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Abstract 

The steady plane variably inclined two phase MFD flow is considered. Magnetograph 

transformation is employed to obtain the solution of governing partial differential equations 

of second order and also to find the solution for the vortex flow. The non-linear partial 

differential equations have been converted into solvable form by employing Legendre’s 

transform function as well as the polar co-ordinates. Two different forms of Legendre 

transform function in terms of components of magnetic field are taken as two applications 

of the developed theory. The components of fluid velocity, components of magnetic field, 

vorticity function, current density function, the fluid pressure and the number density of 

dust particles are found out in both the cases. The variation of components of fluid velocity 

with one component of magnetic field, keeping the other component constant, is plotted for 

different angles. The magnetic field lines are also plotted which are found out to be 

concentric circles for both the cases.  

Keywords: Two Phase; Variably inclined; Magnetograph transformation; Legendre 

transformation function; Vorticity function.  

© 2022 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.  

doi: http://dx.doi.org/10.3329/jsr.v14i1.53571                   J. Sci. Res. 14 (1), 115-130 (2022) 

1.   Introduction 

A phase is defined as one of the states of the matter. It can be a solid, a liquid, or a gas. 

Multiphase flow is the simultaneous flow of several phases. Multiphase fluid system is 

concerned with the motion of a liquid or gas containing immiscible inert particles. Study 

of multiphase phenomenon is of extreme importance as it is useful in various fields of 

science and technology such as nuclear engineering, chemical engineering, geophysics 

etc. In recent years, many researchers all over the world have been studying various 

aspects of multiphase fluid system in non-rotating as well as rotating frame of reference. 

Of all multiphase fluid system observed in nature, blood flow, flow in rocket chamber, 

dust in gas cooling system to enhance heat transfer process, movement of inert particles in 

atmosphere and sand or other suspended particles in sea beaches are the most common 
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examples. Presence of particles in homogeneous fluid makes the mathematics of fluid 

flow complicated. By variably inclined flow in which magnetic field vector and velocity 

vector are coplanar and the angles between these vector fields are varying point to point in 

flow region. Similarly in constantly inclined flow the angel between magnetic field vector 

and velocity vector is a non-zero constant. Also equation of motion of such system 

contains partial differential equation which can be in solvable or non-solvable form. By 

using the techniques of various transformations, e.g., hodograph method, Magnetograph 

method, Inverse Method etc., one tries to find out the solution, also called exact solution, 

of differential equations and hence finds the variables of interests.   

It was in the year 1846 that Hamilton [1] conceived the term "hodograph" for a 

velocity locus associated with a moving particle. If 
1 2 3u (t), u (t), and u (t)be the components 

of velocity, the hodograph is the locus of a point whose position coordinates in an 

auxiliary space are
iu (t) , i = 1, 2, 3 . This means the velocity components iu serve as the 

independent variables in terms of which everything else, including the original position 

co-ordinates ix , is to be expressed. If the magnetic field vectors of an MHD fluid is laid 

off from a fixed point, the extremities of these vectors trace out a curve, called the 

magnetograph. Here the Magnetograph transformation is used which is analogous to the 

hodograph transformation and equivalent linear system is obtained by interchanging the 

roles of dependent and independent variables. Here the variables are transformed from 

physical plane to magnetograph plane. It is used to study the geometry of flow pattern and 

to get the exact solutions of flow variables in non-inertial frame of reference i.e. the frame 

which is not fixed or not moving with uniform angular velocity.  

Singh et al. [2] obtained the solution for variably inclined MHD plane flows in 

porous media. Bagewadi and Siddabasappa extended the work of above authors and 

published some papers on MGD flow, by considering two cases, constantly inclined [3] 

and variably inclined [4]. They have obtained solutions for these flows by transforming 

the basic equations from Cartesian plane to velocity and magnetograph planes. These 

methods help to study the flows in a more general way by the use of Jacobian matrix. 

Yamamota examined the flow past porous bodies by applying the generalised law using 

the generalised momentum equations through a porous body [5] and porous sphere [6]. 

They investigated the asymptotic behaviour of the flow for small permeability of the 

porous medium, and they show that the flow in the porous medium is governed essentially 

by ordinary Darcy's law except in the boundary layer near the surface. Thakur and Singh 

[7] considered variably inclined viscous incompressible fluid with finite electrical 

conductivity and obtained the partial differential equation for the flow of fluid, using 

magnetograph transformation. Venkateshappa et al. [8] used transformation technique for 

variably inclined rotating MHD flow. Sil and Kumar [9] found out the solution of 

constantly inclined rotating two phase magnetohydrodynamic flows through porous 

media. They obtained a second order partial differential equation and by applying 

hodograph transformation found the exact solution for vortex flow. Saffman [10] has 

formulated the equations of motion of a dusty fluid which is represented on terms of large 

number density N(x,t) of very small inert particles whose volume concentration is small 
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enough to be neglected. It is assumed that the density of the dust particles is large when 

compared with the fluid density so that the mass concentration of the particle is an 

appreciable fraction of unity. In this formulation, Saffman also assumed that the 

individual particles of dust are so small that stoke’s law of resistance between the particles 

and the fluid remains valid. Using the Saffman model, Michael and Miller [11] 

investigated the motion of dusty gas with uniform distribution of the dust particles 

occupied in the semi-infinite space above a rigid plane boundary. Liu [12] has studied the 

flow induced by an oscillating infinite plate in a dusty gas.  Thakur and Mishra [13] used 

the Saffman model for infinitely conducting two phase fluid flow considering constant 

angel between fluid velocity and magnetic field, also called constantly inclined flow, and 

obtained the exact solution of physical importance. Bagewadi and Bhagya [14] also 

studied constantly and variably MHD flows through porous media. Debnath and Basu 

[15], Anirban and Hari [16] studied the same problem by taking transverse magnetic field. 

Fenuga et al. [17] and Das [18]  studied the MHD flow under some boundary conditions 

of physical importance.  

This paper proceeds as follows: This paper deals with the two dimensional motion of 

steady variably inclined two phase MFD flow of an incompressible viscous fluid with 

infinite electrical conductivity. The governing equations of fluid flows are transformed 

into magnetograph plane. A suitable Legendre’s transform function of magnetic flux 

function is used to recast the equations in the magnetograph plane in terms of this 

transformed function. The resulting partial differential equations are solved for flow 

problems and the exact solution of two phases variably inclined MFD flows have been 

determined using magnetograph transformation which has not been done earlier. 

 

2. Nomenclature 

u   Fluid velocity vector 

v Dust velocity vector 

H   Magnetic field vector 

P Fluid pressure 

 Fluid density 

 Kinetic Coefficient of viscosity 

   Magnetic permeability 

N   Number density of dust particles 

6k a  , Stoke’s resistance (drag coefficient) for the particles 

a   Spherical radius of dust particles 

m   Mass of dust particle 

   Vorticity function 

  Current density function 

B Bernoulli function 

  Variable angel between u  and H  

J  Jacobian 

 Magnetic flux function  
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L Legendre transform function 

f  = Any constantly differentiable function 
 

3. Basic Equations  

 

The basic equations of motion governing the steady flow of a dusty, incompressible 

viscous fluid with infinite electrical conductivity in the presence of magnetic field, from 

reference [12], are 

  

 div u 0,    (Continuity)                         (1.1) 

    2(u grad)u gradP μ curl KN v u u ,H H           (Linear Momentum)    (1.2) 

 curl u 0,H 
 
 (Diffusion)               (1.3) 

For dust phase, 

 div Nv 0,     (Continuity)                (1.4)
 

   m v grad v = k u v ,   (Linear Momentum)              (1.5) 

 div 0.H   (Solenoidal)                (1.6) 

The situation where the velocity of fluid and dust particles are everywhere parallel, is 

defined as  

v = u ,
N

                      (2) 

where α is some scalar satisfying,  

u grad  0.                                    (3) 

which implies that α is a constant on the fluid streamlines 

Introducing vorticity function, current density function and Bernoulli function 

2 1u u

x y


 
 
 

 , (Vorticity function)                 (4) 

2 1H H

x y

 
  

 
, (Current density function)                  (5) 

21
B =  P +  ρu

2

2 2 2

1 2Here u  u  + u . (Bernoulli function)                            (6) 

System of equations from (1.1) to (1.6) can be replaced by 

  1 2u u
div u 0,

x y

 
  
 

1 2
ˆ ˆhere u = u i + u j ,

               (7) 

 2 2 1

B
η u K N uH

y x


  

 
      

 
 ,                 (8) 

 1 1 2

B
η u K N uH

x y


  

 
      

 
 ,                (9) 

1 2 2 1u uH H f  ,                  (10) 

1 2
1 2 1 1 2 1

u u
m u u + u u u  K 1 u

N N N N Nx y x y

                
            

           

,            (11) 
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2 2
1 2 2 1 2 2

u u
m u u + u u u  K 1 u

N N N N Nx y x y

                
            

           

,              (12) 

1 2 0
H H

x y

 
 

 
.                   (13)

  

The advantage of this system over the original system is that the order of partial 

differential equation is decreased. 

Now if   β = β ,x y   is the variable angle between u  & H , 

then                             1 2 2 1

1 1 2 2

    u   =  u u   =  u sinβ  =  f

&  u    =  u u   =   u  cosβ  =  fcotβ,

H H H H

H H H H

 

 
 

                       (14) 

Solving these two equations to find u1and u2 in terms of H1and H2 

                (15) 

using this equation (15), equations(7)-(13)  Now converts to 

1 2 0,
H H

x y

 
 

 
                  (16) 

     2 1 2 2 12 2

B
cot β cotβ ,

f f
H H H K N H H

y H H x


   
 

        
 

    (17) 

     2 1 1 2 12 2

B
cot β cotβ ,

f f
H H H K N H H

x H H y


   
 

        
 

           (18) 

 
2 2

2 1 2 1 2 1
2 12 2 2 2 2 2

1 2 1 2 1 2

2 cot
cot

H H H H H Hf f
H H

N x H H H H y H H




     
    

      

 

 
2 2

2 1 1 2 1
2 12 2 2 2

1 2 1 2

cot cot β 2
cotβ

H H H H H f
H H

H H x H H

   
  

   

 

 
2 2 2 2

2 1 1 2 1 1 2 1 2
2 12 2 2 2 2 2

1 2 1 2 1 2

cot cotβ 2 2 cotβ
cotβ

H H H H H H H H Hf
H H

H H y H H H H

       
    

      

 

1 2 1 2 12 2

1 2

cotβ cotβ cotβ cotβ
cot cot

f
H H H H H

H H x x y y
 

    
    

     

 

 2 1 2 1 22 2

1 2

cotβ cotβ cotβ
f

H H H H H
H H x N x N y N

          
         

         

 

 1 2 11 cotβ ,H K H H
y N N

     
      

    

    and                            (19)     

   
2 2

1 2 1 1 2
2 1 2 12 2 2 2 2 2

1 2 1 2 1 2

2 cotβ
cotβ cotβ

H H H H Hf f
H H H H

N H H x H H H H

     
    

    

 

 
2 2 2 2

1 2 1 1 2 2 1 2 1 2
2 12 2 2 2 2 2

1 2 1 2 1 2

2 cot β cot cotβ 2
cotβ

H H H H H H H H H Hf
H H

y H H H H y H H

        
    

       

 

 

 

1 2 12

2 2 12

u cotβ ,

u cotβ ,

f
H H

H

f
H H

H


  


 

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   
2 2

1 1 2 1 2
2 1 2 1 22 2 2 2 2 2

1 2 1 2 1 2

cot cot β 2 cot
cotβ cotβ

H H H H Hf f
H H H H H

H H x H H H H x

     
    

     

 

   2 1 2 2 12 2 2 2

1 2 1 2

cot
cot β cotβ

f f
H H H H H

H H y H H


    

  
 

   2 1 2 1cotβ cotβH H H H
x N x N

       
      

     
 2 11 cotβ ,K H H

N

 
   

 

            (20) 

1 2u u
0,

x y

 
 

    

                               (21) 

2 1 2 1 2 1

2 2 2 2

1 2 1 2

u u cotβ cotβ
,

H H H H

x y x H H y H H f




       
       

        

  

           (22) 

And,  

     2 1 2 2 12 2 2 2

1 2 1 2

cot cot ,
f f B

H H H k N H H
y H H H H x


     
 

        
   

      

(23) 

 

     2 1 2 2 12 2 2 2

1 2 1 2

cot cot .
f f B

H H H k N H H
x H H H H y


     
 

       
        

 (24) 

 
4. Magnetograph Transformation 

 

As mentioned in the flow equations,    1 1 2 2, , ,H H x y H H x y   ,  the Jacobian is  

  1 2 1 2, , 0
H H H H

J x y J
x y y x

   
    

   
.We consider x and y as a function of 

1H  and

2H  . So by means of  1 2 1 2, & ( , )x x H H y y H H  , 

We have the following relations

  

1 2

2 1

1 2

2 1

, , &

, .

H Hy y
J J

x H x H

H Hx x
J J

y H y H

  
  

   

  
  

   

                (25) 

Further, 

 
 

 

 

 
 

1

1 2

1 2

1 2

, ,
, ,

, ,

H H x y
J x y j H H

x y H H



  
   

  

 and 

 

 

 

 1 2 1 2

, ,
, .

, ,

f y f xf f
j j

x H H y H H

  
 

   
           (26) 

where, f  is any constantly differentiable function and  1 2,f H H  is its transformed 

function in the
1 2,H H   plane. 

 

 

 

 



S. K. Singh et al., J. Sci. Res. 14 (1), 115-130 (2022) 121 

 

5. Flow Equations in Magnetograph Plane 

Employing the above transformation relations for the first order partial derivatives in the 

system of equations (19) - (24), the transformed system of partial differential equations in 

the magnetograph plane i.e.  1 2,H H  plane is, 

1 2

0,
x y

H H

 
 

 
           (27) 

 

 
     

 

 

2 1 2 2 12 2 2 2

1 2 1 2 1 2

1 2

,
cot cot

,

,
,

,

x f f
j H H H k N H H

H H H H H H

B y
J

H H


     


      

  


 



      (28) 

 

 
     

 

 

2 1 2 2 12 2 2 2

1 2 1 2 1 2

1 2

,
cot cot

,

,
,

,

Y f f
j H H H k N H H

H H H H H H

x B
J

H H


     


      

  


 



      (29) 

from equation (20) and using equation (25) 

 

 

 

 

2 2

2 1 1 2

2 2

1 2

2 12 2

1 2 2

2 2 1

1 1

2 2

2 1 1 2
2 12 2 2 2

1 2 2 1 2

2 2

1 2 1 2

1

2 12 2

1 2 1

2 cot

cot
cot

cot

2 cot
cot

cot cot 2

cot

  
 

    
      

   
    

  
  

   

 




 

H H H H

H Hf y
H H J

H H H N N
H H H

H H N

H H H Hf x
H H J

H H H H H

N H H H H

Hf x
H H J

H H H




 


 






 



 

 

 

22 2

2 2

2 1

2

2 2

1 2 1 2
2 12 2 2 2

1 2 1 1 2

2 1

cot

cot

cot cot 2
cot

1 cot .

 
 
 
 
 
 
 
 
 
 

  
   

   
    

   
    

       
     

 
   

 

N
H

H H

N
H H

H N

H H H Hf y
H H J

H H H H H

k H H
N










 





 
          (30) 

6. Legendre Transformation of Magnetic Flux Function 

 

The solenoidal equation 1 2 0
H H

x y

 
 

 

implies the existence of magnetic flux function 

 ,x y such that 

2 1 2 1, .d H dx H dy or H H
x y

 


 
     

 
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Likewise equation 

1 2

0
x y

H H

 
 

 

implies the existence of a function  ,L x y called 

Legendre Transform function of the magnetic flux function  ,x y  such that 

1 2dL ydH xdH 
 , 

which implies that

1 2

,
L L

x y
H H

 
 
 

.           (31) 

And these two are related by 
1 2 2 1( , ) ( , )L H H H x H y x y   . Introducing 

1 2( , )L H H  into 

the system of equations (27) to (30) with ‘ j ’ given by (26), it follows that equation (27) is 

identically satisfied and the system may be replaced by  

 

 
     

 

2

2 1 2 2 12 2 2 2

1 2 1 2 1 2

1

1 2

,

cot cot
,

,

,
,

L

H f f
j H H H k N H H

H H H H H H

L
B

H
J

H H



     

 
 

        
  

 
 

  


        

(32) 

 
     

 

1

2 1 2 2 12 2 2 2

1 2 1 2 1 2

2

1 2

,

cot cot
,

,

,
,

L

H f f
j H H H k N H H

H H H H H H

L
B

H
J

H H



     

 
 

        
  

 
  

  


    (33) 

 

 

 

 

2 2

2 1 1 2

2 22
1 2

2 12 2

1 2 1 2

2 2 1

1 1

2 22

2 1 1 2
2 12 2 2 2 2

1 2 2 1 2

2 2

1 2

2

2 12 2

1 2 1 2

2 cot

cot
cot

cot

2 cot
cot

cot co

cot

H H H H

H Hf l
H H J

H H H H N N
H H H

H H N

H H H Hf L
H H J

H H H H H

N H H

f L
H H J

H H H H




 


 










  
 

    
       

   
    

  
  

   






  
 

 

 

1

1 2
22 2

1 2 2

2 1

2

2 22

1 2 1 2
2 12 2 2 2 2

1 2 1 21

2 1

t 2 cot

cot

cot cot 2
cot

1 cot .

H H N
H

H H H

N
H H

H N

H H H Hf L
H H J

H H H H H

k H H
N

 








 





 
 
 
 
 
 
 
 
 
 

   
   

   
    

   
    

       
      

 
   

                 (34) 

7. Applications 

 

Application:1 

Let    2 2

1 2 1 1 2 2,L H H A H H A    

And    1 2 2

1 2 1 2, cotH H CH CH    form a solution set of the partial differential 

equation (34). 
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When 
1 20, andA A C are arbitrary constants, we may consider two separate cases of the 

solution 

 

 (i)  If, 0C  the flows will be variably inclined, and  

              (ii) If, 0C  the flows will be crossed 

So if 0C  , using above i.e.    1 2 2

1 2 1 2, cotH H CH CH   in 

1 2

& ,
L L

y x
H H

 
  

 

we 

have 

1 1 1 22 and 2A H y A H x    

So, 
1 2

1 1

and
2 2

y x
H H

A A


     or 

1 2and
y x

H H
A A


    (where 

12A A )          (35) 

This represents linear flow and magnetic field lines are concentric circles. 

Using above for 
1 2( , ) and ( , )H x y H x y ,  we have 

  2

1 2 1 12 2 2

1 2

u cot u
f f C

H H Ax yr
H H r A


 

     
  

 ,         (36a)  

and        2

2 2 1 22 2 2

1 2

u cot u .
f f C

H H Ay xr
H H r A


 

     
           

(36b) 

Converting this into polar form, 2 2 2cos , sin , , tan ,
y

x r y r x y r
x

           (37) 

Also, vorticity function,   2 1u u 2
.

fC

x y A


 
  
 

                                                              (38) 

And current density,          2 1 2.
H H

x y

 
   

 
                                                              (39) 

Hence from equation (8) and (9), we have 

     2 2 2 2
.

fAy fCx fAx fCy
N N N

x y A x x y A y
   

    
          

      

         (40) 

Also, from (37),  
sin cos

cos & sin .
x r r y r r

 
 

 

     
   

     
 

We have, equation (40) now converts to 

2
,

fA t fCr t
t Here t N

r A r
 



  
    

                                                             (41)

 

        (i)              (ii)           (iii) 

So, using (ii) and (iii), we have  
Adr dt

fCr t




, 

Integrating both side , we have 

1 1

1
ln ln ln ln ln ln ,

2

A A A
r t c r t c

fC fC fC
              (here 

1c = arbitrary constant) 
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 
 

 
 

1

2

2
1

1

2

2
12 2

2 12 2

1
ln ln ln ,

2

or 2ln ln ln ln ,

or , where another constant

fC

fC A

A

fC

fCA

A

fC
r t c

A

c
r t c

t

c c
r t c c

t x y


 

 
    
 
  

    


 Hence, from t N  , 

Number density of dust particle is, 2

2 2
N = .

c

x y
 


                                                    (42) 

Now from equation (3),  1 2
ˆ ˆ ˆ ˆu grad  0 0 ,u i u j i j

x y

 


  
       

  

 

1 2 1 2

2 1

0 ,
y

u u u u or D
x y x y u x u y

         
       

     
 

2 2 2

2

,
Ay Cx

D Du x D f x
u x x y A


 

 
           

  
   

2
11

tan .
2

x Cx
Df Ay

y y A
 

  
    

  

                                                                    (43) 

And also from 
1 ,Du y       we have , 

2
1

2 2

1
, tan ,

2

Ax Cy y Cx
D f y Df Ax

x y A x x A
      
            

     
 

                              (44)

 

2 2
1 12 2

2 2 2 2

Hencefrom(42),

tan tan .
2 2

c cx Cx y Cy
N Df A or N Df A

y A x y x A x y

 
      

           
      

 (45) 

Now magnetic flux function 

2 1and ,
 

  
 

H H
x y

   

We have, 
2

1

1 1

,
2 4

x x
C

x A A




 
    


  and   

2

1

1 1

' ,
2 4

y y
C

y A A




 
    



     

Therefore, magnetic flux function is given as  
2 2

1

1 1

.
4 4

x y
C

A A
                (46) 

Using equations (35), (36), (38) and (39) in equation (8) and (9), and on solving, we get 

Bernoulli function as, 

 

2 2 2
1 12 2

32 2

2
tan tan .

2 2

Kc fA Kc fCf C x Cx x x
B A c

A y A A A yx y

  
    

         
     , Or

        (47) 
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 

2 2 2
1 12 2

32 2

2
tan tan .

2 2

Kc fA Kc fCf C y Cy y y
B A c

A x A A A xx y

      
         

    
 

Where, 3c  is an arbitrary constant. 

Also from, 

 

 

2 2 2

1 2

2 2
2 2 2

2 2 2

1 1
,fluid pressure function is given as,

2 2

1
,

2

B P U P u u

A C
P B f x y

x y A

 



    

 
    

 

 

 

 
 

2 2 2
2 1 2 2 12 2

32 2
2 tan tan .

2 2

Kc fA Kc fCx f C x x
P f C x y c

y A A yx y

 
     

          
   

          (48) 

Application: 2 

 

 2 2

1 1 2 2 1 3 2Let, ,L A H H A H A H     

And    1 2 2

1 2cot ,CH CH         

 2

1

1 1

.
2

y AL
y H

H A

 
    


 

And   3

2

2 1

.
2

x AL
x H

H A


  


  

 
 

   
 1 3

1 2 1 22 22 2

1 2 13 2

2
u cot .

2

A x Af C
H H f y A

H H Ax A y A


 
     

        

  

(49a)

 

 

   
 

   
1 2

2 2 1 3 2 22 2

1 2 1 3 2

2
u cot .

2

A y Af C
H H f x A

H H A x A y A


 
     

               

 (49b) 

Also, vorticity function, 2 2

1

.
u u fC

x y A


 
  
 

             (50) 

And, current density,      2 1

1

1
.

H H

x y A

 
   

 

              (51) 

 from (8) and (9), we have 

     2 1 ,u N u N N
x y
   

 
     

 

 

 
 

   
 

 

   
   

 

1 2 1 3

3 22 2 2 2

1 12 3 3 2

2 2

2 2

,

A y A A x AC C
f x A N f y A N

A x A yy A x A x A y A

N

 

 

  
      

      

  

   
   
      

  

Let  
3 2cos & sin ,x A r y A r    

      

  
 (52) 

so that     
2 2 2

3 2 ,x A y A r      
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Also  sin cos
cos & sin .

x r r y r r

 
 

 

     
   

                    (53)

 

1 1

2 2

1 1

2 sin 2 coscos sin sin cos
cos sin

2 2

,

fA r fA rfCr t t fCr t t

A r r r r A r r

t

    
 

 



         
                    

 

 

Here t N     

On solving we get 

1

2

1

2
,

2

fAfCr t t
t

A r r




 
  

 
 

2

1

1

2
.

2

A dr r d dt

fCr fA t




  

                                                                                                     (54)

 

(i)   (ii)         (iii)  

 

From (i) and (ii)  

1

1
3

1
3

1 1

2
,

2 1
ln ln ln ,

2
ln ln ln ,

2 2

A dr dt

fC r t

A
r t c

fC

AfC fC
r t c

A fC A





 

  

   

 

On solving, 

   
4

2 2

3 2

c
t

x A y A


  

,   12
4 3where c

fC

Ac  

   
4

2 2

3 2

c
Hence, number densityof dust is, N=α- .

x-A + y+A
                                              (55)                                

 

And as in application:1, 

 
2

31 3

2

tan .
C x Ax A

Df A
y A A

 
  

   
   

 

Or  
2

21 2

3

tan .
C y Ay A

Df A
x A A

 
  

   
   

 

 

   

2

21 2 4

2 2

3 3 2

tan .
C y Ay A c

N Df A
x A A x A y A


  

     
      

                         (56) 

Bernoulli function is now, 

   

   

2 22
3 31 3 2

2 2
2 3 2

1 32
5

2

2
tan

2 2

tan .

C x A x Ax A Kc fAf C
B A

A y A A A x A y A

x AKc fC
C

A y A

 



   
     

         

 
  

 

          (57) 

Pressure function is now, 
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   
 

   

22 2
2 2 32 1 3

3 2

2

1 32 2
52 2

23 2

2 tan
2

tan .
2

x Ax A f C
P f C x A y A

y A A

x AKc fA Kc fC
c

A y Ax A y A


 



            

 
   

     
 

                          (58) 

where 5c  is an arbitrary constant, 

and magnetic flux function is given by 

 

   
2 2

3 2

1 1

' .
4 4

x A y A
C

A A


 
                                                     (59) 

Hence, by using two different forms of Legendre transformation function, we have 

determined the exact solutions of the governing equations by Magnetograph 

transformation and have found out the expression for magnetic flux function, pressure 

function, Bernoulli function number density and also found the expressions for each of the 

two velocity components
1 2u and u . 

 

8. Results and Discussion 

 

In present work magnetograph transformation has been used for variable angle between 

fluid velocity and magnetic field and we have determined the exact solutions for the 

variables of interests. Magnetic field lines are found to be concentric circles for both the 

applications (Fig. 3) which are independent of the angle between fluid velocity and 

magnetic field i.e.  . Value of vorticity function is zero for constantly inclined (C = 0), 

equation (38) and (50), and has some finite value for variably inclined. Variations of the 

components of fluid velocity u1 and u2 with respect to H1 are plotted. These variations are 

due to the fact that the velocity vector of fluid and the magnetic field vector are variable 

inclined. cot   plays the most vital role for the observed trend. In Fig. (1a) the variations 

are plotted for small angles between 1° to 10°. The nature of variation is almost same for 

all the angles. It can be seen that for the angle 1°  the curve shoots high as the value of cot 

1° is larger. Next in Fig. (1b) the variation of u1 is plotted for the angles between 15° to 

90°. The variations for different angles in this case too are almost having the same nature 

with the 15° curve getting high due to the relatively larger value of cot 15°. In each case, 

except for the angle 90° the curves rise to a maximum and then falls down. For the angle 
90°, however, as the value of cot 90° is zero, the curve falls down from the beginning. In 

Fig. (2), variation of u2 is plotted. In this case too, the nature of the curves for different 

angles is almost similar with the curves starting with maximum value, attaining a 

minimum value and then seems to converge at a point. 
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Fig.1a. Variation of u1 with respect to H1.  1 1 2 22

f
u H cot H , f 1,H 1

H
     

 
Fig. 1b. Variation of u1 with respect to H1.  1 1 2 22

f
u H cot H , f 1,H 1

H
   
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Fig. 2. Variation of u2 with respect to H1.  2 2 1 22

f
u H cot H , f 1,H 1

H
     

 
Fig. 3. Concentric circular magnetic field lines. 

 
9. Conclusion 

 

This paper aims to introduce the reader to the modelling of two-phase flow in general, 

liquid-gas flow in particular, and the prediction of fluid pressure gradient specially. Two 
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different forms of Legendre transform function, application 1 and 2, were presented for 

two-phase flow. Due to the mathematical complexity of two phase MFD flow, very few 

exact solutions for the conducting fluid flow under the presence of electric and magnetic 

field are known till date. To reduce some of the complexity, it becomes necessary to make 

certain assumptions about the inherent properties of two phase fluid. Here, in this paper, 

we have found out the expressions for magnetic flux function, (46) and (59), Bernoulli 

function, (47) and (57), pressure function, (48) and (58), and number density of fluid 

particle , (45) and (56), by determining the exact solution. These results resembles exactly 

as obtained by C. Thakur and Ram Babu Mishra,[10] , if we assume  , i.e. angle between 

andu H  constant. If we consider the motion of fluid particles only (one phase) i.e. 0v  , 

0N  , then we obtain the same flow equation as is obtained by C. S. Bagewadi [11]. 
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