since then, more Smarandache-type arithmetic functions have been 

introduced in the mathematical literature. These functions are different from the 

traditional arithmetic functions of number theory in many respects. Because of their 

special properties, they drew the attention of different researchers. One of the most recent 

Smarandache-type functions is the Sandor-Smarandache function, posed by Sandor [1], 

and is denoted by SS (n). The function is defined as follows: 

           {                       (
 
 
)}  n  5,                   (1.1) 

where (
 
 
)  

  

           
        and by convention,  

SS(1) = 1, SS(2) = 1, SS(3) = 1, SS(4) = 1, SS(6) = 1.  

Recall that the binomial coefficients are all integers [2], Theorem 73]. The following 

equivalent form of the binomial coefficients C(n, k) would be used throughout this paper: 
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         (
 
 
)  

                              

  
        

Then, the problem is reformed as follows: Given any integer n (  7), find the minimum 

integer k such that k! divides (n – 1)(n – 2)…(n – k + 1), where 1  k  n – 2. With this 

minimum k, SS (n) = n – k. In Islam, Gunarto, and Majumdar [3], the following results 

have been proved. 

Lemma 1.1: SS(n) = n – 2 if and only if n (  7) is an odd integer. 

Lemma 1.2: SS (n) = n – 3 if and only if n is even and is not divisible by 3. 

Lemma 1.3: SS(12m) = 12m – 5 for any integer m (  1), not divisible by 5. 

Lemma 1.4: SS(30m) = 30m – 7, where m (  1) be an integer not divisible by 7 with     m  

4 + 3 (for any   0) and m  2(6 + 5) (for any   0).  

 From Lemma 1.1 and Lemma 1.2, it is seen that SS(n) has a simple form when n is 

odd or when n is even but not divisible by 3. Thus, the problem of finding SS(n) when n is 

even and divisible by 3 remains a challenging problem. Majumdar [4] considered 

functions of the form SS (p + 1), where p is an odd prime. Later, the problem was studied 

extensively by Islam, and Majumdar [5], who derived expressions of SS(2mp), SS(6mp), 

SS(60mp), and SS (420mp), where p is an odd prime and m is any (positive) integer. 

Recently, Islam et al. [3] derived expressions of SS(6t), SS(12t), SS(18t), SS(42t), SS(30t), 

and SS(210t) for some particular forms of t. So, the forms of SS(n) in other cases remain 

open, limiting the function SS(n) application.  

 This paper finds SS (n) for some particular cases of n. This would help unravel more 

properties of the Sandor-Smarandache function. The relevant background materials are 

given in Section 2. Section 3 derives the main results of the paper. Lemma 3.1 in Section 

3 finds the necessary and sufficient condition such that SS(n) = n – 4. Surprisingly, such an 

n has a simple form, and the finding suggests that concentration must be given to the 

function SS(24m), where m (  1) is an integer. Thus, starting from SS(24m), the paper 

derives the expressions of SS(120m), SS(840m), SS(9240m), and SS(120120m). Some 

remarks are made in Section 4, based on the results found so far. This section contains 

some interesting equations involving SS(n). The paper concludes with some concluding 

remarks in Section 5. The findings so far show that the form of SS(n) depends on n, and 

more specifically, the prime factors of n. Thus, SS(n) has the simplest form when n is odd; 

the next simplest form is found when n is even but not divisible by 3. The form of SS(n) 

gets more complicated when the prime factors of n increase. 

 

2. Background Material  

 

This section gives the background material that would be needed in the next section. 

These are given in the lemmas below. Proofs may be found in Islam et al. [3]. 

Lemma 2.1: (Fundamental Theorem of Arithmetic) Let a and b be two (positive) integers 

with (a, b) = 1. Let N be an integer such that a and b each divides N. Then, ab divides N.          

 An alternative proof of Lemma 2.1 may be found in Olds, Lax and Davidoff [6]. 



S. M. S. Islam et al., J. Sci. Res. 14 (1), 45-65 (2022) 47 

 

Lemma 2.2: Let A and B be two (positive) integers such that A is divisible by the integer 

a and B is divisible by the integer b. Then, AB is divisible by ab. 

Lemma 2.3: For any integer a  1 fixed, a(a – 1)…(a – s + 1) is divisible by s!, where s is 

an integer with 1  s  a. 

Corollary 2.1: For any integer a  1 fixed, let P(a, s)  a(a – 1)…(a – s + 1) for any integer    

1  s  a. Then, s divides (a – 1)(a – 2)…(a – s + 1) if and only if s does not divide a. 

Corollary 2.2: The product of 9 consecutive (positive) integers is divisible by 34.   

 The paper's main results are derived in Section 3, where the following result would be 

needed. 

Lemma 2.4: Let m, n, and a be any three fixed (but arbitrary) positive integers. Then, the 

Diophantine equation mx + ny = a has an (integer) solution if and only if a is divisible by  

b  (m, n). Moreover, if (x0, y0) is a solution, then there are an infinite number of solutions, 

given parametrically by x = x0
 + 

 

 
  , y = y0

 + 
  

 
   for any integer t. 

Proof: See, for example, Gioia [7].  

In applying Lemma 2.4, one has to find the solution of the equation mx + ny = a with 

minimum x0 (in the sense that there is no solution x less than x0). Let (x0, y0) be such a 

solution. Then, if, in particular, (m, n) = 1, then the solutions of the equation are given 

simply by x = x0
 +  , y = y0   , where t is a parameter. 

Another result of interest is the following one (see Hardy and Wright [2] for a proof). 

Lemma 2.5: (Dirichlet Theorem) (Dirichlet Theorem) If m and n are two integers with m 

> 0 and (m, n) = 1, then there are infinitely many primes of the form mx + n, x (> 0) being 

an integer.  

The main results of the paper are given in the following section.    

 

3. Main Results 

 

First the following result is proved. 

Lemma 3.1: For some integer n,  

SS(n) = n – 4                                                      (3.1) 

if and only if n is of the form n = 6(4m + 3) for some integer m  0. 

Proof: By Lemma 1.1 and Lemma 1.2, any integer n satisfying (3.1) must be even and 

divisible 3. Now, consider the expression: 

           
                     

     
   

Here, the numerator of the term inside the square bracket is divisible by 3 (by Lemma 

2.1). Hence, the term inside the square bracket is an integer if and only if 8 divides (n – 2). 

Moreover, such an n must be divisible by 3. Thus, 

n = 8 + 2 = 3 for some integers   1,   2, 

whose solution is  = 3m + 2 for some integer m  0. Hence, finally, 

n = 8(3m + 2) + 2 = 6(4m + 3), 

which proves the lemma. 

Using Lemma 3.1, the following values are found: 
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SS(18) = 14, SS(42) = 38, SS(66) = 62, SS(90) = 86, SS(114) = 110. 

In Islam et al. [3], the explicit forms of SS(6t), SS(12t), SS(18t), SS(30t), SS(42t), and SS 

(210t) have been derived. It might be instructive to examine those results in light of 

Lemma 3.1. By virtue of Lemma 3.1, 

SS(6t) = 6t – 4 if and only if t = 4s + 3, s  0. 

Also, SS(12t) = 12t – 4 if and only if 2t = 4s + 3. In this case, (2, 4) = 2 does not divide 3, so 

that, by Lemma 2.4, the equation has no solution. Hence, SS(12t)  12t – 4 for any t. 

When n = 18t, the condition in Lemma 3.1 becomes 3t = 4m + 3, whose solution is       t = 

4s + 1, s  0 (taking into account the fact that SS(18) = 14, that is, the result is valid for  s = 

0 as well). Thus,  

 SS(18t) = 18t – 4 if and only if t = 4s + 1, s  0. 

The condition in Lemma 3.1 for n = 30t reduces to 5t = 4m + 3, whose solution is t = 4s + 3, 

s  0. Thus, 

SS(30t) = 30t – 4 if and only if t = 4s + 3, s  0. 

With n = 42t, the condition in Lemma 3.1 reads as 7t = 4m + 3, with the solution t = 4s + 1, s 

 0. Hence, 

SS(42t) = 42t – 4 if and only if t = 4s + 1, s  0. 

Finally, when n = 210t, by Lemma 3.1, SS(210t) = 210t – 4 if and only if 35t = 4m + 3, 

whose solution is t = 4s + 1, s  0. 

All the conditions above match exactly with those derived, in more detail, in Islam et al. 

[3], employing a different approach.  

In view of Lemma 3.1, the function of interest is SS (24m), considered below. 

Lemma 3.2: For any integer m  1, not divisible by 5, SS(24m) = 24m – 5. 

Proof: Consider the following expression for C(24m, 24m – 5): 

                  
                                    

       
 

(24   1)(12   1)(8   1)(6   1)
24 .

5
[ ]m m m m

m
   


 

Now, if 5 does not divide m, by Corollary 2.1, 5 must divide the numerator of the term 

inside the square bracket. This proves the lemma. 

Lemma 3.2 gives the following values :  

SS(24) = 19, SS(48) = 43, SS(72) = 67, SS(96) = 91, SS(144) = 139, SS(168) = 163. 

After having the values of SS(24m), applying Lemma 1.1. and Lemma 1.2 successively, 

the values below are obtained : 

SS(24m + i) = 24m + i – 2 for i = 1, 3, …,                                    (3.2) 

SS(24m + 2) = 24m + 2 – 3 for  = 1, 2, 4, 5, 7, …,                       (3.3) 

where  is not divisible by 3. Since 24m + i is odd for i = 1, 3, …, (3.2) follows from 

Lemma 1.1, while (3.3) follows from Lemma 1.2. Lemma 3.1 gives the expression of 

SS(24m + 18). It thus remains to find the expressions of SS(24m + 6) and SS(24m + 12). 

These are given in the following two propositions. 

Proposition 3.1: Let m  0 be any integer. Then, 
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24 1, 5 1  0                                                  

24 1 5 1  7  + 5, 0                                 
(24 6)

24 2 2(35 13)  0                           

24 3

m if m s , s

m , if m s , s t t
SS m

m , if m w , w

m , if

   

    
 

   



            

630 271  or 630 621  0  0m u , m v , u , v






      

 

Proof: First, consider the Diophantine equation 

24m + 6 = 5 for some integer   1, 

which states that 5 divides 24m + 6 for some m. The solution of the equation is m = 5s + 1, 

s  0 being an integer. Now, consider the expression for C(24m + 6, 24m + 1): 

        
                                    

       
  

         
                                  

 
   

If m  5s + 1 (so that 24m + 6 is not divisible by 5), then 5 divides one of the four factors in 

the numerator so that the term inside the square bracket is an integer.  

Next, let m = 5s + 1, s  0. The expression 

        
                                           

   
  

shows that SS (24m + 6)  24m for any integer m  1. So, consider the expression:  

(24   5)(6   1)(8   1)(12   1)(24   1)(24 )
(24 6)

5 6 7
[ ]m m m m m m

m
    


 

 

=
(24   5)(6   1)(8   1)(12   1)(24   1)(4 )

(24 6) .
5 7

[ ]m m m m m m
m

    



 

If 24m + 6 is not divisible by 7, then the numerator is divisible by 7, and hence, the term 

inside the square bracket is an integer. So, consider the Diophantine equation 

24m + 6 = 7a for some integer a  1, 

which states that 24m + 6 is a multiple of 7 for some m  1. The solution of the equation is 

m = 7b + 5, b  0 being an integer. Note that, the coupled equation 5s + 1 = 7b + 5 has the 

solution s = 7t + 5, t  0 being an integer, so that, m = 5(7t + 5) + 1 = 35t + 26, t  0. 

So, let m = 35t + 26, t  0 (so that 24m + 6 is a multiple of 35). Consider the expression:  

        
                                                        

     
   

If m (and hence t) is even, then the term inside the square bracket is an integer.  

On the other hand, if t is odd, then SS(24m + 6)  24m – 3. Letting t = 2c + 1 for some 

integer c  0, we have m = 35(2c + 1) + 26 = 70c + 61. Now, consider the expression 

(24   5)(6   1)(8   1)(12   1)(24   1) (24   1)(24   2)
(24 6)

2 5 7 9
[ ]m m m m m m m m

m
      


  

 

(24   5)(6   1)(8   1)(12   1)(24   1) (24   1)(12   1)
= (24 6) .

5 7 9
[ ]m m m m m m m m

m
      


 
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Clearly, the term inside the square bracket is an integer if 9 divides either m or 8m + 1, 

giving rise to the Diophantine equations 

 m = 9x for some integer x  1, 8m + 1 = 9y for some integer y  1. 

The solution of the second equation is m = 9 + 1,   0 being an integer.  

The solution of the combined Diophantine equation 70c + 61 = 9x is c = 9u + 8, u  0 being 

an integer, so that m = 70(9u + 8) + 61 = 630u + 621. The solution of the combined equation 

70c + 61 = 9 + 1 is c = 3(3v + 1), so that m = 210(3v + 1) + 61 = 630v + 271, v 0 being an 

integer.       

Note that, Proposition 3.1 is valid for m = 0 as well.   

Proposition 3.2: Let m  0 be any integer. Then, 

24 7, 5 2  0                                                          

24 6 3(5 4)  0                                                     
(24 12)

24 5 5 2  0, 3( 1)

24 4

m if m s , s

m , if m u , u
SS m

m , if m s , s m t

m , if

   

   
 

     



 0, 7  + 3, 0

140 17  0, 3( 1)  0                     

, t m v v

m w , w m t , t






  
      

 

Proof: Consider the expression: 

(24   11)(24   10)(24   9)(24   8)
(24 12)

2 3 4 5
[ ]m m m m

m
   


  

 

(24   11)(24   10)(8   3)(3   1)
(24 12) .

5
[ ]m m m m

m
   

   

Now, consider the Diophantine equation 24m + 12 = 5 for some integers  ( > 1), which 

states that 5 divides 24m + 12 for some m. The equation has the solution m = 5s + 2, s  0. 

Therefore, if m  5s + 2, then the term inside the square bracket is an integer. 

Next, let m = 5s + 2, s  0. Consider the expression: 

(24   11)(24   10)(8   3)(3   1)(24   7)
(24 12)

5 6
[ ]m m m m m

m
    


  

=
(24   11)(12   5)(8   3)(3   1)(24   7)

(24 12)
3 5

[ ]m m m m m
m

    



. 

Here, the term inside the square bracket is an integer if and only if 3 divides 8m + 3 

(noting that 5 divides one of the five factors in the numerator). Thus, 8m + 3 = 3 for some 

integer   1. The solution of the equation is m = 3(t + 1), t  0 being an integer. The 

coupled Diophantine equation is 3(t + 1) = 5s + 2, whose solution is t = 5u + 3, so that    m = 

3(5u + 3) + 3 = 3(5u + 4), u  0 being an integer. 

Next, let m = 5s + 2, s  0, m  3(t + 1), t  0. Consider the expression:   

(24   11)(12   5)(8   3)(3   1)(24   7)(24   6)
(24 12)

3 5 7
[ ]m m m m m m

m
     


 

 

=
(24   11)(12   5)(8   3)(3   1)(24   7)(8   2)

(24 12) .
5 7

[ ]m m m m m m
m

     



 

If 7 does not divide 24m + 12, then the term inside the square bracket is an integer (since 5 

divides one of the factors in the numerator). Thus, the Diophantine equation to be solved 
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is 24m = 7a – 12, where a ( > 0) is an integer. The solution of the equation is m = 7v + 3, 

where v  0 is an integer. 

Finally, let m = 5s + 2, s  0, m = 7v + 3, v  0, m  3(t + 1), t  0. In this case, clearly SS(24m 

+ 12)  24m + 4. So, consider the expression:    

(24   11)(12   5)(8   3)(3   1)(24   7)(8   2)(24   5)
(24 12)

5 7 8
[ ]m m m m m m m

m
      


 

 

(24   11)(12   5)(8   3)(3   1)(24   7)(4   1)(24   5)
= (24 12)

4 5 7
[ ]m m m m m m m

m
      


 

. 

Note that, the term inside the square bracket is an integer if and only if 4 divides 3m + 1, 

giving rise to the Diophantine equation 3m + 1 = 4x (for some integer x  1), whose 

solution is m = 4y + 1, y  0 being an integer. Now, the solution of the coupled Diophantine 

equation 5s + 2 = 7v + 3 is s = 7z + 3, so that m = 5(7z + 3) + 2 = 35z + 17 for some integer   z 

 0. Next, the combined Diophantine equation is 35z + 17 = 4y + 1, whose solution is    z =
 

4w, so that finally, m = 140w + 17. 

Some of the values obtained using Propositions 3.1 are listed below: 

SS(54) = 49, SS(78) = 73, SS(102) = 97, SS(126) = 121, SS(174) = 169, 

SS(30) = 23, SS(150) = 143, SS(270) = 263, SS(390) = 383, SS(510) = 503, 

SS(630) = 622, SS(2310) = 2302, SS(3990) = 3982,  

SS(6510) = 6501, SS(14910) = 14901, SS(21630) = 21621, SS(30030) = 30021. 

Proposition 3.2 gives the following values: 

SS(12) = 7, SS(36) = 31, SS(84) = 79, SS(108) = 103, SS(132) = 127, 

SS(300) = 294, SS(660) = 654, SS(1020) = 1014, SS(1740) = 1734,  

SS(60) = 53, SS(180) = 173, SS(540) = 533, SS(780) = 773, 

SS(420) = 412, SS(3780) = 3772, SS(10500) = 10492, SS(13860) = 13852. 

Lemma 3.2 finds the expression of SS(24m) when m is not a multiple of 5. Thus, the next 

problem to consider is the function SS(120m). The following result is evident. 

Corollary 3.1: SS(120m)  120m – 6 for any m (  1). 

But the expression 

C(120m, 120m – 6)  

C(120m, 120m – 6) 
(120   1)(120   2)(120   3)(120   4)(120   5)

120
2 3 4 5 6

[ ]m m m m m
m

    
   

 

(120   1)(60   1)(40   1)(30   1)(24   1)
120

6
[ ]m m m m m

m
    

  

shows that SS (120m)  120m – 6 (since none of the five factors in the numerator inside the 

square bracket is divisible by 2), and hence, SS (120m)  120m – 7 for any m  1. The 

following lemma proves that the inequality holds with equality sign if and only if m is not 

divisible by 7. 

Lemma 3.3: SS(120m) = 120m – 7 for any integer m not divisible by 7. 

Proof: Consider the simplified expression for C(120m, 120m – 7): 

C(120m, 120m – 7)  
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
(120   1)(60   1)(40   1)(30   1)(24   1)(20   1)

120
7

[ ].m m m m m m
m

     
 

Now, if m is not a multiple of 7, the term inside the square bracket on the right-hand side 

is divisible by 7.  

Using Lemma 3.3, the following values may be obtained : 

SS(120) = 113, SS(240) = 233, SS(360) = 353, SS(480) = 473, SS(600) = 593. 

The functions SS(129m + 6j) for j = 1, 2, … are given below. 

Corollary 3.2: For any integer m  1, 

(1) SS(120m + 6) = 120m + 1,                     (2) SS(120m + 12) = 120m + 7, 

(3) SS(120m + 18) = 120m + 14,           (4) SS(120m + 24) = 120m + 19, 

(5) SS(120m + 30) = 120m + 23, if m  7s + 5, (6) SS(120m + 36) = 120m + 31, 

(7) SS(120m + 42) = 120m + 38,           (8) SS(120m + 48) = 120m + 43, 

(9) SS(120m + 54) = 120m + 49,  

(10)  120 54,  3 2,  0                           
(120 60)  

120 53,  3 2,  0,  7 3,  0

m if m s s
SS m

m if m s s m t t

   
 

      
 

(11)  SS(120m + 66) = 120m + 62,                  (12) SS(120m + 72) = 120m + 67, 

(13)  SS(120m + 78) = 120m + 74,                   (14) SS(120m + 84) = 120m + 79, 

(15)  SS(120m + 90) = 120m + 86,                   (16) SS(120m + 96) = 120m + 91, 

(17)  SS(120m + 102) = 120m + 97,         (18) SS(120m + 108) = 120m + 103, 

(19)  SS(120m + 114) = 120m + 110. 

Proof: (1) Writing SS(120m + 6) = SS(24(5m) + 6), by Proposition 3.1, 

SS(120m + 6) = 120m + 1. 

Similarly, 

SS(120m + 30) = SS(24(5m + 1) + 6) = 120m + 23, if m  7s + 5, 

SS(120m + 54) = SS(24(5m + 2) + 6) = 120m + 49, 

SS(120m + 78) = SS(24(5m + 3) + 6) = 120m + 73, 

SS(120m + 102) = SS(24(5m + 4) + 6) = 120m + 97, 

which are respectively parts (5), (9), (13) and (17). 

To prove part (2), write SS(120m + 12) = SS(24(5m) + 12), so that by Proposition 3.2, 

SS(120m + 12) = 120m + 7. 

Similarly, 

SS(120m + 36) = SS(24(5m + 1) + 12) = 120m + 31, 

SS(120m + 84) = SS(24(5m + 3) + 12) = 120m + 79, 

SS(120m + 108) = SS(24(5m + 4) + 12) = 120m + 103, 

which are parts (6), (14) and (18) respectively. To prove part (10), write 

SS(120m + 60) = SS(24(5m + 2) + 12). 

To apply Proposition 3.2, note that the condition therein takes the form 

5m + 2 = 3(5s + 4) if and only if m = 3s + 2, s  0 being an integer. 

Therefore, SS(120m + 60) = 120m + 54, if m = 3s + 2, otherwise  

SS(120m + 60) = 53, if m  7s + 3. 

Now, since SS(120m + 18) = SS(24(5m) + 18), by Lemma 3.1, 

SS(120m + 18) = 120m + 14. 
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Similarly, 

SS(120m + 42) = SS(24(5m + 1) + 18) = 120m + 38, 

SS(120m + 66) = SS(24(5m + 2) + 18) = 120m + 62, 

SS(120m + 90) = SS(24(5m + 3) + 18) = 120m + 86, 

SS(120m + 114) = SS(24(5m + 4) + 18) = 120m + 110. 

Thus, parts (3), (7), (11), (15) and (19) are proved. Finally, by Lemma 3.2, 

SS(120m + 24) = SS(24(5m + 1)) = 120m + 19, 

SS(120m + 48) = SS(24(5m + 2)) = 120m + 43, 

SS(120m + 72) = SS(24(5m + 3)) = 120m + 67, 

SS(120m + 96) = SS(24(5m + 4)) = 120m + 91, 

establishing parts (4), (8), (12) and (16) of the corollary. 

An immediate implication of Lemma 3.3 is the following 

Corollary 3.3: SS(840m)  840m – 8 for any m (  1). 

  However, the expression  

C(840m, 840m – 8)  


(840   1)(840   2)(840   3)(840   4)(840   5)(840   6)(840   7)

840
2 3 4 5 6 7 8

[ ]m m m m m m m
m

      
     

 

=
(840   1)(420   1)(280   1)(210   1)(168   1)(140   1)(120   1)

840
8

[ ]m m m m m m m
m

      
 

shows that SS (840m)  840m – 8 for any m  1 (since each factor in the numerator inside 

the square bracket is odd, and hence, not divisible by 2). The following lemma gives the 

condition under which SS (840m) = 840m – 9. 

Lemma 3.4: For any integer m  1, SS(840m) = 840m – 9  

if and only if either m = 9s + 1, s  0, or m = 9t + 2, t  0. 

Proof: Consider the following simplified expression for C(840m, 840m – 9): 

(840   1)(420   1)(280   1)(210   1)(168   1)(140   1)(120   1)(105   1)
840

9
[ ].m m m m m m m m

m
       

 

Now, the term inside the square bracket is an integer if and only if 9 divides either   280m 

– 1, or else 140m – 1. The first condition leads to the Diophantine equation 

280m = 9x + 1 for some integer x  1, 

whose solution is m = 9s + 1, s  0. The second possibility results in the equation  

140m = 9y + 1 for some integer y  1, 

with the solution m = 9t + 2, t  0.  

Some of the values obtained from Lemma 3.4 are the following: 

SS(840) = 831, SS(1680) = 1671, SS(8400) = 8391, SS(9240) = 9231.   

Lemma 3.5: For any integer m  1, SS(840m) = 840m – 10 

if and only if m = 10s + 7, s  0 with s  9u + 3, u  0, or s  9v + 4, v  0. 

Proof: Consider C(840m, 840m – 10), which in simplified form, is 

(840   1)(420   1)(280   1)(210   1)(168   1)(140   1)(120   1)(105   1)(280   3)
840

3 10
[ ].m m m m m m m m m

m
        


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Now, the problem is to find the condition such that the term inside the square bracket is an 

integer. First, note that exactly one of 280m – 1, 140m – 1, and 280m – 3 is divisible by 3 

(by Corollary 2.2). Thus, it is sufficient to find the condition such that the numerator is 

divisible by 25. Clearly, 105m – 1 is even if and only if m is odd. In addition, 168m – 1 

must be divisible by 5. Thus, the resulting Diophantine equations are 

105m = 2 + 1 for some integer   1, 168m = 5 + 1 for some integer   1, 

with respective solutions 

m = 2a + 1, m = 5b + 2 for some integers a  0, b  0. 

The combined Diophantine equation is 2a = 5b + 1, with the solution a = 5s + 3, and hence 

m = 2(5s + 3) + 1 = 10s + 7, s  0 being an integer. 

Next, we have to find the conditions such that m does not satisfy either of the two 

conditions of Lemma 3.4. These lead to the Diophantine equations 

10s + 7 = 9x + 1, 10s + 7 = 9y + 2, 

respectively, with respective solutions  

s = 9u + 3, u  0, s = 9v + 4, v  0. 

Lemma 3.6: Let the integer m be such that m  9u + 1, u  0, m  9v + 2, v  0, m  10w + 7, 

w  0. Then, 

SS(840m) = 840m – 11, if 11 does not divide m. 

Proof: The simplified form of C(840m, 840m – 11) is 

(840   1)(420   1)(280   1)(210   1)(168   1)(140   1)(120   1)(105   1)(280   3)(840   10)
840

3 10 11
[ ]m m m m m m m m m m

m
         

 
 

(840   1)(420   1)(280   1)(210   1)(168   1)(140   1)(120   1)(105   1)(280   3)(84   1)
840

3 11
[ ]m m m m m m m m m m

m
         




 

Now, one of 280m – 1, 140m – 1, and 280m – 3 must be divisible by 3 (by Corollary 2.2). 

Also, if 11 does not divide m, then 11 divides the numerator so that the term inside the 

square bracket is an integer. 

Some of the values obtained using Lemma 3.5 and Lemma 3.6 are the following : 

SS(5880) = 5870, SS(14280) = 14270, SS(22680) = 22670, SS(47880) = 47870,   

SS(2520) = 2509, SS(3360) = 3349, SS(4200) = 4189, SS(5040) = 5029.  

Lemma 3.7: Let the integer m be of any one of the forms m = 9s + 1, s  0, m = 9t + 5, t  0. 

Then, 

SS(9240m) = 9240m – 9. 

Proof: Consider the following expression for C(9240m, 9240m – 9): 

(9340 1)(9240 2)(9240 3)(9240 4)(9240 5)(9240 6)(9240 7)(9240 8)
9240 ,

2 3 4 5 6 7 8 9
[ ]m m m m m m m m

m
       

      
 

which simplifies to 

(9240 1)(4620 1)(3080 1)(2310 1)(1848 1)(1540 1)(1320 1)(1155 1)
9240 .

9
[ ]m m m m m m m m

m
       

 

Now, the term inside the square bracket is an integer if and only 9 divides either 3080m – 

1, or 1540m – 1. Thus, one of the following two Diophantine equations must be satisfied : 

3080m = 9 + 1 for some integer   1, 1540m = 9 + 1 for some integer   1.  

The solutions of the above equations are respectively 

m = 9t + 5, m = 9s + 1 for some integers t  0, s  0. 
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Lemma 3.8: Let m = 10s + 7, u  0, with s  9x + 3, x  0, s  9y + 7, y  0. Then, 

SS(9240m) = 9240m – 10. 

Proof: C(9240m, 9240m – 10), in simplified form, is 

(9340 1)(4620 1)(3080 1)(2310 1)(1848 1)(1540 1)(1320 1)(1155 1)(9240 9)
9240

9 10
[ ]m m m m m m m m m

m
        


 

(9240 1)(4620 1)(3080 1)(2310 1)(1848 1)(1540 1)(1320 1)(1155 1)(3080 3)
9240 .

3 10
[ ]m m m m m m m m m

m
        




 

Now, the numerator of the term inside the square bracket is divisible by 3 (by virtue of 

Corollary 2.2). Thus, it is sufficient to find the condition such that the numerator is 

divisible by 10. But this is possible only if 1155m – 1 is even and 1848m – 1 is divisible by 

5. Thus, the following two coupled Diophantine equations result : 

1155m = 2 + 1, 1848m = 5 + 1 for some integers ,  (  1), 

with respective solutions 

m = 2u + 1, m = 5v + 2 for some integers u  0, v  0. 

Next, the combined Diophantine equation 2u = 5v + 1 is considered, whose solution is    u 

= 5s + 3, so that 

m = 2(5s + 3) + 1 = 10s + 7, s  0 being an integer. 

Now, by Lemma 3.7, m  9a + 1 and m  9b + 5. Thus, the two Diophantine equations 

below are to be considered: 

10s = 9a – 6, 10s = 9b – 2, for some integers a > 0, b > 0. 

The solutions of the above equations are s = 9x + 3 and s = 9y + 7 respectively. 

Lemma 3.7 and Lemma 3.8 give the following values. 

SS(9240) = 9231, SS(46200) = 46191, SS(92400) = 92391, SS(129360) = 129351,   

SS(64680) = 64670, SS(157080) = 157070, SS(249480) = 249470.  

The expression 

(9240 1)(4620 1)(3080 1)(2310 1)(1848 1)(1540 1)(1320 1)(1155 1)(3080 3)(9240 10)
9240

3 10 11
[ ]m m m m m m m m m m

m
         

 
  

(9240 1)(4620 1)(3080 1)(2310 1)(1848 1)(1540 1)(1320 1)(1155 1)(3080 3)(924 1)
9240

3 11
[ ]m m m m m m m m m m

m
         




 

shows that SS(9240m)  9240m – 11. The following lemma gives a set of necessary and 

sufficient conditions such that SS (9240m) = 9240m – 12. 

Lemma 3.9: Let the integer m be of any one of the forms m = 36u + 15, u  0, m = 36v + 

19, v  0, m = 36w + 23, w  0, with m  9a + 1, a  0, m  9b + 5, b  0, m  10c + 7, c  0. 

Then, 

SS(9240m) = 9240m – 12. 

Proof: First, C(9240m, 9240m – 12) is simplified as follows: 

(9240 1)(4620 1)(3080 1)(2310 1)(1848 1)(1540 1)(1320 1)(1155 1)(3080 3)(924 1)(9240 11)
9240

3 11 12
[ ]m m m m m m m m m m m

m
          

 
 

(9240 1)(4620 1)(3080 1)(2310 1)(1848 1)(1540 1)(1320 1)(1155 1)(3080 3)(924 1)(840 1)
9240 .

3 12
[ ]m m m m m m m m m m m

m
          




 

Now, we have to find the condition such that the term inside the square bracket is an 

integer. The first condition is that 1155m – 1 must be divisible by 4, giving rise to the 

Diophantine equation 
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1155m = 4x + 1 for some integer x  0,  

whose solution is m = 4 + 3 for some integer   0. 

The second necessary condition is that one of 3080m – 1, 1540m – 1 and 3080m – 3 is 

divisible by 9. Thus, one of the following three equations must hold true : 

3080m = 9 + 1, 1540m = 9 + 1, 3080m = 9 + 3 for some integers , ,  (  1), 

with respective solutions 

m = 9a + 5, m = 9b + 1, m = 9c + 6 for some integers a  0, b  0, c  0. 

Now, considering the combined Diophantine equation 4 + 3 = 9a + 5, the solution is 

found to be  = 9u + 5, so that 

m = 4(9u + 5) + 3 = 36u + 23, u  0. 

Next, the coupled equation to be considered is 4 + 3 = 9b + 1, whose solution is  = 9v + 4, 

so that 

m = 4(9v + 4) + 3 = 36v + 19, v  0. 

Finally, the solution of the coupled Diophantine equation 4 + 3 = 9c + 6 is  = 9w + 3, so 

that 

m = 4(9w + 3) + 3 = 36w + 15, w  0. 

Some of the values obtained from Lemma 3.9 are as follows: 

SS(138600) = 138588, SS(471240) = 471228, SS(1136520) = 1136508,   

SS(1469160) = 1469148, SS(1801800) = 1801788, SS(2134440) = 2134428.  

Lemma 3.10: Let the integer m be such that m  13,   1, m  9a + 1, a  0, m  9b + 5,  b 

 0, m  10c + 7, c  0, m  36u + 15, u  0, m  36v + 19, v  0, m  36w + 23, w  0. Then, 

SS(9240m) = 9240m – 13. 

Proof: The proof is evident from the simplified expression of C(9240m, 9240m – 13): 

(9240 1)(4620 1)(3080 1)(2310 1)(1848 1)(1540 1)(1320 1)(1155 1)(3080 3)(924 1)(840 1)(9240 12)
9240

3 12 13
[ ]m m m m m m m m m m m m

m
           

 
 

(9240 1)(4620 1)(3080 1)(2310 1)(1848 1)(1540 1)(1320 1)(1155 1)(3080 3)(924 1)(840 1)(770 1)
9240 ,

3 13
[ ]m m m m m m m m m m m m

m
           




 

since, by assumption, the numerator of the term inside the square bracket is divisible by 

13.  

Lemma 3.10 gives the following values : 

SS(18480) = 18467, SS(27720) = 27707, SS(36960) = 36947, SS(55440) = 55427.   

Next, the function to study is SS (120120m), m  1 being any integer. Note that 

SS(120120m)  120120m – 9 for all m  1. 

Lemma 3.11: Let the integer m be of the form m = 9s + 7, s  0, or m = 9t + 8, t  0. Then, 

SS(120120m) = 120120m – 9. 

Proof: Consider the following expression for C(120120m, 120120m – 9): 

(120120 1)(120120 2)(120120 3)(120120 4)(120120 5)(120120 6)(120120 7)(120120 8)
120120

2 3 4 5 6 7 8 9
[ ]m m m m m m m m

m
       

      

 

(120120 1)(60060 1)(40040 1)(30030 1)(24024 1)(20020 1)(17160 1)(15015 1)
120120 .

9
[ ]m m m m m m m m

m
       


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Now, the term inside the square bracket is an integer if and only 9 divides either   20020m 

– 1, or 40040m – 1, which give rise to the following two Diophantine equations 

respectively: 

20020m = 9 + 1, 40040m = 9 + 1 for some integers   0,   0.  

The above equations have the following solutions respectively :  

m = 9s + 7, m = 9t + 8 for some integers s  0, t  0. 

Lemma 3.12: Let m = 10s + 9, s  0, with s  9x + 7, x  0, s  9y + 8, y  0. Then, 

SS(120120m) = 120120m – 10. 

Proof: C(120120m, 120120m – 10), in simplified form, is 

(120120 1)(60060 1)(40040 1)(30030 1)(24024 1)(20020 1)(17160 1)(15015 1)(120120 9)
120120

9 10
[ ]m m m m m m m m m

m
        


 

(120120 1)(60060 1)(40040 1)(30030 1)(24024 1)(20020 1)(17160 1)(15015 1)(40040 3)
120120 .

3 10
[ ]m m m m m m m m m

m
        




 

Note that, the numerator of the term inside the square bracket is divisible by 3 (by virtue 

of Corollary 2.2). Thus, the term inside the square bracket is an integer if and only if 

15015m – 1 is even and 24024m – 1 is divisible by 5. That is, 

15015m = 2 + 1, 24024m = 5 + 1 for some integers ,  (  1), 

with the solutions 

m = 2u + 1, m = 5v + 4 for some integers u  0, v  0. 

respectively. Now, the combined Diophantine equation is 2u = 5v + 3 whose solution is   u 

= 5s + 4, so that 

m = 2(5s + 4) + 1 = 10s + 9, s  0 being an integer. 

Since, by Lemma 3.11, m  9a + 7 and m  9b + 8, the two Diophantine equations below 

are to be considered : 

10s = 9a – 2, 10s = 9b – 1, for some integers a > 0, b > 0. 

The solutions of the above equations are s = 9x + 7 and s = 9y + 8 respectively. 

Lemma 3.11 and Lemma 3.12 give the following values. 

SS(840840) = 840831, SS(960960) = 960951, SS(1921920) = 1921911.   

SS(1081080) = 1081070, SS(2282280) = 2282270, SS(3483480) = 3483470.   

The expression 

(120120 1)(60060 1)(40040 1)(30030 1)(24024 1)(20020 1)(17160 1)(15015 1)(40040 3)(120120 10)
120120

3 10 11
[ ]m m m m m m m m m m

m
         

 
  

(120120 1)(60060 1)(40040 1)(30030 1)(24024 1)(20020 1)(17160 1)(15015 1)(40040 3)(12012 1)
120120

3 11
[ ]m m m m m m m m m m

m
         




 

shows that SS(1241240m)  1241240m – 11. However, the following lemma can be 

proved.  

Lemma 3.13: Let m = 36s + 15, s  0 with m  9a + 7, a  0, m  9b + 8, b  0, m  5c + 4,   c 

 0. Then, 

SS(120120m) = 1201200m – 12. 

Proof: Consider C(9240m, 9240m – 12), which is simplified as follows: 

(120120 1)(60060 1)(40040 1)(30030 1)(24024 1)(20020 1)(17160 1)(15015 1)(40040 3)(12012 1)(120120 11)
120120

3 11 12
[ ]m m m m m m m m m m m

m
          

   
(120120 1)(60060 1)(40040 1)(30030 1)(24024 1)(20020 1)(17160 1)(15015 1)(40040 3)(12012 1)(10920 1)

120120 .
3 12

[ ]m m m m m m m m m m m
m

          


  
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Now, the problem is to find the condition such that the term inside the square bracket is an 

integer. The first condition is that 15015m – 1 must be divisible by 4, so that 

15015m = 4x + 1 for some integer x  1.  

The solution of the above equation is m = 4 + 3 for any integer   0. 

In addition, 40040m – 3 must be divisible by 9, so that 

40040m = 9 + 3 for some integers  (  1), 

whose solution is 

m = 9a + 6 for some integer a  0. 

Now, the solution of the combined Diophantine equation 4 + 3 = 9a + 6 is  = 9s + 3, so 

that 

m = 4(9s + 3) + 3 = 36s + 15, s  0.         

Some of the values obtained from Lemma 3.13 are as follows : 

SS(1801800) = 1801788, SS(6126120) = 6126108, SS(10450440) = 10450428. 

Lemma 3.14: SS(120120m)  120120m – 13 for any m  1. 

Proof: The proof is evident from the following expression of C(9240m, 9240m – 13): 

(120120 1)(60060 1)(40040 1)(30030 1)(24024 1)(20020 1)(17160 1)(15015 1)(40040 3)(12012 1)(10920 1)(120120 12)
120120

3 12 13
[ ]m m m m m m m m m m m m

m
           

 
 

(120120 1)(60060 1)(40040 1)(30030 1)(24024 1)(20020 1)(17160 1)(15015 1)(40040 3)(12012 1)(10920 1)(10010 1)
120120 ,

3 13
[ ]m m m m m m m m m m m m

m
           




 

since the numerator of the term inside the square bracket is not divisible by 13.  

   

4. Some Remarks 

 

Exploiting the properties of the function SS (n) found so far, interesting results may be 

derived, some of which are given below. 

Lemma 4.1: There is an infinite number of integer n such that 
     

         
    

Proof: Let n = 6s – 1 for any s  1. Then, SS(n) = n – 2 (by Lemma 1.1), SS(n + 1)  n – 3 (by 

Corollary 1.1), so that 

     

         
 

     

     
    

Next, let n = 6s + 1 for any s  1. Then, SS(n) = n – 2 and (by Lemma 1.2), SS(n + 1) = n – 2, 

so that 

     

         
    

Note that, in either case, there is an infinite number of n with the given property. 

Consider the sequence 

     

     
 
      

      
 
      

      
 
      

      
 
      

      
 
      

      
       

that is,  
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where each term is greater than 1. Also, note that 

SS(7) = 5 = SS(8), SS(13) = 11 = SS(14), SS(19) = 17 = SS(20), SS(25) = 23 = SS(26). 

It may be mentioned here that, let n = 6t + 3 for some integer t  1. Then, SS(n) = n – 2. 

Now, since n + 1 = 6s + 4 is even, and is not divisible by 3, by Lemma 1.2, SS(n + 1) = n – 2, 

so that 

     

         
    

Thus, for example,  

SS(9) = 7 = SS(10), SS(15) = 13 = SS(16), SS(21) = 19 = SS(22), SS(27) = 25 = SS(28). 

Lemma 4.2: There is an infinite number of integer n such that 
( )

(   1)
1.

SS n

SS n 
  

Proof: Let n = 6s for any s  0. Then, SS(n)  n – 4, SS(n + 1) = n – 1. Therefore, 
     

         
 

     

     
    

Now, since there is an infinite number of n of the given form, the lemma is proved. 

In the sequence 

     

     
 
      

      
 
      

      
 
      

      
 
      

      
 
      

      
       

that is,  

 

 
 
 

  
 
  

  
 
  

  
 
  

  
 
  

  
       

each term is less than 1. 

Lemma 4.1 and Lemma 4.2 together show no regular pattern in the behavior of the 

function SS (n). Moreover,  

 

 
 

 

  
 

  

  
 

  

  
  but 

  

  
 

  

  
  

Thus, the sequence {
     

         
} is not monotonic. 

Lemma 4.3: Let m = 2s + 1, s  0. Then there is an integer n such that SS(n) = m. 

Proof: Let n = 2s + 3, s  1. Then, by Lemma 1.1, SS(n) = m.   

Lemma 4.3 shows that the odd (positive) integers (including 1) are in the range of the 

function SS (.). 

It has been proved in Islam et al. [3] that, there is no solution to the equation SS(n + 1) = 

SS(n) + 1. However, the following results can be proved. 

Lemma 4.4: The equation  

SS(n + 1) = SS(n) + 2                                                (4.1) 

has an infinite number of solutions. 

Proof: Let the Diophantine equation (4.1) be satisfied. Then, n must be even. Otherwise, 

n is odd, so that 

SS(n + 1)  n – 2, SS(n) = n – 2, 

violating the equation (4.1). Hence, n must be even with 
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SS(n + 1) = n – 1, SS(n)  n – 3. 

Thus, (4.1) is satisfied if and only if n is such that SS(n) = n – 3. Then, by Lemma 1.2, n is 

not divisible by 3. 

Let n = 6m + 2, m  1. Then, by Lemma 1.2 and Lemma 1.1, 

SS(n) = n – 3, SS(n + 1) = n – 1, 

so that SS(n + 1) = SS(n) + 2. Since there is an infinite number of integer n of the given 

form, the lemma is proved. 

It may be mentioned here that, taking n = 6m + 4, m  1, by Lemma 1.2 and Lemma 1.1, 

SS(n + 1) = n – 1, SS(n) = n – 3, 

so that SS(n + 1) = SS(n) + 2. 

Lemma 4.5: The equation SS(n + 1) = SS(n) + 3 has an infinite number of solutions. 

Proof: Let n = 24m + 18, where m  0 is an integer. By Lemma 3.1 and Lemma 1.1, 

SS(n) = n – 4, SS(n + 1) = n – 1, 

so that SS(n + 1) = SS(n) + 3. Note that, there is an infinite number of integer n of the given 

form.  

Lemma 4.6: The equation SS(n + 1) = SS(n) + 4 has an infinite number of solutions. 

Proof: Let n = 12m, m  1 is an integer not divisible by 5. Then, by Lemma 1.3 and 

Lemma 1.1, 

SS(n) = n – 5, SS(n + 1) = n – 1. 

The lemma is established with such an infinite number of n. 

Lemma 4.7: The equation SS(n + 1) = SS(n) + 5 has an infinite number of solutions. 

Proof: Let n = 24m + 12, m = 3(5s + 4), s  0. By Proposition 3.2 and Lemma 1.1, 

SS(n) = n – 6, SS(n + 1) = n – 1. 

Thus, the given equation is satisfied with this n. Obviously, there is an infinite number of 

such n. 

Lemma 4.8: The equation SS(n + 1) = SS(n) + 6 has an infinite number of solutions. 

Proof: Let m (  1) be an integer not divisible by 7 with m  4 + 3 (for any integer   0) 

and m  2(6 + 5) (for any   0). Let n = 30m. Then, by Lemma 1.4 and Lemma 1.1, 

SS(n) = n – 7, SS(n + 1) = n – 1. 

This n proves the lemma. 

The next two lemmas prove that each of the three equations, SS(n + 1) = SS(n) – 1,  SS(n + 

1) = SS(n) – 2, SS(n + 1) = SS(n) – 3, and SS(n + 1) = SS(n) – 4 is satisfied for an infinite 

number of n. 

Lemma 4.9: The equation  

SS(n + 1) = SS(n) – 1                                                (4.2) 

has an infinite number of solutions. 

Proof: First, observe that any integer n satisfying (4.2) must be odd. The proof is as 

follows : Let n be even, so that 

SS(n)  n – 3, SS(n + 1) = n – 1, 

violating the equation (4.2). Hence, n must be odd with SS(n) = n – 2, SS(n + 1) = n – 3.  

So, let n = 24m + 17, m  0. Then, by Lemma 3.1, 

SS(n + 1) = n – 3 = SS(n) – 1. 
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Since there is an infinite number of integer n of the given form, the lemma is proved. 

The proof of Lemma 3.1 shows that the necessary and sufficient condition that the 

relationship SS(n + 1) = SS(n) – 1 holds is that n = 24m + 17, m  0. 

Lemma 4.10: The equation SS(n + 1) = SS(n) – 2 has an infinite number of solutions. 

Proof: With n = 24m – 1, m  1 being an integer not divisible by 5, by Lemma 3.2, 

SS(n + 1) = n – 4 = SS(n) – 2. 

The lemma is proved by noting that there is an infinite number of such n. 

Lemma 4.11: The equation SS(n + 1) = SS(n) – 3 has an infinite number of solutions. 

Proof: Let n = 24m + 11, m = 3(5s + 4), s  0. By Proposition 3.2 and Lemma 1.1, 

SS(n) = n – 2, SS(n + 1) = n – 5. 

Thus, the given equation is satisfied with this n, which is infinite in number. 

Lemma 4.12: The equation SS(n + 1) = SS(n) – 4 has an infinite number of solutions. 

Proof: Let n = 30m – 1, m  1 being an integer not divisible by 7, with m  4 + 3 (for any  

integer   0) and m  2(6 + 5) (for any integer   0). Then, by Lemma 1.4, 

SS(n + 1) = n – 6. 

Since (by Lemma 1.1), SS (n) = n – 2, the lemma is established with this n.  

Lemma 4.13: The equation SS(n + 2) = SS(n) has an infinite number of solutions. 

Proof: Let n = 24m – 2, m  1 being an integer not divisible by 5. Then, by Lemma 3.2, 

SS(n + 2) = n – 3. 

This, coupled with Lemma 1.2, proves the desired result. 

Lemma 4.14: The following results hold :   

1. SS(n)  2 for any integer n  1, 

2. SS(n)  3 for any integer n  8, 

3. SS (n)  4 for any integer n  10, 

4. SS (n)  5 for any integer n  12, 

5. SS (n)  6 for any integer n  14. 

Proof: The proof is by part 1 only, the proof being similar in other cases. So, let SS(n) = 2 

for some integer n. Then, by definition,  

(   1)(   2) ... 4 3

2 3  ... (   3)(   2)

n n

n n

  

   
 is an integer,  1 

and 
(   1)(   2) ... 4

2 3  ... (   3)

n n

n

 

  
  is not an integer. But this is self-contradictory for n  6, since, so  

3 1,
  2n




, so that  

(   1)(   2) ... 5 4 3

2 3  ... (   3)(   2)

n n

n n

    

    
<

(   1)(   2) ... 5 4
.

2 3  ... (   3)

n n

n

   

   
 

The case n < 6 can easily be checked.  

The following two lemmas involve SS (n) and the divisor function d(.). 

Lemma 4.15: The inequality SS(n) + d(SS(n)) < n has an infinite number of solutions. 

Proof: Let n = p + 3, where p  5 is a prime. Then, SS(n) = p, d(SS(n)) = 2, so that the given 

inequality is satisfied with this n. 
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The following results involve the two functions SS (n) and S(n), where S(n) is the 

Smarandache function, introduced by Smarandache [8], and is defined as follows : 

S(n) = min {m : n divides m!}. 

Several researchers have studied the function, including Majumdar [9, 10], which also 

include summaries of other major research works. For a recent survey on S(n), the reader 

is referred to Huaning [11].  

Lemma 4.16: The equation SS(n) = S(n) – 2 has an infinite number of solutions. 

Proof: For any prime p  3, SS(p) = p – 2 and S(p) = p (by Lemma 3.1.1 in Majumdar [9]). 

Thus, the given equation is satisfied when n = p. 

Lemma 4.17: The equation SS(n) = 2S(n) – 3 possesses an infinite number of solutions. 

Proof: For any prime p  5, SS(2p) = 2p – 3, S(2p) = p (by Lemma 3.1.3 in Majumdar [9]). 

Thus, the given equation is satisfied with this n. 

The lemmas below involve the two functions, SS (n) and Z(n), where Z(n) is the pseudo-

Smarandache function, introduced by Kashihara [12], and defined as follows : 

Z(n) = min {m : n divides 
        

 
}. 

For details on Z(n), the readers are referred to Majumdar [9, 10], which also provides 

summaries of the findings of the other researchers. A recent survey on Z(n) is given in 

Huaning [13].  

Lemma 4.18: The equation SS(n) = 2Z(n) – 3 has an infinite number of solutions. 

Proof: Let the prime p  3 be of the form p = 4x – 1, x  1. Then, by virtue of Lemma 1.2, 

SS(2p) = 2p – 3, while by Corollary 4.2.1 in Majumdar [9], Z(2p) = p. Thus, the given 

equation is satisfied when n = 2p. The proof is completed by noting that there is an infinite 

number of primes of the given form. 

Lemma 4.19: The equation SS(n) = 2Z(n) + 7 possesses an infinite number of solutions. 

Proof: For any integer k  3, SS(2k) = 2k – 3, and Z(2k) = 2k+1 – 1 (by Lemma 4.2.2 in 

Majumdar [9]). Thus, n = 2k satisfies the given equation. 

Lemma 4.20: The equation SS(n) = 3Z(n) + 1 admits an infinite number of solutions. 

Proof: Let p be a prime of the form p = 3y + 1, y  2. Note that there is an infinite number 

of prime of this form (by Lemma 2.5). Now, by Lemma 1.1, SS(3p) = 3p – 2 and by 

Corollary 4.2.1 in Majumdar [9], Z(3p) = p – 1. Thus, the given equation is satisfied when 

n = 3p. 

Given the function SS(n), let SS (k)(n) be the k-fold composition of SS(n) with itself, that is, 

( )
o o o( )  ( ),k

k fold

SS n SS SS ... SS n


  

defined by 

( ) ( ) ( (  )) ( ).k

k fold

SS n SS SS ... SS n



  

Then the following lemmas can be proved. 

Lemma 4.21: Let n  1 be odd. Then, there is an integer k ( > 0) such that SS(k)(n) = 1. 

Proof: For definiteness, let n = 2m + 1 for some integer m  0. Then, by Lemma 1.1, 
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SS(n) = 2m – 1. 

We now want to show that 

SS(j)(n) = 2m – (2j – 1) for all j with 1  j  m.                             (4.3) 

The proof is by induction on j. The result is clearly true for j = 1. Now, assuming its 

validity for some j (so that SS(j)(n) = 2m – (2j – 1)), we get 

SS(j+1)(n) = SS(2m – (2j – 1)) = [2m – (2j – 1)] – 2 = 2m – [(2(j + 1) – 1, 

which shows that the result is true for j + 1 as well. With j = m in (4.3), we get SS(m)(n) = 1.  

Lemma 4.22: Let n be an even integer not divisible by 3. Then, there exists an integer k  ( 

> 0) such that SS(k)(n) = 1. 

Proof: For such an n, SS(n) = n – 3 is odd, and consequently, the result follows by virtue of 

Lemma 4.21. 

Lemma 4.23: Let n = 24m + 18, m  0 being an integer. Then, there exists an integer k   ( > 

0) such that SS(k)(n) = 1. 

Proof: For such an n, by Lemma 3.1, SS(n) = n – 4 is even but not divisible by 3. 

Therefore, by Lemma 1.2, SS(2)(n) = n – 7 which is odd. The rest now follows by Lemma 

4.21.  

Lemma 4.24: There exists an integer k ( > 0) such that SS(k)(24m) = 1 for any integer m  1. 

Proof: By Lemma 3.2, SS(24m) = 24m – 5 is odd. Then, the result follows by Lemma 4.21.  

Lemma 4.25: There exists an integer k ( > 0) such that SS(k)(24m + 6) = 1 for any integer   

m  1. 

Proof: By Proposition 3.1, SS(24m + 6) is odd. Then, the result follows by Lemma 5.1.  

Lemma 4.26: There exists an integer k ( > 0) such that SS(k)(24m + 12) = 1 for any integer   

m  1. 

Proof: By Proposition 3.2, SS(24m + 12) = 24m + 6, if m = 3(5s + 4), s  0 being any 

integer.  But, by Proposition 3.1, SS(2)(24m + 12) is odd. In the remaining cases, SS(24m + 

12) is odd. Therefore, applying Lemma 4.21, the result follows immediately. 

Lemma 4.27: There exists an integer k ( > 0) such that SS(k)(120m) = 1. 

Proof: If m is not divisible by 7, then by Lemma 3.3, SS(120m) = 120m – 7 is odd, and the 

result follows immediately from Lemma 4.21. Next, consider SS (480m). If the conditions 

in Lemma 3.4 are satisfied, then SS(840m) = 840m – 9 is odd, while if the conditions in 

Lemma 3.6 are satisfied, SS(840m) = 840m – 11 is odd, and in either case, we may apply 

Lemma 4.21 to get the desired result. On the other hand, SS(840m) = 840m – 10 under the 

conditions of Lemma 3.5. In this case, Lemma 1.2 is applicable, which gives SS (2)(840m) 

= 840m – 13. Now, Lemma 4.21 may be applied to get the desired result.  

Lemma 4.28: There exists an integer k ( > 0) such that SS(k)(9240m) = 1, if 13 does not 

divide m. 

Proof: The proof is similar when m satisfies the conditions of Lemma 3.7 or Lemma 3.8 

or Lemma 3.10, and the details are omitted here. When the conditions of Lemma 3.9 are 

satisfied, then SS(9240m) = 9240m – 12. Now, consider the expression below:   

(9240   13)(9240   14)(9240   15)(9240   16)
(9240 12) .

2 3 4 5
[ ]m m m m

m
   


  
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Thus, SS(9240m – 12) = 9240m – 5. Therefore, if the conditions of Lemma 3.9 are satisfied, 

then SS (2)(9240m) = 9240m – 17, which, together with Lemma 4.21, gives the desired 

result. 

 

5. Conclusion 

 

The Sandor-Smarandache function, SS (n), defined through the equation (1.1), is a 

recently introduced Smarandache-type arithmetic function. In earlier studies, it has been 

shown that SS (n) is not multiplicative and is neither increasing nor decreasing. Clearly, 

the function is not bijective.  

 It has been found that SS(n) has a simple form when n is odd or when n is even but 

not divisible by 3. This paper derives the expressions of SS(n), starting with SS(24m),   m 

 1. Lemma 3.2 gives the expression of SS(24m) when m is not a multiple of 5. It has been 

observed that SS(n) depends on the form of n. For example, it has been shown that 

SS(24m)  24m – 6 for any m  1, though earlier finding proves that SS(60m) = 60m – 6 if  

m = 6s + 5, s  0. Lemma 3.3 derives SS (120m) when 7 does not divide m. Again, though 

for any m  1, SS(840m)  840m – 8, it is found SS(210m) = 210m – 8 if m = 8s + 3, s  0, or 

if m = 2(8t + 1), t  0. Lemma 3.4 and Lemma 3.5 deal with the function SS (840m), while 

SS (9240m) has been treated in the subsequent four lemmas, from Lemma 3.7 through 

Lemma 3.10. We observe that the forms of SS (n) depends on the prime factors of n : 

SS(n) has the simplest form when 2 does not divide n, irrespective of other prime factors 

of n, and the expression of SS(n) gets more and more complicated when the prime factors 

3, 5, 7, 11, … are included in this order in n. We conclude the paper with the following 

conjecture indicating the new research direction. 

 

Conjecture 5.1: There is an integer k such that SS(k)(n) = 1 for any integer n  1. 
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