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Abstract 

Enhancing the diagnostic ability of Machine Learning models for acceptable prediction in 

the healthcare community is still a concern. There are critical care disease datasets available 

online on which researchers have experimented with a different number of instances and 

features for similar disease prediction. Further, different Machine Learning (ML) models 

have different preprocessing requirements. Framingham heart disease data is multicollinear 

and has missing values. Thus, the proposed model aims to explore the differential 

preprocessing needs of ML models followed by feature selection in consensus with domain 

experts and feature extraction to resolve multicollinearity issues. Missing values have been 

imputed differently for each feature. The work also identifies optimal train set size by 

plotting a learning curve that provides a minimum generalization gap. When testing is done 

on this hyperparameter tuned model, performance is enhanced with respect to the F score 

weighted by support and stratification since the data is imbalanced. Experimental results 

demonstrate improvement in performance metrics, i.e., weighted F score, precision, recall, 

accuracy up to 3 %, and F1 score by 8 % for Logistic Regression Classifier with the 

proposed model. Further, the time required for hyperparameter tuning is reduced by 50% for 

tree-based models, particularly Classification and Regression Tree (CART). 

Keywords: Learning curve; Validation curve; Weighted F score; Multicollinearity; Feature 

extraction; Machine learning. 
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1.   Introduction 

India will soon become the heart disease capital of the world. It is estimated to account for 

35.9 % of deaths by the year 2030 [1]. Many healthcare data is available online, which has 

been collected for experimentation with the collaboration of clinical and technological 

experts, as shown in Table 1 below. Several heart disease datasets have been tested to find 

the optimal one for experimentation. Cleveland and Statlog [2]  have fewer instances, 

Hungarian has large amounts of missing values, Alizadehsani [3,4] has many features, and 

Arrhythmia does not have meaningful features. Lastly, Cardio Vascular Disease (CVD) 

dataset has too many instances, and since deep learning algorithms are beyond the scope 

of our work, it has not been experimented with.  
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Table 1. Choice of dataset. 
 

 No. of instances No. of features Missing Values Imbalance 

Statlog  270 13 N N 

Cleveland 303 13 Y N 

Hungarian  294 10 N N 

AlizadehSani 303 54 N Y 

Arrythmia  452 279 Y N 

Framingham  4240 15 Y Y 

CVD 70000 11 N N 

  

Framingham heart disease data [5] predicting ten-year Coronary Heart disease (CHD) 

with 4,240 instances and 15 features are preferred for experimentation due to the 

availability of more data and less percentage of missing values. Any disease dataset has 

been imbalanced since the number of instances in the healthy class will be more than the 

diseased class.  

 Bias is an error from erroneous assumptions in a learning algorithm, whereas variance 

is an error from sensitivity to small fluctuations in the training set. The major issue with 

ML models is the bias-variance trade-off. Thus, to avoid the underfit/overfit of the model 

onto data, it is required to assess whether the data is linear/nonlinear. Secondly, underfit 

happens with fewer data; that is why other datasets were not chosen for experimentation. 

On the contrary, complex models get highly trained on data and hence overfit. They yield 

low performance on the test set.  

 k Nearest Neighbor (kNN) algorithm has been applied for Missing Value Imputation 

(MVI) onto a complete heart disease data to validate that it provides meaningful 

imputation since the data distribution does not change post imputation [6]. Extensive 

review has been conducted with respect to the MVI, feature selection methods, supervised 

ML models, and several heart disease datasets [7], which have helped us design the 

proposed methodology. 

 Experimentation with oversampling, undersampling, cost-sensitive classification, and 

an ensemble of cost-sensitive Decision Tree (DT) on imbalanced data has been done in 

reference [8]. The performance has been evaluated using Mathews Correlation Coefficient 

(MCC).  Synthetic Minority Oversampling Technique (SMOTE) has been used to balance 

data along with evaluation measures as a confusion matrix, Stratified k fold, accuracy, 

Receiver Operating Characteristics (ROC) and Area Under the Curve (AUC) along with 

Logistic Regression, Support Vector Machine (SVM) and Artificial Neural Network 

(ANN) models [9]. Cost-Sensitive Learning (CSL) takes prediction error into account 

during the training process to better predict performance.  

 A combination of feature selection and imputation techniques has been proposed and 

experimented with for medical datasets where careful selection methods are required [10]. 

Genetic Algorithm (GA), a wrapper-based technique, and information gain, a filter-based 

feature selection technique, work well for low dimensional data, and Decision Tree, an 

embedded feature selection technique, works well with high dimensional data. DT has 

been found to filter useful features as well. Combining feature selection and extraction has 

proven to give better accuracy, sensitivity, and specificity utilizing SVM Radial Basis 
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Function (RBF) kernel [11]. Backward elimination (wrapper) and Pearson correlation 

(filter) based feature selection methods have been used to select major predicting features 

[12]. The performance was evaluated utilizing Naïve Bayes (NB) classifier. Missing 

values were replaced by mean categorical data. Similarly, a comparison of oversampling 

and undersampling techniques demonstrated enhancement inaccuracy by 20%. Sequential 

Feature Selection (SFS) based Wrapper with Random Forest (RF) has returned 

considerably high accuracy compared to other feature selection and ML model 

combinations. Even Least Absolute Shrinkage and Selection Operator (LASSO), an 

embedded feature selection technique, has better accuracy than different feature selection 

and ML model combinations [13]. Mutual information (MI) for feature selection has been 

used to increase classification accuracy and reduce execution time, along with Leave One 

Out Cross Validation (LOOCV) for model assessment and hyperparameter tuning [14]. 

Models experimented with are SVM, Logistic Regression (LoR), kNN, NB, and DT. A 

heterogeneous hybrid feature selection method integrated with a balancing approach has 

been tested on well-known Coronary Artery Disease (CAD) datasets utilizing DT, RF, 

Gaussian NB (GNB), eXtreme Gradient Boost (XGB), kNN, and Binomial NB (BNB) 

classifiers [15]. Features having a maximum correlation with output were used for training 

and tested on SVM, Linear Discriminant Analysis (LDA), CART, NB, kNN, and RF 

classifiers. Accuracy and Kappa score with 95 % confidence level were utilized for 

performance evaluation, demonstrating better ensemble performance over basic ML 

models [16]. Genetic Algorithm (GA) with SVM and GA with ANN wrapper has been 

utilized for identifying both optimal feature subset and hyperparameter values onto 

Framingham heart disease data with increased sensitivity and F1 score [17]. Since the 

dataset was small, Cross-Validation (CV) prevented overfitting. 

 A 2-tier classifier ensemble of RF, Gradient Boosted Machine (GBM), and XGB has 

been evaluated on multiple heart disease datasets in terms of accuracy, F1, and AUC 

scores [18]. A 2-level stacking with 10 base models where the dataset was randomly 

shuffled and split for 10-fold CV reported mean and standard deviation.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Proposed methodology. 
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 Fig. 1 above demonstrates the ideology in terms of choice of the appropriate dataset, 

followed by extensive Exploratory Data Analysis (EDA) in terms of the type of features, 

type of outcome variable, distribution of data in terms of skewness and kurtosis, check for 

outliers, missing values and imbalance in data. Further, feature engineering in terms of 

hybrid feature selection and extraction technique is proposed and experimented with. 

The next step is to decide which ML model to train data on. Thus, comparing several 

models as Probabilistic Support Vector Classifier with RBF kernel, LoR with optimal 

threshold, BNB, kNN, CART, Extreme RF, and GB ML models has been made in terms 

of their preprocessing requirement.  

 A bagging algorithm as Extreme RF, i.e., weighted by support in comparison to RF, 

which is greedy, and GB to overcome the underfit of DT has been used. Adaptive 

Boosting (Adaboost) works best with weak learners; hence it is not chosen, and XGB 

works well with unstructured data; hence we do not choose it. The appropriate tuning of 

hyperparameters can improve the performance of each model. All heterogeneous models 

are sensitive to multicollinearity; hence the experimentation focused on multicollinearity 

for these 4 classifiers. All models require resampling except kNN. kNN and SVM RBF 

kernel require scaling. Only CART and boosting algorithms are robust to missing values. 

SVM, LoR, CART, and Bagging ML models are robust to the presence of outliers. 

 In none of the literature referred, the trade-off between bias and variance property of 

ML models has been explored. Among the available feature selection methods, if a single 

one is chosen for identifying the optimal feature subset, then the model would be biased. 

The hypothesis says, if the consensus of feature selection algorithms along with domain 

expertise is taken, then bias due to the different feature selection methods can be reduced. 

 Secondly, multicollinearity is a bane to data. Generally, researchers apply Principal 

Component Analysis (PCA) onto the entire dataset to reduce multicollinearity. Thus, the 

second hypothesis says that if feature extraction is performed only on multi collinear 

features with extremely high Variance Inflation Factor (VIF) than on the entire data, then 

performance can be enhanced in lesser time. 

 Imbalance in data can be treated either through an appropriate sampling technique 

that generates synthetic data to balance the classes or an appropriate ML model that deals 

with imbalance inherently. The hypothesis says, if an appropriate model evaluation 

technique as stratification along with CV is combined with weighted F score as the 

evaluation metric to handle imbalance, then performance could be better than an 

appropriate ML model or an appropriate sampling technique as SMOTE or Adaptive 

Synthetic (ADASYN) for Imbalanced Data.  

 Further, different datasets have a different number of instances. So, what should be 

the optimal size of training data? Hence, the last hypothesis states; if the train set size with 

minimum generalization gap is chosen, there is no need for more data to enhance the 

performance. 
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2. Experimental 

 

2.1. Algorithmic design 

 

Thus considering all the above aspects, the algorithm designed has the following steps: 

(i) Perform data preprocessing 

(a) Check for skewness, kurtosis, and outliers: treat extreme outliers only since 

features are meaningful; 

(b) Data has missing values: treat each feature differently based on the number of 

missing values; 

(ii) Perform Exploratory Data Analysis 

(a) Check multicollinearity: treat only features having very high VIF utilizing PCA; 

(b) Check Correlation: perform feature selection in consensus with domain expert; 

(iii) Perform Model Building 

(a) Build all probabilistic and tree-based models with different preprocessing suited 

to it; 

(b) Plot validation curve to check whether the model is suffering from bias or 

variance: perform hyperparameter tuning to reduce bias and generalization gap; 

(iv) Perform Model Evaluation 

(a) Compare model performance on train set size with minimum generalization gap 

in comparison to the static split of 70:30; 

(b) Since data is imbalanced, choose the appropriate performance metric as a 

weighted f score and model evaluation technique as stratified k fold CV. 

 

2.2. Data preparation 

 

Framingham heart disease data has many instances and has samples of both male and 

female genders in equal proportion. Even distribution of CHD in both genders is similar, 

which shows the appropriateness of chosen data. The categorical data distribution shows 

nonlinearity in data. Irrespective of the cohort taking Blood Pressure (BP) medication 

have had a stroke, hypertension, diabetes, is currently smoking, or the gender being male, 

he/she may/may not have the disease. 

       The features are meaningful, and the data is imbalanced. Skewness refers to lack of 

symmetry in features, and kurtosis refers to the heavily/lightly tailed data relative to the 

normal distribution. The acceptable range for skewness falls between -3 and +3, and 

kurtosis is appropriate between -10 to +10. This data is skewed for 7 features and has 

meaningful outliers except for age. Kurtosis exists in 4 features, but data has not been 

transformed because skewness and kurtosis provide meaningful information. 

       The proposed model compares all probabilistic and tree-based ML models which 

exhibit different properties. Probabilistic models are capable of returning a probability of 

an instance lying into a class than just the class label. Linear ML models specify that they 

can be represented as a linear combination of features. All chosen models are binary as the 

outcome variable of the chosen data is binary. A discriminative model models the decision 
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boundary between classes, whereas a generative model explicitly models the actual 

distribution of each class. In parametric models, the parameters do not change once the 

model is designed. Thus, all ML models can be implemented as probabilistic. kNN, 

CART, and RF are nonlinear models. All can be utilized for binary classification tasks. 

NB is generative; the rest all are discriminative models. LoR, NB, and RF are parametric, 

while others are nonparametric ML models. 

 

2.3. Missing value imputation 

 

Since 'education level' (2.5 % missing) is a subjective feature, it is dropped as it is not 

very handy to practice. Mean is the arithmetic average across the column. Median is the 

middle number in the column when data is arranged in either ascending/descending order, 

and mode is the value that occurs most often in the data. In the total cholesterol 'totchol' 

(1.2 % missing) feature, extreme values were dropped, then group median was performed. 

Only one instance had a missing value for Heart Rate' HR' (1 missing in 4240), so that 

was dropped. Group median performed for Body Mass Index 'BMI' (0.4 % missing) and 

glucose (9.2 % missing). Extreme instances for Cigarettes Per Day' cigsperday' (0.7 % 

missing) were dropped. Missing values in BP Medication' BPMeds' (1.2% missing) were 

imputed with mode. Since imputation is meaningful, the histogram doesn't change much 

post imputation.  

 

2.4. Imbalance 

 

Since data is imbalanced, stratification has been used. Stratification seeks to ensure that 

each fold is representative of all strata of the data. This is done to alleviate the bias of 

most classification algorithms that tend to weigh each instance equally. Thus, 

overrepresented classes get too much importance. Even mean weighted f score is reported 

to deal with the imbalance in data. The average is weighted by support, which is the 

number of samples per class. Precision is a metric that calculates the percentage of correct 

predictions for the positive class. In contrast, recall calculates the percentage of correct 

predictions for the positive class out of all positive predictions that could be made. There 

is a trade-off between precision and recall; hence f measure, a harmonic mean giving 

equal weightage to both is used.  

 

2.5. Feature selection and extraction 

 

Multicollinearity refers to the occurrence of high intercorrelations among two or more 

independent variables. Data being multicollinear could affect the performance of ML 

models; hence VIF has been computed, which is a measure of overall model variance to 

the variance of the model when it includes only a particular feature. 

       VIF exceeding 10 are signs of serious multicollinearity. Systolic BP ('sysBP') and 

Diabolic BP ('diaBP') are found highly correlated; hence feature extraction using PCA 

[19] is done for these, which captures 93 % variance in the data. Though Prevalent 
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Hypertension ('preHyp') was also correlated with 'sysBP' and 'diaBP', this was retained as 

advised by a medical practitioner. Similarly, 'currentSmoker' feature, which is highly 

correlated with 'cigsPerDay', has been dropped in consultation with a domain expert and 

with the consensus of multiple ML algorithms for feature selection as GANN, GASVM, 

Backward Elimination (Wrapper) [20], Chi
2 

(Filter), logit, ExtraTree_importance 

(embedded), RF_importance (embedded), etc. 

 

3. Results and Discussion  

   

        

 

 

 

 

 

 

 

 

 

Fig. 2.  Comparison of weighted F score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comparison of training time. 

 

  

 The models were tested after performing preprocessing of missing values and outliers 

in the manner described in sections 2.2 and 2.3 above. Performance evaluation was done 

on three datasets: original Framingham, one treated for multicollinearity (by applying 

PCA on entire data capturing 91 % variance with 10 components), and novel algorithm 

(by applying PCA on only 2 features with very high VIF capturing 93.7 % variance). The 
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performance metric used is a weighted F score for evaluation since data is imbalanced. 

Models have also been compared with respect to the training time. The results 

demonstrated in Fig. 2 above state that performance is enhanced for SVC, BNB, LoR, 

kNN, and RF. Initially, stratification was used for all models except kNN and GBC 

(insensitive to imbalance). Further experimentation with stratification improved the 

performance of kNN as well. Thus, the proposed methodology works well with 

heterogeneous classifiers (BNB, SVC, kNN, and LoR) to improve weighted F scores. For 

tree-based homogenous models, the proposed method reduces training time, as 

demonstrated in Fig. 3 above. 

 The hypothesis says that increasing the size of training examples does not guarantee 

enhanced performance. In order to test this, learning curves (Figs. 5 and 7) were plotted 

for base models, which were tree-based homogenous and probabilistic heterogenous as 

per Fig. 4 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Proposed general architecture. 

 

 All these models were highly biased particularly RF, since error did not improve with 

further training. This was apparent from the learning curves demonstrated in Fig. 5 below 

where performance in terms of weighted F score on training and validation set is shown 

with respect to the number of instances. 

 In order to enhance generalization, adding features was not feasible; hence 

hyperparameter tuning was performed utilizing validation curve with Randomized Search 

CV, since data had outliers. It sets up a grid of hyperparameter values and selects random 

combinations to train the model and score. The generalization gap was reduced by 3 % 

through hyperparameter tuning and further by 7 % through feature selection for the DT 

classifier. Hyperparameter tuning RF classifier reduced generalization gap as well. 

Feature selection reduced it further, but there was no improvement in the validation score. 

GB classifier has tree-specific and boosting hyperparameters. Initially, the boosting 

hyperparameter range was tested, which lowered the performance. Then tree-based 
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hyperparameters were tested sequentially, which reduced the generalization gap by around 

4 % without reducing the validation score. The same is illustrated in Fig. 6 below. 

  

 

 

 

 

 

 

 

 
 

Fig. 5. Initial Learning curves demonstrating generalization gap for tree-based models. 

  

 

 
Fig. 6. Reduced Generalization gap for tree-based models post hyperparameter tuning. 
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      For LoR, hyperparameter tuning did not improve performance. Scaling with 

RobustScaler for LASSO also did not reduce the generalization gap. For NB, removing 

multicollinearity improved performance on both train and validation set by 1 %. 

Moreover, NB does not have hyperparameters. Hence, the optimal threshold utilizing the 

Precision-Recall curve (PRcurve) has been experimented with. The generalization gap for 

kNN is reduced by identifying the optimal hyperparameters. Similarly, for SVM, 

hyperparameter tuning improved performance on both train and validation set by 1 %. The 

same is demonstrated in Fig. 8 below wrt Fig. 7 with initial Learning curves. 

 

 
Fig. 7. Initial learning curves demonstrating a biased model. 

 

 

 

 

 

 

 

 

Fig. 8. Reduced Generalization gap for SVM and kNN post hyperparameter tuning. 

 

 Table 2 demonstrates the performance of various models and their optimal 

hyperparameters, comparing the performance of a novel approach with a traditional one 

and the time taken to hyper tune. Table 3 below shows the performance comparison with 

respect to several evaluation metrics, where LoR classifier shows improved performance 

with respect to weighted F-score, Precision, Recall, Accuracy, and F1score. 
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Table 2. Comparing the performance of tree-based classifiers with minimum generalization gap with 

respect to static split, also the time is taken to hyper tune. 
 

 
Table 3. Comparing the performance of probabilistic classifiers with static split and split with 

minimum generalization gap utilizing several performance metrics. 
 

 

 CV is a statistical method to evaluate ML models that result in lower bias estimates 

than other methods. The results of k-fold CV run are returned as mean with standard 

deviation (s.d.) as a measure of the variance of scores across folds. Since the data is 

imbalanced, stratification has been used. 

 

4. Conclusion 

 

The existing concepts have been ruled out through experimentation; for instance, kNN 

handles imbalance but still stratification improved performance. kNN and BNB are robust 
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kNearest 

Neighbor 

k=7, metric=minkowski 600 79.4+/

-0.023 

78.7+/-

0.010 

- 

Support Vector 

Classifier 

C=100, γ=0.0001 400 77.9+/

-0.002 

78+/-

0.003 

8.2 s 

Logistic 

Regression 

C=2.07, penalty=L2 1500 73.1+/

-0.032 

70.5+/-

0.027 

38.1 

s 

Bernoulli Naïve 

Bayes 

NA 1950 80.1+/

-0.017 

79.5+/-

0.013 

NA 

CART criterion=gini, max_depth=3, 

max_features=4, min_samples_leaf=4 

750 78.6+/

-0.019 

78.2+/-

0.007 

7.3 s 

Random Forest n_estimators=200, min_samples_split=50, 

min_samples_leaf=10, max_features=‘auto’, 

max_depth=25, bootstrap=True 

1450 78.6+/

-0.012 

77.8+/-

0.003 

1.5 

min 

Gradient 

Boosting 

Classifier 

learning_rate=0.1, n_estimators=80, 

max_depth=13, min_samples_split=200, 

max_features=6, min_samples_leaf=50, 

subsample=0.8 

550 79.8+/

-.025 

79.8+/-

.018 

29.7 

s 

Methodology 
train set 

size 

Weighted 

f score 

Precision Recall Accuracy F1 

score 

Balanced Logistic 

Regression with optimal 

threshold=0.20 

1500  73.1±3.2 28.6±4 69.7±8.7 68.9±3.8 45.6 

2958  70.5±2.7 25.7±3.1 66.5±7.8 65.7±3.2 37.1 

Support Vector 

Classifier 

400  78±1.2 NR NR 84.9±0.9 NR 

2958 78±0.3 13.3±34 0.3±0.8 84.8±0.2 6 

Bernoulli Naïve Bayes 1950  80.1±1.7 41.5±18 10.6±5.7 84.4±1.1 16.8 

2958 79.5±1.3 47.2±21.7 7.3±4.2 84.5±1.1 12.6 

K Nearest Neighbor  1150  79.4±2.3 43.9±4.8 5.8±6.8 85±1.6 3.2 

2958 78.7±1 40.1±27.7 3.9±2.9 84.5±0.7 7.1 
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to outliers; still, they gave a better performance on data not treated for outliers. The novel 

approach for multicollinearity treatment has reduced training time and increased 

performance for particular ML models. The hybrid feature selection and extraction 

method have provided better results in terms of weighted F score with SVC, BNB, kNN, 

LoR, and RF models compared to traditional feature selection methods. Suppose a 

different train set size is chosen for particular models based on the minimum 

generalization gap between the training and validation set (optimal hyperparameters). In 

that case, performance does not drop in weighted F score for all probabilistic and tree-

based models. Further, Balanced Regularized LoR with optimal threshold has given better 

performance in terms of improved weighted F score, Precision, Recall, and Accuracy up 

to 3 % and F1score by 8 %. The time required for hyperparameter tuning is reduced by 50 

% for tree-based models esp. CART. 

       Further to bring flexibility, probability prediction has been targeted. Since in the 

medical domain, the cost of False Positive (healthy predicted as diseased) is less than the 

cost of False Negative (CAD predicted as normal), probabilities can be interpreted by 

varying the thresholds. This has been done particularly for LoR using the PR curve. The 

future work lies in modifying the algorithm for optimizing the loss function of the LoR 

classifier [21,22] to enhance the performance further compared to complex ML models. 
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