

Data Security and Deduplication Framework for Securing and Deduplicating

Users’ Data in Public and Private Cloud Environment

K. Balaji, S. S. Manikandasaran

PG and Research Department of Computer Science, Adaikalamatha College, Vallam, Thanjavur,

Tamil Nadu, India. Affiliated to Bharathidasan University

Received 17 June 2021, accepted in final revised form 14 October 2021

Abstract

Maintaining the security of data stored in the public or private cloud is a more tedious task.

The cloud is the only arrangement for storing enormous amounts of data, but there is a

possibility of storing the same data more than once. The traditional security system

generates different unreadable data for the same readable content of a file. Therefore, it is

necessary to address data security of the cloud and duplication in cloud storage. This paper

concentrates on developing a data security and deduplication framework with different

security techniques and mechanisms to address the said difficulties in the cloud. The

framework proposed in this paper focuses on reducing security vulnerability as well as data

duplication. The paper describes the components used in the frameworks. The main research

contribution of the framework is having enhanced the convergent encryption technique, key

generation techniques, and deduplication mechanism for maintaining a single copy of data

in the cloud. The proposed framework’s efficiency is measured by implementing the work

by developing a cloud-based application that coded for all the procedures of the proposed

framework and tested in the cloud environment.

Keywords: Data security; Deduplication; Convergent encryption; Public cloud; Private

cloud.

© 2022 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.
doi: http://dx.doi.org/10.3329/jsr.v14i1.54063 J. Sci. Res. 14 (1), 153-165 (2022)

1. Introduction

Cloud is the latest technology that provides computing resources through the Internet. It is

Internet-based computing. Internet is the basic requirement to use cloud services. This

technology is not entirely new. Evolutionary technology forms pervasive computing,

parallel computing, grid computing, utility computing, etc. It has enormous computing

power to provide huge virtual storage. It provisions the computing resources in three

ways: software, platform, and infrastructure services. Cloud is a place with a huge amount

of computing infrastructure built by lots of high-power servers and network connections.

It is running in a 24×7 manner. It mainly helps small and medium scale enterprises to

satisfy their computing needs. Cloud is more reliable for storing data, and it is more

 Corresponding author: balajjee.mecse@gmail.com

Available Online

J. Sci. Res. 14 (1), 153-165 (2022)

JOURNAL OF

SCIENTIFIC RESEARCH

www.banglajol.info/index.php/JSR
Publications

http://dx.doi.org/10.3329/jsr.v14i1.54063
mailto:mahbubchem@cu.ac.bd

154 Data Security and Deduplication Framework

efficient to deliver the data at the request [1]. Cloud computing has its essential

characteristics: on-demand self-service, broad network access, Multitenancy, Elasticity,

and Metered service. It provides an unlimited computing service to users based on their

requests. Apart from the many benefits of the cloud, it is suffered by some darkest parts of

the cloud. Management of cloud storage is a critical task in the cloud, and more

specifically, securing data in cloud storage is a noticeable challenge in the cloud [2].

 Cloud ensures reliability because it stores multiple copies of a single piece of data.

Therefore, the storage contains many duplicate data. Traditional cryptosystems lead to the

store of duplicate data in the cloud. Duplicate data in cloud storage makes administration

overhead in the cloud. Storing Duplicate data wastes the bandwidth, and it leads to

performance issues. Therefore, secure deduplication of the cloud is a must to maintain

cloud storage efficiently. Data deduplication methods were put in place to support overall

compression to approximate granularity [3].

 Previous methodologies are very ineffective in the relative block of identity and are

not versatile. Information deduplication policies may be operational at the file or sub-file

level and the block level [4]. It encloses information using pieces of variable or fixed size.

Cryptographic hashing measures generate hash estimates for these blocks, and copies are

identified by coordinating hash standards [5]. The deduplication technology was analyzed

to determine performance, efficiency, challenges, and cost. However, the primary

system’s deduplication techniques have not yet been as effective as the relief

deduplication technology [6]. Because the deduplication was carried out in the primary

system 68 %, but in the backup system 83 %, the backup deduplication method has

significantly increased data storage efficiency. Higher concentration must reduce

deduplication in the backup storage system [7]. Data deduplication techniques are

categorized at both block and file levels. At the file level, the files are compared

depending on their originality [8]. According to fixed or variable length, data burst into

small pieces at the block level and find the block’s original copy. Deduplication is

performed on either client or server-side. Client-side deduplication safeguards storage

waste and records network bandwidth. Server-side deduplication saves storage space and

reduces overall user-side deduplication system operating costs. Deduplication is supported

by convergent encryption. Convergent encryption uses a convergent encryption key for

encrypting and decrypting the data before storing it in the cloud storage. This convergent

encryption key is generated from the user’s data to be stored in the cloud storage. The

convergent key ensures that whether the data is already stored in the cloud or not [9]. This

paper designs a framework for secured deduplication to ensure efficient data storage in the

cloud.

2. Related Work

Cloud storage is more efficient for storing a huge amount of data. However, a security

vulnerability in cloud storage is a huge hurdle for users to store the data in the cloud. To

maintain security and deduplicated cloud storage, different researchers undertake many

K. Balaji et al., J. Sci. Res. 14 (1), 153-165 (2022) 155

types of research. This is section discusses some of the selected research work already

done by the same field. Lashkari et al. [10] proposed a framework with data ownership

challenge-based functionality for deduplication to manage textual encrypted data files.

This approach verifies file data ownership and verifies duplicate file content with a

security challenge and big data support. This framework includes the following

components: Users: -First, users have to create a login and password for individual data

privacy. Upload: -After a registered user logs in, the user uploads the data to the cloud on

which the operations are carried out. Deduplication check: When downloading the file, the

file is checked for duplication. Generation of keys: The generation of keys is carried out

according to the content present in the file. Server: Afterwards, the encrypted file is stored

in the cloud. The file is accessible through the cloud. File sharing and access: If a user

wishes to access another user’s file, the file key is shared with the particular user. Then

only the user has access to the corresponding file. Admin: Admin keeps track of all

actions of all users.

 Kumar [11] proposed a framework composed of eight components: client, file

uploader, proof of ownership, cloud service provider, cloud database, file uploader, and

user. The work’s main objective is to design a secure cloud data system that benefits

customer data (cloud data storage user) and server data (cloud storage provider). For user

benefit, and improved cloud data protection mechanism for the information stored in the

cloud is provided by encrypting the data before uploading the file to the depot server.

Simultaneously, cloud storage capacity is optimized by avoiding redundant storage of the

same file on the server. Encrypting the same file with two different encryption keys

generates two different encrypted files, which affects the cloud service provider’s

deduplication concept. Thus, an efficient mechanism generates the hash value from the

text file’s content and then uses it to encrypt the data. The hash value with a single file

identifier is stored in the database to avoid data attack leaks. The server creates a link to

the file without storing redundant data to perform deduplication. The proposed work also

effectively uses the customer’s bandwidth because, when downloading a file redundantly,

only the hash value is passed to the server and checked.

 Devarajan et al. [12] proposed a Storage Optimization System (SOS) framework to

decrease the storage allocation using Deduplication Compression (DDC) algorithm to

improve the storage and utilization of bandwidth in the SOS through the elimination of

duplicate files and monitor the IaaS storage utilization. The different metadata standards

help identify the respective file objects, and the file data elements bound to the

corresponding block can be grouped into segmented bins. The DDC algorithm is

associated with a linked list structure to access the file on different parameters to classify

future file access models related to cloud storage. The ranking was determined based on

user access frequency to predict future usage based on file access models. The SOS

framework has a dashboard that can help the user to decide how the file will work. The

customized Storage Optimization System utilizes the deduplication technique to pre-

process file/data storage in IaaS storage in the cloud. The following four processes are

156 Data Security and Deduplication Framework

used as part of the deduplication process.1) Segmentation, 2) deduplication verification, 3)

metadata management, 4) data storage to identify a redundant copy of the file.

 Manikandasaran et al. [13] proposed a technique named MONcrypt is based on the

obfuscation technique. The authors have discussed the security issues in the cloud and

mention the importance of security in cloud storage. They use the obfuscation technique

in their proposed technique. Obfuscation is a process of masquerading the original text

into irrelevant text without using a key, contrary to encryption. Normally, traditional

obfuscation is not using and but MONcrypt uses a key for obfuscating the data. This new

obscuring technique is used to ensure the confidentiality of externalized data in cloud

storage. The authors tried to implement the work in a real-time cloud environment. They

use hacking tools to analyst the security of the data. The proposed technique shows

improved performance and safety concerning existing techniques.

 George et al. [14] proposed GLEnc encryption. It aims to encrypt the data before it

enters into cloud storage. The method focuses on protecting data in the Public Cloud

Environment. The proposed model enables a simple plain text to undergo different types

of splitting and dividing techniques. Three keys are employed at different stages to get

highly encrypted data. First, the plain text values are counted and converted to ASCII

decimal values and then binary. Then, these values undergo splitting and dividing with bit

conversion. Symmetric encryption uses the same keys in the encryption and decryption of

the data. Therefore, GLEnc produces different ciphertexts for the identical plain text that

happened more than once in the plain text content. Thus, ensuring the proposed GLEnc

algorithm high security of public cloud environment.

 Uma et al. [15] delivered a technique used to generate a convergent key from the user

data, which is to be uploaded to the cloud, and the user’s data are encrypted with this

convergent key. Existing convergent encryption techniques are vulnerable to different

attacks and not suitable to cloud storage. The proposed work is an enhanced symmetric

convergent encryption technique to maintain secure deduplication with convergent

encryption in the cloud. The paper introduces a new approach to getting the cloud’s key

and encryption technique as a service. Encryption is done on the users’ side. The proposed

technique is analyzed for a security vulnerability, and it ensures the security and efficient

deduplication by the procedure used in the overall data deduplication process

 Pusukuri et al. [16] represented the importance of the data compression technique in

data deduplication. In this technique repeating data of duplicate copies are eliminated. To

support deduplication, protect the confidentiality of sensitive data. The paper has been

proposed a convergent encryption technique to encrypt the data. For better protection of

data security, identify the problem of authorized data deduplication in the first attempt.

There have different traditional deduplication systems. From those systems, different

privileges of users are further considered in duplicate checks besides the data itself. In

hybrid cloud architecture, present several new deduplication constructions for supporting

authorized duplicate checks. Based on the definitions, the paper proposed a security model

for security analysis. A proof of concept is implementing a prototype of the authorized

duplicate check and using our prototype. A testbed experiment is conducted.

K. Balaji et al., J. Sci. Res. 14 (1), 153-165 (2022) 157

 Agarwala et al. [17] proposed a secure data deduplication protocol, DICE (Dual

Integrity Convergent Encryption), in which it is focused on i) to prevent the duplicate-

faking and erasure attacks, and ii) to provide integrity check at both client and server ends.

Generated tag is uploaded; the server performs the integrity check of the received tag. The

integrity check is performed when the client downloads the tag to retrieve the ciphertext.

As a result, reduce the bandwidth consumption by sending only the tag instead of the long

ciphertext while at the same time achieving deduplication. The key generation and

management processes are not clearly described in this paper.

 Periasamy et al. [18] presented an enhanced secure content deduplication

identification and prevention (ESCDIP) approach to improve the file-level and content-

level deduplication discovery of coded data with consistency in the cloud environment.

Every cloud user’s files comprise an independent master key for encryption using the

ESCDIP technique and outsourcing them into the cloud. It shrinks the overheads that are

connected with the collaborative duplication detection and query processes. The method

identifies the unique data chunking to store in the cloud. The cloud user sets the size of the

data chunk. Chunk is also denoted as segments. Each segment is assigned with an

identifier. The method identifies the duplicated data by comparing the data segment

identification, where only a copy of every repeated part will be stored. At any cost,

duplicated segments cannot be saved, and pointers are designed for them. Thus, the

technique improves storage efficiency and reduces backup costs. Based on the result, this

method deduced data uploading and downloading time and minimize communication

costs compared with other methods.

3. Problem Definition

The cloud allows duplicate data to store in the cloud storage. As a result, it creates

unwanted storage allocation in the cloud. They are forced to use the platform and

infrastructure provided by the same CSP for all services. It requires the use of interfaces

provided by the CSP. Users’ data have to be in a fixed format specified by the CSP.

Users’ data sent to the cloud are controlled and monitored by CSPs. CSPs know where the

users’ confidential data are located. CSPs have the privilege to access and collect the

users’ confidential data. Cloud storage is allocated for storing the same data multiple

times. As a result, it creates difficulties in storage management. The traditional

cryptosystem is not suitable for maintaining non-duplicate data in the cloud storage

environment. The deduplication mechanism is vulnerable to brute force attacks, dictionary

attacks, and poison attacks, including duplicate faking attacks and erasure attacks [19].

The convergent encryption key should be the same for all users who have the same data,

but sharing this key with all the users of the data owner is vulnerable to a security attack.

4. Methodology

The paper proposes a data security and data deduplication framework to secure and

duplicate users’ data in public and private cloud storage. The objective can be achieved by

158 Data Security and Deduplication Framework

proposing different convergent encryption techniques for public and private cloud storage.

Furthermore, the proposed framework comprises a convergent key generation technique

to generate and maintain the keys. Finally, the data are verified by the Data Deduplication

mechanism, which ensures the duplicate copy of the data. Fig. 1 illustrates the block

diagram for the proposed safety and data deduplication framework.

Fig. 1. Block diagram of the proposed framework.

The proposed framework consists of different cloud services for cryptography

service, key generation, and maintenance service, Data deduplication service for the

public, private cloud storage service. Cryptography is provided as a service in the name of

Enhanced Convergent Encryption as a Service (ECEaaS). The key generation is provided

by the cloud service called Key Manager as a service (KMaaS). KMaaS is a key

generation method. It generates a key from the users’ data. It is also called Convergent

Encryption (CE) key. The data uploaded to the clouds are verified for duplication to avoid

data redundancy in the cloud storage. Data DeDuplication as a Service (DDDaaS) is

proposed in the framework for duplication verification on public and private cloud data.

The data may be stored in a public or private cloud based on the users’ interests.

5. Proposed DSDD Framework

The proposed Data Security and Deduplication Framework (DSDDF) has a cloud service

that provides security service using symmetric cryptographic encryption, known as the

Enhanced Convergent Encryption (ECEaaS). ECEaaS consists of two cryptographic

symmetric encryption techniques: Enhanced Data Convergent Encryption (EDCE) and

Enhanced Symmetric Convergent Encryption (ESCE); the techniques are proposed for the

public and private cloud environment. Generally, there are four types of cloud deployment

models: public, private, hybrid, and community cloud environment. Apart from that, this

research work focuses on providing security to public and private cloud data.

K. Balaji et al., J. Sci. Res. 14 (1), 153-165 (2022) 159

Cryptography techniques address security. For cloud storage, a symmetric cryptosystem is

more suitable and efficient to keep data safe. However, asymmetric is not suggested for

encrypting a huge amount of data stored in the cloud.

 Different clouds and cloud services are designed in the proposed framework. Mainly,

security services provided by the ECEaaS and KMaaS are the scope of this work. Along

with ECEaaS and KMaaS, another cloud service is included in the framework for

verifying data deduplication called DDDaaS. The DDDaaS maintains all the details about

the data stored in the cloud. It has database details about the file, convergent key, tag, etc.

Using the convergent key and the tag, DDDaaS verifies the deduplicated data. KMaaS is

a key providing service to the encryption techniques in the ECEaaS. The encryption

techniques used in the framework are convergent. The key for the encryption is also a

convergent encryption key. The key is generated for the user based on their wish with the

help of KMaaS. Based on the encryption technique chosen by the user, keys are generated

from data uploaded to the cloud. The framework separates the cloud services, which

means security, key, deduplication, and storage services. Independent services providers

provide all these services. Different independent cloud service providers provide these

services. Hence, the storage providers do not know which security techniques and the key

to hide the data. Likewise, the key service provider does not know in which cloud the data

are stored. This scenario avoids the security risk of the data stored in cloud storage.

 The framework considers the storage of data in the public cloud and private cloud.

For each cloud data, there is a different convergent encryption technique proposed in

ECEaaS. First, users have to decide which cloud they will upload the data to; they must

choose a symmetric convergent encryption technique to encrypt the data. The following

Fig. 2 shows the diagrammatic view of the proposed security framework for cloud

environments.

Fig. 2. Data security and data deduplication framework.

160 Data Security and Deduplication Framework

The procedural steps followed in the entire proposed framework are given below.

Steps in the process flow of proposed framework

1. Users send data uploading requests to the proposed framework through applications

running on the client-side. The initial request is given to DDDaaS.

2. The DDDaaS in the framework generates a token for the data and checks whether the

token is already presented in its database.

3. If it is not already presented in the database of DDDaaS, then the token sends to the

user. Further, the following steps are carryout.

4. DDDaaS forwards the generated token to KMaaS.

5. User requests a convergent key from the KMaaS by submitting the token of the file

given by DDDaaS.

6. KMaaS generates the key.

7. The key is forwarded to DDDaaS.

8. The key is forwarded to the user.

9. User requests convergent encryption for encryption.

10. The ECEaaS provisioned the required encryption for users.

11. User encrypts the data using the key and selected convergent encryption.

12. User uploads the encrypted data to the DDDaaS for storing it in the cloud.

13. DDDaaS generates a tag for the encrypted data, then checks whether the tag is

already presented in its database. The encrypted data is not stored when the tag is

already presented in the database.

14. The encrypted data are stored in the public or private cloud storage if the tag is not

presented in the DDDaaS database.

15. If the token generated initially is already presented in the DDDaaS database. Further,

the following steps are carryout.

16. The DDDaaS does not allow the user to generate the key and encrypts the data.

Instead, it verifies the user’s authenticity and allows the current user access to the

already stored file in the cloud storage.

 Each time a data uploads to cloud storage, it is encrypted using convergent

encryption. For encrypting the data, a key is generated from the data being uploaded to the

cloud. Consider the following cases to understand the framework further.

 Case 1: A new data file uploads to the cloud storage. A token is generated using

DDDaaS for data file content. Now, the generated token is verified with the DDDaaS

database. Whether the token does not exist in the DDDaaS database, then DDDaaS allows

the user to generate the convergent key. The key is the digested value of the data being

uploaded to the cloud. Using this convergent key, the data is encrypted. After the

encryption, the encrypted data is submitted to the DDDaaS. The DDDaaS generates a tag

for encrypted data and checks whether the tag already exists in its database. If it does not

exist in the database, then the encrypted data is stored in the cloud. Suppose the tag exists

K. Balaji et al., J. Sci. Res. 14 (1), 153-165 (2022) 161

in the DDDaaS database already, then it shows that the encrypted data is previously stored

in the cloud storage.

 Case 2: A data file uploads to the cloud storage. A token is generated using DDDaaS

for the data file content. Now, the generated token is verified with the DDDaaS database.

Whether the token exists in the DDDaaS database shows that the specific data file is

already stored in the cloud storage by another user. Now DDDaaS verifies the user

authenticity of the user to the data file and allocates the file access link to the new user.

However, the data is not uploaded to the cloud for a second time.

 The framework strongly protects the data from unauthorized access, and it also avoids

multiple copies of data stored in the cloud. Furthermore, the framework ensures that the

same data is not stored in the public and private cloud. The encryption techniques

proposed for public and private clouds use the same keys for encryption and decryption.

The procedure below outlines the steps for the proposed key generation technique.

Steps to be involved in the generation of CE key

1. Users’ data are input PT.

2. Find the length of the PT.

3. The characters in the PT are converted into decimal code.

4. Divide the PT into 16 characters’ lengths of the blocks.

5. Add each block decimal with the following 16 block decimal values.

6. Find the modules by dividing each decimal value by 256, note the remainder value.

7. The derived 16 reminder values are converted into binaries 0’s and 1’s.

8. Finds the one’s complement of the 128 bits binary.

9. Divide the 128 bits into 8 bits.

10. Count the number of 1’s in each 8-bit block.

11. Rotate left to right each 8bits at the number of times 1’s in every 8 bits.

12. Convert the 8bits into the ASCII decimal code.

13. Convert the decimal into the character code.

14. The converted character code is the 128-bit CE key.

The key generation is invoked after the user-chosen the convergent encryption. Then,

users directly contact the key generation services to get the key. Key received from the

KMaaS is not known to the ECEaaS. Thus, ECEaaS comprises two convergent

encryptions for public and private cloud storage. Then, based on the user’s wish, the

corresponding procedure is invoked to encrypt the data. For example, the following

procedure involved convergent encryption in ECEaaS.

5.1. Procedure to be followed in the proposed EDCE

This procedure is used for encrypting the data which are going to store in public cloud

storage. The users’ data are the plaintext to upload. The plaintext is converted into

binaries. Divide the total length of plaintext bits into 128-bit blocks. The EDCE cipher

takes the 128-bit binaries as input for encryption. If the plaintext has more than one 128

162 Data Security and Deduplication Framework

bits block, every 128 bits are encrypted using the same subkeys. EDCE cipher generates a

round number key, which denotes the number of rounds. The encryption procedure of the

EDCE cipher is as follows,

1. The 128 bits are divided into 64 bits blocks called LD1 and RD1

2. Find the Left circular shift for LD1 for the number of times bit 1 is in the 64 bits.

3. Find the Right circular shift for RD1 for the number of times the bit 1 is in the 64 bits

4. Find XOR with subkey LK1 with LD1 and RK1 with RD1

5. Find the XOR for RD1= LD1 XOR RD1

6. Merge the two 64 bits into a single 128 bits

7. The find reverse the 128 bits

8. Find one’s complement. Now a single round is completed

5.2. Procedure to be followed in the proposed ESCE

This procedure is used for encrypting the data which are going to store in private cloud

storage.

1. User’s data are transformed into equivalent binary.

2. Binaries are divided into 128bit blocks.

3. A Key K1 is generated from the cloud.

4. Alternatively, Insert the bits of key K1 into each block of 128bit

5. Find 1’s complements on each block

6. Divide the 256bit blocks into 128bit blocks and use the same key K1 to find XOR

with each 128 bits block.

7. Split each 128bit block into a 64bit block

8. Find the 1’s complement on each 64bit block

9. Join the pair of two 64bits blocks into one 128bit block

10. Find the reverse of every 128bit block and Merge all the blocks into a single block

11. Split block into two blocks and Merge all blocks into a single block

12. Extract alternate 8bits from the 512 bits, which means extract odd 8 bits and even

8bits separately

13. The extracted odd 8 bits of 256 bits are converted into decimal and ASCII character

code. It is a key K2 and kept safe.

14. The extracted even 8 bits of 256 bits are converted into decimal and ASCII character

code. It is the encrypted data for plain text.

All the proposed procedures discussed in this paper are coded and developed as an

application and hosted in the real-time cloud environment. The effectiveness of the

proposed procedures is calculated based on the computation time caused by the

procedures. The following section describes the implementation environment used for this

research work.

K. Balaji et al., J. Sci. Res. 14 (1), 153-165 (2022) 163

6. Implementation Setup and Results

The proposed research work is coded and developed as a cloud-based service. The

developed application is deployed in the MyASP.NET cloud server. MyASP.NET is a

cloud-based platform providing service that enables the users to deploy their application

to get a cloud-based experience. The cloud-based application is developed and hosted on

the cloud server. The proposed application is developed in C#.NET using visual studio

2012. The hosted cloud application is served as a cloud service consumed by all

procedures proposed in the research work. Fig. 3 shows the diagrammatical representation

of the implemented setup created for research work.

Fig. 3. DSDDF implementation setup.

Convergent encryption, convergent encryption key generation, and tag generation all

these procedures are all running in the developed cloud-based application. For storing

data, the MyASP.NET cloud server is used in the implementation. The implementation

shows that if the same data file is uploaded for the second time, it gives an error message

that the file is already available in the storage and please try another file. At the same

time, the data is not uploaded to cloud storage. Thus, it proves that the proposed

framework is not allowed to upload duplicate data. Hence, it enables the effective

management of data in cloud storage.

 The efficiency of the proposed approach is measured by considering the

computational time caused by the proposed and existing methods. It can be calculated by

the time taken by the data security and deduplication techniques for uploading data to the

cloud. Calculation includes the processing of all steps describes in the framework. A

comparison of computational time considers the different sizes of data. The computation

time includes the running of all the procedures when uploading the data. The paper

provides a comparison based on two cases discussed in the previous section.

 Table 1 shows the comparison of proposed and existing approaches concerning

computational time based on Case 1. In this case, a new data file is uploaded to the cloud

storage. The computation time is calculated based on token generation, encryption, key

generation, and tag generation procedures. The result illustrates that the proposed method

has taken a minimum computational time to upload a new data file compared to other

existing plans.

164 Data Security and Deduplication Framework

Table 1. Computational time caused by the Proposed and Existing Secured Deduplication

concerning Case 1.

Size (KB)
Dekey [20] Dupless [21] DSDDF

Milliseconds

100 299 280 163

200 592 556 324

300 886 831 483

400 1179 1108 645

500 1473 1284 804

Table 2 shows the comparison of proposed and existing approaches concerning

computational time based on Case 2. In this case, a user trying to upload a data file is

already stored in cloud storage by another user. When the file already exists in the storage,

it is not necessary to upload it again. Therefore, the computation time for this case is

calculated only based on the running time of the token generation. If the generated is

matched with the DDDaaS database, then no other procedures are invoked. It illustrates

that the proposed method has taken a minimum computational time to upload a data file

already stored in the cloud compared to other plans.

Table 2. Computational time caused by the proposed and existing secured deduplication concerning

case 2.

Size (KB)
Dekey Dupless DSDDF

Milliseconds

100 47 28 12

200 95 55 25

300 140 85 37

400 186 112 46

500 235 139 55

The result from the implementation of the proposed research shows that the efficiency of

the proposed framework. Further, the work will be tested for security analysis soon and

also the deduplication system will be implemented in the mobile cloud environment.

7. Conclusion

A security and deduplication framework is proposed with different components for

security, key generation, and deduplication. The main focus of the research is to propose

enhanced techniques and mechanisms for security and deduplication, respectively. The

security techniques are based on symmetric convergent encryption, which helps to ensure

security and deduplication. Deduplication is the process of verifying data duplication and

enables cloud storage with a single copy of data. The framework does not support

duplicate data in the cloud. It avoids the workload of key maintenance users. Hence, users

are not required to generate and maintain the framework’s elements, unlike existing

deduplication architectures. Converged encryption, key generation, deduplication, and

storage mechanism are delivered as a cloud service. As a result, save time, bandwidth and

K. Balaji et al., J. Sci. Res. 14 (1), 153-165 (2022) 165

keep management headaches to a minimum. The framework saves the storage from the

redundancy allocation. The proposed framework minimizes the computation time. It

enables cloud providers to maintain their storage environment effectively.

References

1. B. Alouffi, M. Hasnain, A. Alharbi, W. Alosaimi, H. Alyami, and M. Ayaz, IEEE Acc. 9,

57792 (2021). https://doi.org/10.1109/ACCESS.2021.3073203

2. P. Silva, E. Monteiro, and P. Simões, IEEE Acc. 9, 10473 (2021).

https://doi.org/10.1109/ACCESS.2021.3049599

3. D. Zhang, J. Le, N. Mu, J. Wu, and X. Liao, IEEE Trans. Cloud Comput. (2021).

https://doi.org/10.1109/TCC.2021.3081702

4. Pronika and S. S. Tyagi, Int. J. Inno. Tech. Expl. Eng. (IJITEE) 9, 364 (2019).

https://doi.org/10.35940/ijitee.B1027.1292S19

5. A. S. Jenitha, V. S. J. Prakash, Int. J. Recent Tech. Eng. (IJRTE) 8, 4084 (2019).

https://doi.org/10.35940/ijrte.C5453.098319

6. L. Suresh and M. A. Bharathi, Analysis of Block-Level Data Deduplication on Cloud Storage,

in Ambient Communications and Computer Systems, Advances in Intelligent Systems and

Computing, ed. Y. C. Hu et al., (Springer, Singapore, 2019) 904. https://doi.org/10.1007/978-

981-13-5934-7_36

7. A. Vijayakumar and D. A. N. Jebaseeli, Int. J. Grid Dist. Comp. 13, 1 (2020).

8. C. Yu, C. Chen, and H. Chao, IEEE Network 29, 51 (2015).

https://doi.org/10.1109/MNET.2015.7064903

9. Y. Zhang, C. Xu, N. Cheng, and X. S. Shen, IEEE Trans. Depend. Sec. Comp.

https://doi.org/10.1109/TDSC.2021.3074146

10. M. Lashkari, A. Suntnure, Siddheshwar, S. Kathale, and H. Wankhede, Int. J. Res. Eng. Sci.

Mgt. 2, 5 (2019).

11. S. Muthurajkumar, Int. J. Eng. Adv. Tech. (IJEAT) 9, 1 (2019).

 https://doi.org/10.9790/0661-1904052529

12. A. A. Devarajan and T. S. Muthu, Enhanced Storage Optimization System (SoS) for IaaS

Cloud Storage - Proc. of IEEE Int. Conf. on Inve. Systems and Control (2020) pp. 756.

https://doi.org/10.1109/ICISC47916.2020.9171182

13. S. S. Manikandasaran, L. Arockiam, and P. D. Malarchelvi, Int. J. Info. Comp. Security 11,

(2019). https://doi.org/10.1504/IJICS.2019.096846

14. L. P. George, D. I. G. Amalarethinam, and A. S. Chandran, GLEnc Algorithm to Secure Data

in Public Cloud Environment - Proc. of IEEE Int. Conf. on Adv. in Comp. Commu. and Infor.

(ICACCI) (2018) pp. 2018-2022. https://doi.org/10.1109/ICACCI.2018.8554451

15. G. Uma and L. Jayasimman, Int. J. Res. Adv. Tech. (IJRAT) (2019).

16. P. L. Prasanna and L. K. Kumar, IOSR J. Comp. Eng. (IOSR-JCE), 19, 4 (2017).

17. A. Agarwala, P. Singh, and P. K. Atrey, DICE: A Dual Integrity Convergent Encryption

Protocol for Client-Side Secure Data Deduplication - Proc. of IEEE Int. Conf. on Systems,

Man, and Cybernetics (2017) pp. 2176-2181. https://doi.org/10.1109/SMC.2017.8122942

18. J. K. Periasamy and B. Latha, Neural Comlput. Applic. 32, 485 (2019).

https://doi.org/10.1007/s00521-019-04060-9

19. P. Prajapati and P. Shah, J. King Saud Univ- Comp. Info. Sci. (2020), in press.

https://doi.org/10.1016/j.jksuci.2020.10.021

20. J. Li, X. Chen, M. Li, J. Li, P. P.C. Lee, and W. Lou, IEEE Trans. on Parallel and Distrib. Sys.

25, 1615 (2014). https://doi.org/10.1109/TPDS.2013.284

21. M. Bellare, S. Keelveedhi, and T. Ristenpart, DupLESS: Server-aided Encryption for

Deduplicated Storage - Proc. of the 22nd USENIX Conf. on Sec (SEC’13), USENIX

Association, USA (2013) pp. 179–194.

https://doi.org/10.1109/ACCESS.2021.3073203
https://doi.org/10.1109/ACCESS.2021.3049599
https://doi.org/10.1109/TCC.2021.3081702
https://doi.org/10.35940/ijitee.B1027.1292S19
https://doi.org/10.35940/ijrte.C5453.098319
https://doi.org/10.1007/978-981-13-5934-7_36
https://doi.org/10.1007/978-981-13-5934-7_36
https://doi.org/10.1109/MNET.2015.7064903
https://doi.org/10.1109/TDSC.2021.3074146
https://doi.org/10.9790/0661-1904052529
https://doi.org/10.1109/ICISC47916.2020.9171182
https://doi.org/10.1504/IJICS.2019.096846
https://doi.org/10.1109/ICACCI.2018.8554451
https://doi.org/10.1109/SMC.2017.8122942
https://doi.org/10.1007/s00521-019-04060-9
https://doi.org/10.1016/j.jksuci.2020.10.021
https://doi.org/10.1109/TPDS.2013.284

