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Abstract 

In this paper, we have studied Bianchi type metric in Lyra's geometry with scalar field and 

flat potential. The Einstein's field equations have been solved by taking the shear scalar in 

the model proportional to the expansion scalar, which leads to 
nBA , where A and B are 

metric functions and n is a positive constant. Also, we discuss some physical and 

geometrical features of the obtaining model. 
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1.   Introduction 

Bianchi-type cosmological models are homogeneous, and anisotropic is a notable fact. On 

a temporal scale, the universe isotropization process may be investigated. Anisotropic 

universes are more general than isotropic cosmological universes from a theoretical 

standpoint. Bianchi spacetimes in constructing spatially homogeneous and anisotropic 

cosmological models are beneficial. Inflation refers to the accelerated expansion of the 

cosmos in its early stages. It enables spatial flatness and near large-scale homogeneity. 

The inclusion of inflation in linear cosmology gives the advantage of being the only 

known process that can explain the evolution of large-scale structures that are seen that 

formed under gravitational instability. Recently, the large-scale data from various 

cosmological surveys has attracted much attention in inflationary cosmology research. 

Despite the effectiveness in detecting inflation, the cause of the problem is not clear. Bali 

and Poonia [1] formed a Bianchi-type cosmological model in general relativity and 

discovered the model's inflationary solution. The models' anisotropic nature, which began 

with a decelerating phase and expanded later with acceleration, which corresponded to an 

inflationary situation, was also noticed. Some researchers have examined different aspects 

of the inflationary models [2-6].  
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The field equations for Lyra's geometry are,  

j

i

k

k

j

i

j

i

j

i

j

i TUUgUURgR 8
4

3

2

3

2

1
                    (1) 

Where Ui are displacement fields and the other notations have the same meaning as in 

Riemannian Geometry  

(here we have chosen 1 cG ). Here, 

 

Several researchers [7-17] have investigated many cosmological theories in different 

contexts in view of Lyra's geometry. Also, Basumatary et al. [18] have investigated 

Bianchi type - 0VI  Cosmological Model with a special form of scale factor in the Sen-

Dunn Theory of Gravitation. The purpose of this study is to find a Bianchi type VIo 

inflationary model in the context of Lyra geometry. Our paper is organized as follows, 

 In section 2, we derive the field equations in Lyra's geometry with the aids of 

Bianchi-type 0VI  spacetime by using the scalar field as the source. The solution of field 

equations is found in section 3. In section 4, some physical and geometrical features have 

been examined, and the last section contains a conclusion. 

 

2. Field Equations in Lyra's Geometry 

 

Consider Bianchi Type- 0VI metric in the form, 

 2222222222 dzeCdyeBdxAdtds xx                 (2) 

Where, CBA ,,  are functions of cosmic time t only.  

The energy-momentum tensor for scalar field [19] is given by, 
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The law of conservation of energy-momentum tensor, 
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The differential equations are obtained by combining the field Eqs. (1) and metric (2) with 

the components of the energy-momentum tensor (3). 
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Equation (4) derives the law of conservation of energy-momentum tensor. 
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where the above dot represents the ordinary derivative of t. 

 

3. Solution of the Field Equation 

 

From equation (9), 
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Which gives, 

CB                                                                                                                (12)                                                                                                                                                             

For the simplicity, we consider 1 ,    is  the constant of integration, such that 

CB                                                                                        (13)                                                         

 So the equations (5) to (8 ) can be rewritten as,  
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(For the flat region, we assume potential V = constant, resulting in 0
d

dV
 ) 

From equation (17), 
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To solve field equations, we assume that the shear scalar is proportional to the scalar 

expansion of spacetime, as Thorne [20] and Collins et al. [21] have proposed. This leads 

to  

nBA          (19) 

By  solving  (14)  to  (16)  and  applying  the  condition specified in equation (19), the 

following is obtained: 
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Putting ffBfB   ,  where 
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As a result, model (2) is simplified to: 
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By applying the appropriate transformation, TB   
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Equation (21) yields to, 
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If 1n singularity arises, so for the realistic model we take 1n . In the present model 

1n can not be taken for explaining the features of the universe. 

 

4. Some Physical and Geometrical Features 

 

In this section, we discussed some physical and geometrical features of the model 

obtained in Lyra's geometry. 
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Spatial Volume   2 nT                                                                          (23)                          

Fig. 1. Behavior of Spatial volume of the model versus time with the appropriate choice of constant. 

  

 The volume of the model appears to rise as time passes. As a result, the model begins 

to evolve with zero volume at the initial epoch with an infinite rate of expansion. 

The Hubble parameter )(H , Scalar Expansion )( , Shear Scalar ( ), Redshift, 

Decomposition of time like tidal tensor and Deceleration parameter are given by, 
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Fig. 2. Behavior of  Hubble parameter, Expansion scalar, Shear scalar of the model versus time with 

the appropriate choice of constants.  
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 Thus, from Hubble parameter and expansion scalar for the model (22) when T=0, 

both are infinite and steadily decrease as time increases. When T , 0, H the 

model demonstrates that the cosmos expands with time. However, the rate of growth 

slows down and eventually ends. As a result, it has been discovered that the value of the 

shear scalar is initially positive. However, the value decreases until it becomes zero in the 

late universe as time passes. At late time shear tends to zero. 
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Fig. 3. Behavior of beta function of the model versus time with the appropriate choice of constants. 
 

The (β(t)) defined by equation (27) is found to be infinite at the beginning epoch of 

time in this cosmological model, and it reduces with the progression of time. Finally, 

02  when T .   
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Fig. 4. Behavior of phi versus time with the appropriate choice of constant. 
 

Shows that   is a positive and expanding function of time throughout the model's history, 

and that finally reaches a constant value. 
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 It may be observed that as 0T the volume 0V . So, at 0T the model starts 

evolving, and it gets expanded with cosmic time for 0n . Thus we get that there is 

inflation in this model. When  0T ;  both   and H  are infinite, and as the time 

increases gradually they decrease and when  T both and H tends to zero.   

 This analysis suggests that the cosmos expands with time but at a slower pace in the 

initial stage. The value of the expansions anisotropic parameter is constant, implying that 

the anisotropy will be preserved until the end of time.  

 

5. Conclusion 

 

Inflation and spacetime associated with them have cosmological interest due to their 

important applications in the structure formation of the universe. Also, it is well known 

that scalar fields have considerable effects in the early stages of the inflationary universe. 

Here inflationary Bianchi type-    cosmological model in the context of Lyra's geometry 

is obtained. Some physical and geometrical features of the obtaining model are also 

discussed. 

 

Acknowledgment 

 

One of the authors P. M. Lambat, is thankful to the Council of Scientific and Industrial 

Research (CSIR), New Delhi, India, for providing financial assistance under the JRF 

scheme. 

                                                                                                                                                

References 

 
1. R. Bali and L. Poonia, Int. J. Mod. Phys. Conf. Series 22, 593(2013). 

https://doi.org/10.1142/S2010194513010726 

2. S. V. Chervon, V. M. Zhuravlev, and V. K. Shchigolev, Phys. Lett. B 398, 269 (1997). 

https://doi.org/10.1016/S0370-2693(97)00238-4 

3. M. S. Borkar and N. P. Gaikwad, Appl. Appl. Math. : An Int J. 11,  875 (2016). 

4. L. Järv, K. Kannike, and L. Marzola,  Phys. Rev. Lett. 118, ID 151302 (2017). 

https://doi.org/10.1103/PhysRevLett.118.151302 

https://doi.org/10.1142/S2010194513010726
https://doi.org/10.1016/S0370-2693(97)00238-4
https://doi.org/10.1103/PhysRevLett.118.151302


442 Bianchi Type-VI0 Inflationary Model  

 

5. R. Shojaee, K. Nozari, and F. Darabi, Int. J. Mod. Phys. D, 29, ID 2050077 (2020). 

https://doi.org/10.17485/IJST/v14i1.1705 

6. B. Jiten, S. K. Priyokumar, and S. T Alexander, Ind. J. Sci. Tech. 14, 46 (2021). 

https://doi.org/10.17485/IJST/v14i1.1705 

7. D. R. K. Reddy and M.V. S.Rao, Astrophys. Space Sci. 302, 157 (2006). 

https://doi.org/10.1007/s10509-005-9022-7 

8. P. Singh and P. K.Rai, EJTP 6, 41 (2009). 

9. A. Asgar and M. Answar, J. Theor. Appl. Phys. 8, 219 (2014). 

 https://doi.org/10.1007/s40094-014-0151-7 

10. A.S. Nimkar and M.R.Ugale, Int. J. Res. Biosci. Agri. Technol. 2017 (2017). 

11. D. C. Maurya, A. Pradhan, and A. Dixit, Int. J. Geom. Methods Mod. Phys. 15, ID 1850026 

(2018). 

12. R. L. Naidu, Y. Aditya, G. Ramesh,and  D. R. K. Reddy, Astro. Space Sci. 365, 91 (2020). 

https://doi.org/10.1007/s10509-020-03796-4 

13. D. C. Maurya and R. Zia, Phys. Rev. D 102, ID 108302 (2020). 

https://doi.org/10.1103/PhysRevD.102.108302 

14. S. P. Hatkar and S. D. Katore, Prespacetime J. 11, 17 (2020). 

15. A. K. Yadav, G. K. Goswami, A. Pradhan, and S. K. Srivastava, Ind. J. Phys. 96, 1569 (2022).  

 https://doi.org/10.1007/s12648-021-02071-8 

16. M. R. Mollah and K. P. Singh, New Astronomy 88, ID 101611 (2021).   

https://doi.org/10.1016/j.newast.2021.101611 

17. R. Raushan, S. Angit, and R. Chaubey, The Euro. Phy. J. Plus 136, 440 (2021). 

https://doi.org/10.1140/epjp/s13360-021-01363-6 

18. D. Basumatary and M. Dewari, J. Sci. Res. 13, 137 (2021). 

https://doi.org/10.3390/sym13091689 

19. R. Bali and S. Singh, Proc. Natl. Acad. Sci.,India, Sect.A Phys. Sci. 83, 115 (2013). 

https://doi.org/10.1007/s40010-012-0044-6 

20. K. S. Thorne, Astrophys. J. 148, 51 (1967). https://doi.org/10.1086/149127 

21. C. B. Collins, E. N. Glass, and D. A. Wilkinson, Gen. Relativ. 12, 805 (1980). 

https://doi.org/10.1007/BF00763057 

 

https://doi.org/10.17485/IJST/v14i1.1705
https://doi.org/10.17485/IJST/v14i1.1705
https://doi.org/10.1007/s10509-005-9022-7
https://doi.org/10.1007/s40094-014-0151-7
https://doi.org/10.1007/s10509-020-03796-4
https://doi.org/10.1103/PhysRevD.102.108302
https://doi.org/10.1016/j.newast.2021.101611
https://doi.org/10.1140/epjp/s13360-021-01363-6
https://doi.org/10.3390/sym13091689
https://doi.org/10.1007/s40010-012-0044-6
https://doi.org/10.1086/149127
https://doi.org/10.1007/BF00763057

