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Abstract 

The Sandor-Smarandache function, SS(n), is a recently introduced Smarandache-type 

arithmetic function, which involves binomial coefficients. It is known that SS(n) does not 

possess many of the common properties of the classical arithmetic functions of the theory of 

numbers. Sandor gave the expression of SS(n) when n (  3) is an odd integer. It is found 

that SS(n) has a simple form when n is even and not divisible by 3. In the previous papers, 

some closed-form expressions of SS(n) have been derived for some particular cases of n. 

This paper continues to find more forms of SS(n), starting from the function SS(24m). 

Particular attention is given to finding necessary and sufficient conditions such that SS(n) = 

n–5 and SS(n) = n–6. Based on the properties of SS(n), some interesting Diophantine 

equations have been studied. The study reveals that the form of SS(n) depends on the prime 

factors of the integer n in the natural order of the primes.  
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1.   Introduction 

In the late 1970s, the celebrated Romanian-American number theorist, Florentin 

Smarandache, proposed a new arithmetic function called the Smarandache function after 

him. Since then, more Smarandache-type arithmetic functions have been introduced in the 

mathematical literature. These functions are different from the traditional arithmetic 

functions in many respects. Because of their special features, these functions drew the 

attention of different researchers. Sandor [1] introduced a new Smarandache-type 

function. The function, called the Sandor-Smarandache function, is denoted by SS(n), and 

is defined as follows: 

           {                       (
 
 
)}  n 


 
5,                   (1.1) 
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where by convention,  

SS(1)
 
=

 
1, SS(2)

 
=

 
1, SS(3)

 
=

 
1, SS(4)

 
=

 
1, SS(6)

 
=

 
1.                        (1.2) 

In the defining equation (1.1), C(n, k)
 


 (
 
 
)  

  

           
        are the binomial 

coefficients, which are all integers (Hardy and Wright [2, Theorem 73]). Throughout this 

paper, the following simplified form of C(n, k) is used: 

         
                              

  
                           (1.3) 

The problem may now be reformulated as follows: Given any integer n (
 


 
7), find the 

minimum integer k such that k! divides (n
 
–

 
1)(n

 
–

 
2)…(n

 
–

 
k

 
+

 
1), where 1

 


 
k

 


 
n

 
–

 
2. With 

this minimum k, SS(n) is given by SS(n)
 
=

 
n

 
–

 
k.  

 Islam et al. [3] proved the results below. 

Lemma 1.1: SS(n)
 
=

 
n

 
–

 
2 if and only if n (

 


 
7) is an odd integer. 

Lemma 1.2: SS(n)
 
=

 
n – 3 if and only if n is even and is not divisible by 3. 

 Later, Islam and Majumdar [4] established the following result.  

Lemma 1.3: SS(n)
 
=

 
n

 
–

 
4 if and only if n is of the form n

 
=

 
6(4m

 
+

 
3) for any integer m

 


 
0. 

Corollary 1.1: Let SS(n)
 
=

 
n

 
–

 
4 for some (positive) integer n. Then, SS(2n)

 


 
2n

 
–

 
4. 

Proof: If SS(n)
 
=

 
n

 
–

 
4, then by Lemma 1.3, n

 
=

 
6(4a

 
+

 
3) for some integer a. But then, 2n 

cannot be of the form 6(4m
 
+

 
3). 

 Lemma 1.1 and Lemma 1.2 show that SS(n) has a simple form when n is odd or when 

n is even but not divisible by 3. Lemma 1.3 finds the necessary and sufficient conditions 

such that SS(n)
 
=

 
n

 
–

 
4. Thus, the problem of finding SS(n) in the remaining cases remains 

a challenging problem. The SS(n) forms may be demonstrated schematically with the help 

of Fig. 1.1 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1. A tree diagram of SS(n). 

 

 From the tree above, it is clear that the problems of interest are the ones given in the 

final branch. Majumdar [5] concentrated solely on the form SS(p + 1) functions, where p 

is an odd prime. Later, the problem was studied to some extent by Islam, and Majumdar 
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[6], who derived the expressions of SS(2mp), SS(6mp), SS(60mp), and SS(420mp), where 

p is an odd prime and m is any (positive) integer. Islam et al. [3] subsequently found 

explicit forms of SS(6t), SS(12t), SS(18t), SS(42t), SS(30t), and SS(210t) for some 

particular cases of t. Later, Majumdar and Ahmed [7] extended the results of Islam et al. 

[3] by considering all the possible cases involved in SS(210t). Recently, Islam and 

Majumdar [4] derived the expressions of SS(120m), SS(840m), SS(9240m), and 

SS(120120m) for some particular cases of m. 

 This paper first derives the necessary and sufficient conditions such that SS(n)
 
=

 
n

 
–

 
5 

and SS(n)
 
=

 
n

 
–

 
6. This is done in Section 3 in Theorem 3.1 and 3.2, respectively. Theorem 

3.1 shows that one needs to consider the function SS(12m), m (
 


 
1) being an integer. And 

Theorem 3.2 shows that attention needs to be given to the study of the function 

SS(60(6m+5)), m
 


 
0 being an integer. Thus, starting from SS(12m), one has to consider 

the functions SS(60m), and then SS(420m), SS(4620m) in succession. Some remarks are 

made in Section 4, based on the results. Some interesting equations involving SS(n) have 

been derived. Section 2 summarizes the relevant background materials. The paper 

concludes with some concluding remarks in Section 5. This paper's unified and detailed 

analyses suggest that the form of SS(n) depends on the prime factors 2, 3, 5, … (in this 

order) of the integer n. Another objective is to study how the form of SS(n) changes if 

some prime factor of n is repeated. At the end of the paper, four tables are appended, 

which give respectively the values of SS(60m), SS(420m), SS(4620m), and SS(60060m), 

calculated on a computer, using equation (1.3).  

 

2. Background Material 

 

This section gives the necessary background material that would be needed later. These 

are given in the following lemmas. For proof, the readers are referred to Islam et al. [3]. 

Lemma 2.1: (Fundamental Theorem of Arithmetic) Let a and b be two (positive) integers 

with (a,
 
b)

 
=

 
1. Let the integer N be such that both a and b divide N. Then, ab divides N. 

 An alternative proof of Lemma 2.1 may be found in Olds, Lax, and Davidoff [8]. 

Lemma 2.2: Let A and B be two (positive) integers such that A is divisible by the integer 

a and B is divisible by the integer b. Then, AB is divisible by ab. 

Lemma 2.3: For any integer a
 


 
1 fixed, a(a

 
–

 
1)…(a

 
–

 
s

 
+

 
1) is divisible by s!, where s is 

an integer with 1
 


 
s  a. 

 Lemma 2.3 states that the product of s consecutive (positive) integers is divisible by 

s!; for proof, the reader refers to Hardy and Wright [2]. The result below follows readily 

from Lemma 2.3. 

Corollary 2.1: For any integer a
 


 
1 fixed, let P(a, s)

 


 
a(a

 
–

 
1)…(a

 
–

 
s

 
+

 
1) for any integer    

1
 


 
s  a. Then, s divides (a

 
–

 
1)(a

 
–

 
2)…(a

 
–

 
s

 
+

 
1) if and only if s does not divide a. 

 The paper's main results are derived in Section 3, where the following result would be 

required frequently. 

Lemma 2.4: Let A, B, and C be any three integers. The Diophantine equation Ax
 
+

 
By

 
=

 
C 

has an (integer) solution if and only if C is divisible by D
 


 
(A,

 
B). Moreover, if (x0, y0) is a 
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solution, then there are an infinite number of solutions, given parametrically by x
 
=

 
x0

 

+ 
 

 
  , y

 
=

 
y0

 
+ 

  

 
   

for any integer t. 

 Proof: See, for example, Gioia [9].  

In applying Lemma 2.4, one has to find the solution of the equation Ax
 
+

 
By

 
=

 
C with 

minimum (positive) x0 (in the sense that there is no solution x less than x0). Then, if, in 

particular, (A, B)
 
=

 
1, then the solutions of the equation are given simply by x

 
=

 
x0

 
+

 
Bt,    y

 

=
 
y0 –

 
At, where t is a parameter. On the other hand, if (A, B)

 
=

 
D

 
>

 
1, it is sufficient to 

consider the simplified equation                    where                 

 Another interesting result is the following (see Hardy and Wright [2] for proof). 

Lemma 2.5: (Dirichlet Theorem) If A and B are two integers with A
 
>

 
0 and (A,

 
B)

 
=

 
1, 

then there are infinitely many primes of the form Ax
 
+

 
B, x (

 
>

 
0) being an integer. 

The main results of the paper are given in the next section.    

 

3. Main Results 

 

First, the following two general results are proved. 

Theorem 3.1: Let                       
     

   
      

  , where p1, p2, …, pk are the 

first k odd primes in increasing order (so that 2
 
<

 
p1 <

 
…

 
<

 
pk), 1,2, …,k

 


 
1 and    


 
1 

are fixed integers. Then, SS(Nm)
 


 
Nm

 
–

 
pk for any integer m

 


 
1. 

Proof: Since 

                
                                

           

   

and since pk does not divide any of Nm
 
–

 
1, Nm

 
–

 
2, …, Nm

 
–

 
pk + 1, it follows that the term 

inside the square bracket cannot be an integer. 

Theorem 3.2: Let                       
     

   
      

  , where p1, p2, …, pk are the 

first k odd primes with 2
 
<

 
p1 <

 
…

 
<

 
pk, 

 


 
1 and 1,2, …,k

 


 
1 are fixed integers. Let p 

(>
 
pk) be any prime. Then, SS(Npm)

 


 
Npm

 
–

 
pk for any integer m

 


 
1. 

Proof: Since 

                   
                                   

           

   

it follows that the term inside the square bracket cannot be an integer. 

To illustrate the application of the above two theorems, note that, by Theorem 3.1, 

SS(30m)
 


 
30m – 5 for any integer m

 


 
1. 

It then follows, by virtue of Theorem 3.2, that 

SS(30mp)
 


 
30mp

 
–

 
5 for any integer m

 


 
1, and for any prime p. 

The following theorem gives two sets of necessary and sufficient conditions: SS (n)
 
=

 
n–5. 

Theorem 3.3: Let n (
 
>

 
0) be an integer. Then,  

SS(n)
 
=

 
n

 
–

 
5                                                      (3.1) 

if and only if n is one of the following two forms : 

(1) n
 
=

 
12m for some integer m

 


 
0, where m is not divisible by 5,  

(2) n
 
=

 
6(4m

 
+

 
1) for some integer m

 


 
0 with m

 


 
5u

 
+

 
1, u

 


 
0 being an integer, 
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Proof: By Lemma 1.1 and Lemma 1.2, any integer n satisfying (3.1) must be even and 

divisible 3; moreover, by Lemma 1.3, n
 


 
6(4u

 
+

 
3) for any integer u

 


 
0.   

Now, consider the expression: 

           
                            

       
   

Here, the numerator of the term inside the square bracket is divisible by 3 (by Lemma 2.1, 

coupled with Lemma 2.3); also, the numerator is divisible by 5 if and only if 5 does not 

divide n. Hence, the term inside the square bracket is an integer if and only if one of the 

following three conditions is satisfied: 

(1) 4 divides (n
 
–

 
4), (2) 4 divides (n – 2), (3) 8 divides (n

 
–

 
4).  

Moreover, such an n must be divisible by 3.  

 In case (1), 4 divides (n
 
–

 
4) if and only if n is a multiple of 4. Since n must also be 

divisible by 3, it follows by Lemma 2.1 that n must be of the form n
 
=

 
12m for some 

integer m
 


 
1. Note that, if n

 
=

 
12m then n

 


 
6(4u

 
+

 
3), for otherwise, 12m

 
=

 
6(4u

 
+

 
3), 

which, by virtue of Lemma 2.4, has no solution. 

In Case (2), 4 divides (n
 
–

 
2); moreover, n is divisible by 3. This leads to the following 

combined Diophantine equation: 

 n
 
=

 
4 

+
 
2

 
=

 
3 for some integers  


 
1,  


 
2, 

whose solution is  
=

 
3m

 
+

 
1 for any integer m

 


 
0. Thus,  

 n
 
=

 
4(3m

 
+

 
1)

 
+

 
2

 
=

 
6(2m

 
+

 
1). 

Now, considering the Diophantine equation 6(2m
 
+

 
1)

 
=

 
6(4u

 
+

 
3), the solution is found to 

be m
 
=

 
2u

 
+

 
1. Thus, m must be even, so that 

 n
 
=

 
6(4m

 
+

 
1), m

 


 
0 being an integer. 

Since 5 does not divide n, the Diophantine equation to be considered is 

 6(4m
 
+

 
1)

 
=

 
5x for some integer x (

 
>

 
1), 

whose solution is m
 
=

 
5u

 
+

 
1 for any integer u

 


 
0. 

In Case (3), 8 divides (n
 
–

 
4); also, n is divisible by 3. Thus, 

 n
 
=

 
8y

 
+

 
4

 
=

 
3z for some integers y

 


 
1, z

 


 
4, 

whose solution is y
 
=

 
3m

 
+

 
1, m

 


 
0 being any integer. Hence,  

 n
 
=

 
8(3m

 
+

 
1)

 
+

 
4

 
=

 
12(2m

 
+

 
1). 

Thus, case (3) is a particular case of the case (1). 

Using Theorem 3.1, the following values are found: 

SS(12)
 
=

 
7, SS(24)

 
=

 
19, SS(36) =

 
31, SS(48)

 
=

 
43, SS(72)

 
=

 
66, SS(96)

 
=

 
91, 

SS(54)
 
=

 
49, SS(78)

 
=

 
73, SS(102) =

 
97, SS(126)

 
=

 
121, SS(174)

 
=

 
169, 

Note that, by Theorem 3.3, SS(6)
 
=

 
1, which is consistent with the conventional value. 

Also, Lemma 3.7 in Islam et al. [3] follows directly from part (1) of Theorem 3.3. 

Moreover, parts (2) and (3) of Theorem 3.3 prove more than those proved in Proposition 

3.1 and Proposition 3.2 in Islam Majumdar [4] by different approaches.  

The following results are the trivial consequences of Theorem 3.3. 

Corollary 3.1: For any prime p
 
 5, SS(12p)

 
=

 
12p

 
–

 
5. 

Corollary 3.2: Let SS(n)
 
=

 
n

 
–

 
5 for some (positive) integer n. Then, SS(2n)

 
=

 
2n

 
–

 
5. 

Corollary 3.3: For any prime p
 
 5, SS(24p)

 
=

 
24p

 
–

 
5. 
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After having the expression of SS(12m) (m (
 


 
1) being an integer not divisible by 5), the 

expressions of SS(12m
 
+

 
i) for 1

 


 
i
 


 
11) are given in the corollary below.  

Corollary 3.4: For any integer m
 


 
1, 

(1) SS(12m
 
+

 
1)

 
=

 
12m

 
–

 
1,                     (2)  SS(12m

 
+

 
2)

 
=

 
12m

 
–

 
1, 

(3)
  
SS(12m

 
+

 
3)

 
=

 
12m

 
+

 
1,                      (4)  SS(12m

 
+

 
4)

 
=

 
12m

 
+

 
1, 

(5) SS(12m
 
+

 
5)

 
=

 
12m

 
+

 
3,  

(6) (a)  SS(12m
 
+

 
6)

 
=

 
12m

 
+

 
2, if m is odd,  

(b)           {
      
      

                             
                                      

          

(7) SS(12m
 
+

 
7)

 
=

 
12m

 
+

 
5,                     (8)  SS(12m

 
+

 
8)

 
=

 
12m

 
+

 
5, 

(9)   SS(12m
 
+

 
9)

 
=

 
12m

 
+

 
7,                     (10)  SS(12m

 
+

 
10)

 
=

 
12m

 
+

 
7, 

(11) SS(120m
 
+

 
11)

 
=

 
12m

 
+

 
9. 

Proof: Parts (1), (3), (5), (7), (9), and (11) follow readily from Lemma 1.1, while parts 

(2), (4), (8), and (10) follow from Lemma 1.2. It thus remains to prove part (6). 

Consider the expression: 

                        
                           

     
  

         
                         

 
   

The above expression shows that the term inside the square bracket is an integer if and 

only if 3m
 
+

 
1 is even, if and only if m is odd. This proves part (6a). 

To prove part (6b), let m be even. Now, consider the expression:  

                        
                                  

   
   

         
                                 

 
    

Clearly, the term inside the square bracket is an integer if 12m
 
+

 
6 is not a multiple of 5. 

Thus, the Diophantine equation to be considered is 

12m
 
+

 
6

 
=

 
5 for some integer  


 
1, 

whose solution is m
 
=

 
5s

 
+

 
2, s

 


 
0. Note that, since m is even, s must also be even. 

Now, let m
 
=

 
10s

 
+

 
2, s

 


 
0. The expression 

                      
                                          

   
   

shows that SS(12m
 
+

 
6)

 


 
12m for any m

 


 
1. So, consider the expression: 

                        
                                               

     
    

Considering the Diophantine equation 12m
 
+

 
6

 
=

 
7 (for some integer  

>
 
1), the solution 

is found to be m
 
=

 
10t

 
+

 
3, t

 


 
0. This shows that, under the given condition (that        m

 
=

 

10s
 
+

 
2, s

 


 
0), 12m

 
+

 
6 is not divisible by 7. Hence, the term inside the square bracket is an 

integer. All these complete the proof of the corollary. 

In the course of proving Corollary 3.4, the following result has also been proved. 

Corollary 3.5: There is no integer m such that 12m
 
+

 
6 is divisible by both 5 and 7.  



S. M. S. Islam
 
et al., J. Sci. Res. 14 (3), 699-720 (2022) 705 

 

Part (6) of Corollary 3.4 gives the following values: 

SS(18)
 
=

 
14, SS(42)

 
=

 
38, SS(66) =

 
62, SS(90)

 
=

 
86, SS(114)

 
=

 
110, SS(138)

 
=

 
134, 

SS(54)
 
=

 
49, SS(78)

 
=

 
73, SS(102) =

 
97, SS(126)

 
=

 
121, SS(174)

 
=

 
169, 

SS(30)
 
=

 
23, SS(150)

 
=

 
143, SS(270) =

 
263, SS(390)

 
=

 
383, SS(510)

 
=

 
503. 

It may be mentioned here that, writing m
 
=

 
2u

 
+

 
1, part (6a) of Corollary 3.4 may be recast 

in the form  

SS(24u
 
+

 
18)

 
=

 
24u

 
+

 
14 for all u

 


 
1, 

which is precisely Lemma 1.3. Again, writing m
 
=

 
2u in part (6b) of Corollary 3.4, one 

gets 

          {
      
      

                              
                    

                   (3.2) 

which has been derived earlier by a different approach (see Proposition 3.1 in Islam et al. 

[4]). The expression in (3.2) needs some explanation : If u
 
=

 
5x

 
+

 
1 for some integer x

 


 
1, 

then SS(24u
 
+

 
6)

 
=

 
24u

 
–

 
1 provided that 24u

 
+

 
6 is not divisible by 7. Thus, the 

Diophantine equation to be considered is 24u
 
+

 
6

 
=

 
7 (for some integer  

>
 
0), whose 

solution is u
 
=

 
7 

+
 
5,  


 
0. Now, the solution of the combined equation 5y

 
+

 
1

 
=

 
7 

+
 
5 is  

y
 
=

 
7z

 
+

 
5, z

 


 
0. 

The next theorem gives the necessary and sufficient conditions such that SS(n)
 
=

 
n

 
–

 
6. 

Theorem 3.4: Let n (
 
>

 
0) be an integer divisible by 5. Then,  

SS(n)
 
=

 
n

 
–

 
6                                                      (3.3) 

if and only if n
 
=

 
60(6m

 
+

 
5) for any integer m

 


 
0. 

Proof: Let n (
 
>

 
0) be an integer divisible by 5. 

Consider the expression: 

           
                                   

         
   

Now, the numerator of the term inside the square bracket is divisible by 235 (by 

Lemma 2.1, coupled with Lemma 2.3). Hence, the term inside the square bracket is an 

integer if and only if the following two conditions are satisfied simultaneously: 

(1) 8 divides (n
 
–

 
4), (2) 

 
9 divides (n – 3). 

By Condition (1), 8 divides (n
 
–

 
4), so that 

n
 
=

 
8 

+
 
4 for some integer  


 
1, 

and by Condition (2),   

n
 
=

 
9 

+
 
3 for some integer  


 
1. 

Now, the solution of the combined Diophantine equation 8 
+

 
4

 
=

 
9 

+
 
3 is  

=
 
9x

 
+

 
1, x(

 

0) being an integer. Therefore,  

n
 
=

 
8(9x

 
+

 
1)

 
+

 
4

 
=

 
12(6x

 
+

 
1). 

Since 5 divides n, one needs to consider the Diophantine equation 

12(6x
 
+

 
1)

 
=

 
5 for some integer  ( 

>
 
1), 

whose solution is x
 
=

 
5m

 
+

 
4 for any integer m

 


 
0. Hence, finally 

n
 
=

 
12[6(5m

 
+

 
4)

 
+

 
1]

 
=

 
60(6m

 
+

 
5). 

Note that, n
 
–

 
4

 
=

 
8(45m

 
+

 
37) is, in fact, divisible by 8. 
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Theorem 3.4 gives the following values: 

SS(300)
 
=

 
294, SS(660)

 
=

 
654, SS(1020) =

 
1014, SS(1380)

 
=

 
1374. 

Note that, Theorem 3.4 may be put in the following form 

SS(60t)
 
=

 
60t

 
–

 
6 if and only if t

 
=

 
6s

 
+

 
5 for any integer s

 


 
0.                (3.4)  

The above result is stronger than the previous results found in Islam et al. [3, Lemma 3.8] 

and Islam and Majumdar. [4, Proposition 3.2] by different approaches. 

Note that, Lemma 1.2 may be rewritten as follows: 

SS(6m)
 
=

 
6m

 
–

 
4 if and only if m

 
=

 
4s

 
+

 
3, s

 


 
0.                           (3.5) 

Also, Theorem 3.3 may be recast in the following equivalent form : 

SS(6m)
 
=

 
6m

 
–

 
5                                                   (3.6) 

if and only if 5 does not divide m, and m is of one of the following three forms: 

(1) m
 
=

 
2s, s

 


 
1, (2) 

 
m

 
=

 
4s

 
+

 
1, s

 


 
0, (3) 

 
m

 
=

 
2(2s

 
+

 
1), s

 


 
0. 

Finally, Theorem 3.4 may be rewritten in the following equivalent form 

SS(60m)
 
=

 
60m

 
–

 
6 if and only if m

 
=

 
6s

 
+

 
5, s

 


 
0 being any integer.          (3.7) 

In view of Theorem 3.3,  

SS(60m)
 


 
60m

 
–

 
6 for any m

 


 
1, 

and in view of Theorem 3.4, we have the following results. 

Corollary 3.6: SS(60m)
 


 
60m

 
–

 
7 for any m

 


 
6s

 
+

 
5, s

 


 
0. 

Corollary 3.7: There is an infinite number of primes p such that SS(60p)
 
=

 
60p

 
–

 
6. 

Proof: Let p be a prime of the form p
 
=

 
6s

 
+

 
5, s

 


 
0. By Lemma 2.5, there is an infinite 

number of primes of this form. With such a prime p, by (3.7), SS(60p)
 
=

 
60p

 
–

 
6. 

In Majumdar [10], the following result has been established. 

Lemma 3.1: SS(60m) = 60m – 7 if m is not divisible by 7 with m
 


 
6s

 
+

 
5, s

 


 
0. 

The next lemma considers SS(420m). Since 

                     
                                                

           
   

       
                                              

 
    

it follows that SS(420m)
 


 
420m

 
–

 
7 for any integer m

 


 
1. This is, in fact, a particular case 

of Theorem 3.1. It then follows, by Theorem 3.2 that 

SS(420mp)
 


 
420mp

 
–

 
7 for any integer m

 


 
1, and for any prime p. 

Lemma 3.2: Let m
 


 
1 be an integer. Then, 

(1) SS(420m)
 
=

 
420m

 
–

 
6, if m

 
=

 
6s

 
+

 
5, s

 


 
0, 

(2) SS(420m)
 
=

 
420m

 
–

 
8, if m

 
=

 
8s

 
+

 
1, s

 


 
3t

 
+

 
2, t

 


 
0, 

(3) SS(420m)
 
=

 
420m

 
–

 
9, if m

 
=

 
9s

 
+

 
2, s is even (including 0), 

or, if m
 
=

 
9t

 
+

 
4, t

 


 
8b

 
+

 
5, b

 


 
0,     

(4) SS(420m)
 
=

 
420m

 
–

 
10, if m

 
=

 
2(10s

 
+

 
7), s

 


 
9u

 
+

 
3, s

 


 
9v

 
+

 
4, u

 


 
0, v

 


 
0,  

or if m
 
=

 
20t

 
+

 
9, t

 


 
3a

 
+

 
1, t

 


 
2b, t

 


 
9c

 
+

 
1, t

 


 
9d

 
+

 
2, a,

 
b,

 
c,

 
d

 


 
0, 

(5) SS(420m)
 
=

 
420m

 
–

 
11, if 11 does not divide m and m

 


 
8a

 
+

 
1, m

 


 
9b

 
+

 
2, m

 


 
9c

 

+
 
4,  m

 


 
6d

 
+

 
5, m

 


 
2(10e

 
+

 
7), m

 


 
20f

 
+

 
9, a

 


 
0, b

 


 
0, c

 


 
0, d

 


 
0,

 
e

 


 
0, f

 


 
0. 

Proof: To prove part (1), consider the expression: 
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Now, in order that the term inside the square bracket is an integer, 3 must divide 140m
 
–

 
1, 

and 2 must divide 105m
 
–

 
1, leading to the two Diophantine equations 

140m
 
–

 
1

 
=

 
3, 105m

 
–

 
1

 
=

 
2 for some integers  

>
 
0,  

>
 
0. 

The solutions of the above equations are m
 
=

 
3x

 
+

 
2, x

 


 
0 and m

 
=

 
2y

 
+

 
1, y

 


 
0 respectively. 

Then, the combined Diophantine equation is 3x
 
+

 
2

 
=

 
2y

 
+

 
1, whose solution is x

 
=

 
2u

 
+

 
1,  u

 


 
0. Therefore, m

 
=

 
3(2u

 
+

 
1)

 
+

 
2

 
=

 
6u

 
+

 
5, u

 


 
0. 

To prove part (2), let the integer m be such that m
 


 
6u

 
+

 
5, u

 


 
0. Consider 

                     
                                                      

   
    

Here, the term inside the square bracket is an integer if and only if 105m
 
–

 
1 is divisible by 

8, that is, if and only if 

105m
 
–

 
1

 
=

 
8a for some integer a

 
>

 
0. 

The solution of the above equation is m
 
=

 
8s

 
+

 
1, s

 


 
0. Considering the combined equation 

8s
 
+

 
1

 
=

 
6u

 
+

 
5, the solution is found to be s

 
=

 
3t

 
+

 
2, t

 


 
0. 

To prove part (3), let the integer m be such that m
 


 
6u

 
+

 
5, u

 


 
0, m

 


 
8s

 
+

 
1, s

 


 
0. Consider 

the expression: 

                

     
                                                             

   
   

      
                                                             

   
    

In order to find the condition such that the term inside the square bracket is an integer, 

first note that one of 105m
 
–

 
1 and 105m

 
–

 
2 is even. Thus, it is sufficient to find the 

condition such that the numerator of the term inside the square bracket is divisible by 9. 

Here, there are two possibilities, namely, either 9 divides 70m
 
–

 
1, or else 9 divides 140m

 
–

 

1. In the first case,  

140m
 
–

 
1

 
=

 
9 for some integer  

>
 
0, 

whose solution is m
 
=

 
9u

 
+

 
2, u

 


 
0. Now, the solution of the equation 9u

 
+

 
2

 
=

 
6x

 
+

 
5 is     u

 

=
 
2 

+
 
1,  


 
0, while the solution of the equation 9u

 
+

 
2

 
=

 
8s

 
+

 
1 is u

 
=

 
8a

 
+

 
7, a

 


 
0. Note 

that if u is restricted to even values (including 0), then u
 


 
8a

 
+

 
7 for any a

 


 
0.  

The second possibility leads to the Diophantine equation 70m
 
–

 
1

 
=

 
9 for some integer  

>
 

0,  

with the solution m
 
=

 
9v

 
+

 
4, v

 


 
0. Note that, the combined equation 9v

 
+

 
4

 
=

 
6x

 
+

 
5 has no 

solution (by virtue of Lemma 2.4); also, note that, the combined equation 9v
 
+

 
4

 
=

 
8s

 
+

 
1 

has the solution v
 
=

 
8b

 
+

 
5, b

 


 
0.  

To prove part (4), let the integer m be such that m
 


 
6a

 
+

 
5, a

 


 
0, m

 


 
9b

 
+

 
2, b

 


 
0, m

 


 
9c

 
+

 

4, c
 


 
0. Consider the expression below: 
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Now, one of 140m
 
–

 
1, 70m

 
–

 
1 and 140m

 
–

 
3 is divisible by 3 (by Lemma 2.3). Therefore, 

the term inside the square bracket is an integer if 84m
 
–

 
1 is divisible by 5 and either  

105m
 
–

 
2, or else 105m

 
–

 
1 is divisible by 4. The first possibility leads to the Diophantine 

equations 

84m
 
–

 
1

 
=

 
5, 105m

 
–

 
2

 
=

 
4 for some integers  

>
 
0,  

>
 
0, 

whose solutions are m
 
=

 
5u

 
+

 
4, u

 


 
0, and m

 
=

 
4v

 
+

 
2, v

 


 
0 respectively. The solution of the 

combined Diophantine equation 5u
 
+

 
4

 
=

 
4v

 
+

 
2 is u

 
=

 
4s

 
+

 
2, s

 


 
0, so that 

m
 
=

 
5(4s

 
+

 
2)

 
+

 
4

 
=

 
2(10s

 
+

 
7), s

 


 
0. 

Now, the second possibility gives rise to the equation 105m – 1 = 4 for some integer  
>

 
0, 

whose solution is m
 
=

 
4w

 
+

 
1, w

 


 
0. The solution of the combined equation 5u

 
+

 
4

 
=

 
4w

 
+

 
1 

is u
 
=

 
4t

 
+

 
1, t

 


 
0, so that m

 
=

 
5(4t

 
+

 
1)

 
+

 
4

 
=

 
20t

 
+

 
9. 

To complete the proof of part (3), it remains to find the conditions such that the conditions 

of part (1) and part (2) are not satisfied. Clearly, the combined equation 2(10s
 
+

 
7)

 
=

 
6x

 
+

 
5 

has no solution; also, the equation 2(10s
 
+

 
7)

 
=

 
8y

 
+

 
1 has no solution. Now, considering 

the Diophantine equation 2(10s
 
+

 
7)

 
=

 
9u

 
+

 
2, the solution is found to be s

 
=

 
9a

 
+

 
3, a

 


 
0, 

while the solution of the equation 2(10s + 7) = 9v + 4 is s = 9b + 4, b
 


 
0. Next, we have to 

consider the following combined equations: 

20t
 
+

 
9

 
=

 
6a

 
+

 
5, 20t

 
+

 
9

 
=

 
8b

 
+

 
1, 20t

 
+

 
9

 
=

 
9c

 
+

 
2, 20t

 
+

 
9

 
=

 
9d

 
+

 
4; 

the solutions of the above equations are t
 
=

 
3a

 
+

 
1, a

 


 
0, t

 
=

 
2b, b

 


 
0, t

 
=

 
9c

 
+

 
1, t

 
=

 
9d

 
+

 
2 

respectively.    

Finally, to prove part (5), let the integer m be such that all the conditions in parts (1) – (4) 

are violated. Consider the expression: 

                 

     
                                                                              

         
   

      
                                                                            

      
    

Now, one of 105m
 
–

 
1 and 105m

 
–

 
2 is even; also, one of 140m

 
–

 
1, 70m

 
–

 
2, and 140m

 
–

 
3 

is divisible by 3. Therefore, if m is not divisible by 11, then the term inside the square 

bracket is an integer. 

Lemma 3.2 gives the following values: 

SS(2100) = 2094, SS(4620) = 4614, SS(7140) = 7134, SS(9660) = 9654, SS(12180) = 

12174, 

SS(420) = 412, SS(3780) = 3772, SS(10500) = 10492, SS(13860) = 13852,  

SS(840) = 831, SS(8400) = 8391, SS(15960) = 15951, SS(23520) = 23511,  

SS(1680) = 1671, SS(5460) = 5451, SS(9240) = 9231, SS(13020) = 13011,  

SS(5880) = 5870, SS(14280) = 14270, SS(22680) = 22670, SS(28980) = 28970, 

SS(1260) = 1249, SS(2520) = 2509, SS(2940) = 2929, SS(3360) = 3349, SS(4200) = 

4189. 

Some consequences of Lemma 3.2 are given below. 

Lemma 3.3: There is an infinite number of primes p such that SS(420p)
 
=

 
420p

 
–

 
6. 
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Proof: Let p be the prime of the form p
 
=

 
6s

 
+

 
5, s

 


 
0. By Lemma 2.5, there is an infinite 

number of primes of the prescribed form. With this p, by part (1) of Lemma 3.2, 

SS(420p)
 
=

 
420p

 
–

 
6. 

Lemma 3.4: There is an infinite number of primes p such that SS(420p)
 
=

 
420p

 
–

 
8. 

Proof: Let p be the prime of the form p
 
=

 
8s

 
+

 
1, s

 


 
3t

 
+

 
2, t

 


 
0. With this p, by part (2) of 

Lemma 3.2, SS(420p)
 
=

 
420p

 
–

 
6. Clearly, there is an infinite number of such primes. 

Lemma 3.5: There is an infinite number of primes p such that SS(420p)
 
=

 
420p

 
–

 
9. 

Proof: Let p be the prime of the form p
 
=

 
9s

 
+

 
4, s

 


 
8t

 
+

 
5, t

 


 
0. Then, by part (3) of 

Lemma 3.2, SS(420p)
 
=

 
420p

 
–

 
9. Note that there is an infinite number of such p. 

The following results, involving the function SS(840m), are evident from Lemma 3.2. 

Corollary 3.8: SS(840m)
 


 
840m

 
–

 
6 for any integer m (

 


 
1). 

Corollary 3.9: SS(840m)
 


 
840m

 
–

 
8 for any integer m (

 


 
1). 

Lemma 3.2 may be exploited to find the expressions of SS(840m), as is done below. 

Corollary 3.10: Let m
 


 
1 be an integer. Then, 

(1) SS(840m)
 
=

 
840m

 
–

 
9, if m

 
=

 
9s

 
+

 
1, s

 


 
0, or, if m

 
=

 
9t

 
+

 
2, t

 


 
0,     

(2) SS(840m)
 
=

 
840m

 
–

 
10, if m

 
=

 
10s

 
+

 
7, s

 


 
9u

 
+

 
3, s

 


 
9v

 
+

 
4, u

 


 
0, v

 


 
0,  

(3) SS(840m)
 
=

 
840m

 
–

 
11, if 11 does not divide m and m

 


 
9a

 
+

 
1, m

 


 
9b

 
+

 
2, m

 


 
10c

 

+
 
7, a

 


 
0, b

 


 
0, c

 


 
0.                                    

Proof: We may find SS(840m) by replacing m by 2m in SS(420m). 

By part (3) of Lemma 3.2, 

SS(840m)
 
=

 
840m

 
–

 
9 if 2m

 
=

 
9s

 
+

 
2, s

 


 
0, or if 2m

 
=

 
9t

 
+

 
4, t

 


 
0. 

Now, the solution of the Diophantine equation 2m
 
=

 
9s

 
+

 
2 is m

 
=

 
9x

 
+

 
1, x

 


 
0, while the 

equation 2m
 
=

 
9t

 
+

 
4 has the solution m

 
=

 
9y

 
+

 
2, y

 


 
0. 

Replacing m by 2m in part (4) of Lemma 3.2 and noting that only the first of the two 

conditions can hold true, one gets 

SS(840m)
 
=

 
840m

 
–

 
10 if 2m

 
=

 
2(10s

 
+

 
7), s

 


 
0. 

Here, s is such that m
 
=

 
10s

 
+

 
7 does not assume the values given in part (1) of Corollary 

3.9. Thus, the equations to be considered are 10s
 
+

 
7

 
=

 
9x

 
+

 
1 and 10s

 
+

 
7

 
=

 
9y

 
+

 
2, whose 

solutions are s
 
=

 
9u

 
+

 
3, u

 


 
0 and s

 
=

 
9v

 
+

 
4, v

 


 
0 respectively. 

To prove part (3), consider the following expression for C(840m, 840m
 
–

 
11): 

     
                                                                                 

                     
   

      
                                                                               

    
    

Now, since m is not divisible by 11, the numerator of the term inside the square bracket is 

divisible by 11; also, one of 280m
 
–

 
1, 140m

 
–

 
1, and 280m

 
–

 
3 is divisible by 3. Thus, the 

term inside the square bracket is an integer. 

The results in Corollary 3.10 match with those found by Islam et al. [4, Lemma 3.4
 
– 

Lemma 3.6] by following a different approach.  

Part (5) of Lemma 3.2 suggests that the next function to be considered is SS(4620m). In 

this connection, the following results can be established using Lemma 3.2, noting that 

4620m is 11 times 420m. 

Lemma 3.6: Let m
 


 
1 be an integer. Then, 
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(1) SS(4620m)
 
=

 
4620m

 
–

 
6, if m

 
=

 
6s

 
+

 
1, s

 


 
0, 

(2) SS(4620m)
 
=

 
4620m

 
–

 
8, if m

 
=

 
8s

 
+

 
3, s

 


 
3t

 
+

 
2, t

 


 
0, 

(3) SS(4620m)
 
=

 
4620m

 
–

 
9, if m

 
=

 
9s

 
+

 
1, s is odd, 

              or, if m
 
=

 
9t

 
+

 
2, t

 


 
8b

 
+

 
1, b

 


 
0,     

(4) SS(4620m)
 
=

 
4620m

 
–

 
10, if m

 
=

 
2(10s

 
+

 
7), s

 


 
9u

 
+

 
3, s

 


 
9v

 
+

 
7, u

 


 
0, v

 


 
0, 

              or if m
 
=

 
20t

 
+

 
19, t

 


 
2a, t

 


 
3b, t

 


 
9c

 
+

 
5, a,

 
b,

 
c

 


 
0. 

Proof: To prove part (1) of the lemma, note that, replacing m by 11m in part (1) of 

Lemma 3.2, the condition therein becomes 11m
 
=

 
6a

 
+5, whose solution is m

 
=

 
6s

 
+1, s

 


 
0. 

Writing 11m in place of m in part (2) of Lemma 3.2, the condition therein takes the form 

11m
 
=

 
8b

 
+

 
1, whose solution is m

 
=

 
8s

 
+

 
3, s

 


 
0. In order to exclude the possibility of the 

values in part (1) of Lemma 3.6, the equation to be considered is 8s
 
+

 
3

 
=

 
6 

+
 
1, whose 

solution is s
 
=

 
3t

 
+

 
2, t

 


 
0.  

 To prove part (3), let m in part (3) of Lemma 3.2 be replaced by 11m. Here, there are 

two possible cases. The first possibility is that 11m
 
=

 
9 

+
 
2, whose solution is m

 
=

 
9s

 
+

 
1, 

s0. To find the restrictive conditions on s, one needs to consider the following two 

combined Diophantine equations: 

9s
 
+

 
1

 
=

 
6b

 
+

 
1, 9s

 
+

 
1

 
=

 
8c

 
+

 
3. 

The solutions of the above equations are s
 
=

 
2d, d

 


 
0 and s

 
=

 
8e

 
+

 
2, e

 


 
0 respectively. 

Note that, if s is restricted to odd values, then s
 


 
8e

 
+

 
2 for any e

 


 
0.  

 In the second case, the condition becomes 11m
 
=

 
9 

+
 
4, whose solution is m

 
=

 
9t

 
+

 
2, 

t0. In this case, noting that the Diophantine equation 9t
 
+

 
2

 
=

 
6b + 1 has no solution, the 

restrictive condition on t is determined by the equation 9t
 
+

 
2

 
=

 
8c

 
+

 
3 only. This gives the 

solution t
 
=

 
8z

 
+

 
1, z

 


 
0. 

 It now remains to prove part (4) of the lemma. Writing 11m for m in part (4) of 

Lemma 3.2, the two Diophantine equations therein become respectively 

11m
 
=

 
2(10 

+
 
7), 11m

 
=

 
20 

+
 
9, 

with respective solutions m
 
=

 
2(10s

 
+

 
7), s

 


 
0 and m

 
=

 
20t

 
+

 
19, t

 


 
0. With the first 

solution, the conditions on s are to be found that guarantee that s cannot take the values 

given in parts (1), (2) and (3) of Lemma 3.6. Since none of the combined Diophantine 

equations 2(10s
 
+

 
7)

 
=

 
6a

 
+

 
1 and 2(10s

 
+

 
7)

 
=

 
8b

 
+

 
3 has a solution, it is sufficient to 

consider the following two combined equations: 

2(10s
 
+

 
7)

 
=

 
9c

 
+

 
1, 2(10s

 
+

 
7)

 
=

 
9d

 
+

 
2. 

The solutions of the above equations are s
 
=

 
9u

 
+

 
7, u

 


 
0 and s

 
=

 
9v

 
+

 
3, v

 


 
0 respectively. 

With the second solution, four combined Diophantine equations are to be considered. 

They are 

20t
 
+

 
19

 
=

 
6 

+
 
1, 20t

 
+

 
19

 
=

 
8 

+
 
3, 20t

 
+

 
19

 
=

 
9 

+
 
1, 20t

 
+

 
19

 
=

 
9 

+
 
2, with the 

respective solutions 

t
 
=

 
3a, a

 


 
0, t

 
=

 
2b, b

 


 
0, t

 
=

 
9c, c

 


 
0, t

 
=

 
9d

 
+

 
5, d

 


 
0. 

Note that if t is not divisible by 3, then it is also not divisible by 9. 

Using Lemma 3.6, the following values may be obtained. 

SS(4620) = 4614, SS(32340) = 32334, SS(60060) = 60054, SS(87780) = 87774,  

SS(13860) = 13852, SS(50820) = 50812, SS(124740) = 124732, SS(161700) = 161692,  
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SS(9240) = 9231, SS(92400) = 92391, SS(133980) = 133971, SS(175560) = 175551,  

SS(46200) = 46191, SS(129360) = 129351, SS(212520) = 212511, 

SS(64680) = 64670, SS(157080) = 157070, SS(180180) = 180170, SS(249480) = 

249470. 

Consider the following expression for C(4620m, 4620m
 
–

 
11) : 

      
                                                                                          

                     
   

       
                                                                                      

      
    

The above expression shows that SS(4620m)
 


 
4620m

 
–

 
11 for any integer m

 


 
1. It may be 

mentioned here that this result also follows from Theorem 3.1. 

Lemma 3.6 is supplemented by the following two results. 

Lemma 3.7: SS(4620m)
 
=

 
4620m

 
–

 
12 if m

 
=

 
6(12s

 
+

 
5), s

 


 
5t

 
+

 
2, t

 


 
0. 

Proof: Consider the following expression for C(4620m, 4620m
 
–

 
12) : 

      

                                                    

                                            

         
  

       

                                            

                                                  

      
  

Now, the term inside the square bracket is an integer if 1155m
 
–

 
2 is divisible by 8 and 

1540m
 
–

 
3 is divisible by 9. Thus, the following two Diophantine equations result : 

1155m
 
–

 
2

 
=

 
8, 1540m

 
–

 
3

 
=

 
9 for some integers  

>
 
0,  

>
 
0. 

 The solutions of the above equations are m
 
=

 
8u

 
+

 
6, u

 


 
0 and m

 
=

 
9v

 
+

 
3, v

 


 
0 

respectively. Now, considering the combined Diophantine equation 8u
 
+

 
6

 
=

 
9v

 
+

 
3, the 

solution is found to be u
 
=

 
9s

 
+

 
3, s

 


 
0, so that m

 
=

 
8(9s

 
+

 
3)

 
+

 
6

 
=

 
6(12s

 
+

 
5). It now 

remains to find the condition(s) on s in order to exclude the common values shared by the 

values given in Lemma 3.6. Since none of the equations   

6(12s
 
+

 
5)

 
=

 
6a

 
+

 
1, 6(12s

 
+

 
5)

 
=

 
8b

 
+

 
3, 6(12s

 
+

 
5)

 
=

 
9c

 
+

 
1, 6(12s

 
+

 
5)

 
=

 
9d

 
+

 
2,  

6(12s
 
+

 
5)

 
=

 
20 

+
 
19   

has a solution, it is sufficient to consider the equation 6(12s
 
+

 
5)

 
=

 
2(10 

+
 
7) only. Now,  

the solution of the equation is s
 
=

 
5t

 
+

 
2, t

 


 
0.  

Lemma 3.7 shows that, though SS(4620m)
 
=

 
4620m

 
–

 
12 for an infinite number of m, these 

values are distributed rather sparsely. The first few values, obtained from Lemma 3.7, are 

listed below. 

SS(138600)
 
=

 
138588, SS(471240)

 
=

 
471228, SS(1136520)

 
=

 
1136508. 

Lemma 3.8: Let m be an integer not divisible by 13 such that m
 


 
6a

 
+

 
1, m

 


 
9b

 
+

 
1, m

 


 

9c
 
+

 
2, m

 


 
8d

 
+

 
3, m

 


 
2(10e

 
+

 
7), m

 


 
20f

 
+

 
19, m

 


 
6(12g

 
+

 
5); a, b, c, d, e, f, g

 


 
0. Then, 

SS(4620m)
 
=

 
4620m

 
–

 
13. 

Proof: Consider the following expression for C(4620m, 4620m
 
–

 
13): 
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Now, consider the numerator of the term inside the square bracket. Since 13 does not 

divide m, the numerator is divisible by 13; also, one of 1155m
 
–

 
1 and 1155m

 
–

 
2 is even, 

and one of 1540m
 
–

 
1, 770m

 
–

 
1, and 1540m

 
–

 
3 is divisible by 3. Thus, the term inside the 

square bracket is an integer. 

Applying Lemma 3.8, the following values are obtained. 

SS(18480)
 
=

 
18467, SS(23100)

 
=

 
23087, SS(27720)

 
=

 
27707, SS(36960)

 
=

 
36947. 

The following results, involving SS(9240m), are evident from Lemma 3.6. 

Corollary 3.11: SS(9240m)
 


 
9240m

 
–

 
6 for any integer m (

 


 
1). 

Corollary 3.12: SS(9240m)
 


 
9240m

 
–

 
8 for any integer m (

 


 
1). 

Lemma 3.6 – Lemma 3.8 may be employed to find SS(9240m), as is done below. 

Corollary 3.13: Let m
 


 
1 be an integer. Then, 

(1) SS(9240m)
 
=

 
9240m

 
–

 
9, if m

 
=

 
9s

 
+

 
1, s

 


 
0, or, if m

 
=

 
9t

 
+

 
5, t

 


 
0,     

(2) SS(9240m)
 
=

 
9240m

 
–

 
10, if m

 
=

 
10s

 
+

 
7, s

 


 
9u

 
+

 
3, s

 


 
9v

 
+

 
7, u

 


 
0, v

 


 
0,  

(3) SS(9240m)
 
=

 
9240m

 
–

 
12, if m

 
=

 
3(12s

 
+

 
5), s

 


 
5x

 
+

 
2, x

 


 
0,  

(4) SS(9240m) = 9240m – 13, if 13 does not divide m and m
 


 
9a

 
+

 
1, m

 


 
9b

 
+

 
5,  

m
 


 
10c

 
+

 
7, m

 


 
3(12d

 
+

 
5), a

 


 
0, b

 


 
0, c

 


 
0, d

 


 
0.                                   

Proof: The function SS(9240m) may be obtained from SS(4620m) by replacing m by 2m. 

Replacing m by 2m in part (3) of Lemma 3.6, one gets 

SS(9240m)
 
=

 
9240m

 
–

 
9 if 2m

 
=

 
9x

 
+

 
2, x

 


 
0, or if 2m

 
=

 
9y

 
+

 
1, y

 


 
0. 

Now, the solutions of the Diophantine equations are m
 
=

 
9s

 
+

 
1, s

 


 
0 and m

 
=

 
9t

 
+

 
5, t

 
0 

respectively. 

Replacing m by 2m in part (4) of Lemma 3.6, and noting that only the first of the two 

conditions can hold true, one gets 

SS(9240m)
 
=

 
9240m

 
–

 
10 if 2m

 
=

 
2(10s

 
+

 
7), s

 


 
0. 

Thus, m
 
=

 
10s

 
+

 
7, where s is such that m does not assume the values given in part (1) of 

Corollary 3.13. To do so, the Diophantine equations to be considered are 10s
 
+

 
7

 
=

 
9a

 
+

 
1 

and 10s
 
+

 
7

 
=

 
9b

 
+

 
5, whose solutions are s

 
=

 
9u

 
+

 
3, u

 


 
0 and s

 
=

 
9v

 
+

 
7, v

 


 
0 respectively. 

Now, replacing m by 2m in Lemma 3.7, one gets 

 SS(9240m)
 
=

 
9240m

 
–

 
12 if 2m

 
=

 
6(12s

 
+

 
5), s

 


 
0. 

Here, noting that none of the equations 3(12s
 
+

 
5)

 
=

 
9a

 
+

 
1 and 3(12s

 
+

 
5)

 
=

 
9b

 
+

 
5 

possesses a solution, in order to find the restrictive condition on s, it is sufficient to 

consider the equation 3(12s
 
+

 
5)

 
=

 
10c

 
+

 
7, whose solution is s

 
=

 
5t

 
+

 
2, t

 


 
0. 

To prove part (4), consider the following expression for C(9240m, 9240m
 
–

 
13): 
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Now, one of 3080m
 
–

 
1, 1540m

 
–

 
1, and 3080m

 
–

 
3 is divisible by 3; moreover, one of the 

factors in the numerator of the term inside the square bracket is divisible by 13. Thus, the 

term inside the square bracket is an integer. 

Using Corollary 3.13, the following values may be obtained. 

SS(9240) = 9231, SS(46200) = 46191, SS(92400) = 92391, SS(129360) = 129351,  

SS(64680) = 64670, SS(157080) = 157070, SS(2494800) = 249470, SS(434820) = 

434270,  

SS(138600) = 138588, SS(471240) = 471228, SS(1136520) = 1136508,   

SS(18480) = 18467, SS(27720) = 27707, SS(36960) = 36947, SS(55440) = 55427. 

Corollary 3.13 shows that 

9240m
 
–

 
9

 


 
SS(9240m)

 


 
9240m

 
–

 
13 for any integer m

 


 
1, 

with SS(9240m)
 


 
9240m

 
–

 
11 for any integer m

 


 
1. 

The final result of this section is the following. 

Lemma 3.9: Let m
 


 
1 be an integer. Then, 

(1) SS(60060m)
 
=

 
60060m

 
–

 
6, if m

 
=

 
6s

 
+

 
1, s

 


 
0, 

(2) SS(60060m)
 
=

 
60060m

 
–

 
8, if m

 
=

 
8s

 
+

 
7, s

 


 
3a, a

 


 
0, 

(3) SS(60060m)
 
=

 
60060m

 
–

 
9, if m

 
=

 
9s

 
+

 
5, s

 


 
8a

 
+

 
2, a

 


 
0, 

              or, if m
 
=

 
9t

 
+

 
7, t

 


 
1 is odd,     

(4) SS(60060m)
 
=

 
60060m

 
–

 
10, if m

 
=

 
20s

 
+

 
3, s is even, s

 


 
3a

 
+

 
2, s

 


 
9b

 
+

 
2,  

              s
 


 
9c

 
+

 
8, a

 


 
0, b

 


 
0, c

 


 
0, 

              or if m
 
=

 
2(10t

 
+

 
9), t

 


 
9u

 
+

 
7, t

 


 
9v

 
+

 
8, u,

 
v

 


 
0 

(5) SS(60060m)
 
=

 
60060m

 
–

 
12, if m

 
=

 
6(12s

 
+

 
5), s

 


 
5a

 
+

 
4, a

 


 
0. 

Proof: To prove part (1), note that, replacing m by 13m in part (1) of Lemma 3.6, the 

condition therein becomes 13m
 
=

 
6a

 
+

 
1, whose solution is m

 
=

 
6s

 
+

 
1, s

 


 
0. 

 Writing 13m in place of m in part (2) of Lemma 3.6, the condition therein takes the 

form 13m
 
=

 
8b

 
+

 
3, whose solution is m

 
=

 
8s

 
+

 
7, s

 


 
0. Note that, the solution of the 

equation  8s
 
+

 
7

 
=

 
6a+

 
1 is s

 
=

 
3x, x

 


 
0.  

 Next, let m in part (3) of Lemma 3.6 be replaced by 13m. Here, there are two possible 

cases. The first possibility is that 13m
 
=

 
9 

+
 
1, whose solution is m

 
=

 
9t

 
+

 
7, t

 


 
0. Here, 

one needs to consider the following two combined Diophantine equations: 

9t
 
+

 
7

 
=

 
6a

 
+

 
1, 9t

 
+

 
7

 
=

 
8c

 
+

 
7. 

The solutions of the above equations are s
 
=

 
2d, d

 


 
0 and s

 
=

 
8e, e

 


 
0 respectively.   

The second possibility is that 13m
 
=

 
9 

+
 
2, whose solution is m

 
=

 
9s

 
+

 
5, s

 


 
0. Here, the 

Diophantine equation 9s
 
+

 
5

 
=

 
6a + 1 has no solution (by Lemma 2.4), while the solution of 

the equation 9s
 
+

 
5

 
=

 
8c

 
+

 
7 is s

 
=

 
8y

 
+

 
2, y

 


 
0. 

To prove part (4) of the lemma, replacing m by 13m for m in part (4) of Lemma 3.6, the 

two Diophantine equations therein become respectively 

13m
 
=

 
2(10 

+
 
7), 13m

 
=

 
20 

+
 
19, 
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with respective solutions m
 
=

 
2(10t

 
+

 
9), t

 


 
0 and m

 
=

 
20s

 
+

 
3, s

 


 
0. Now, none of the 

combined Diophantine equations 2(10t
 
+

 
9)

 
=

 
6a

 
+

 
1 and 2(10t

 
+

 
9)

 
=

 
8c

 
+

 
7 has a solution, 

while the solutions of the following two combined equations  

2(10t
 
+

 
9)

 
=

 
9d

 
+

 
5, 2(10t

 
+

 
9)

 
=

 
9e

 
+

 
7, 

are t
 
=

 
9u

 
+

 
7, u

 


 
0 and t

 
=

 
9v

 
+

 
8, v

 


 
0 respectively. With the second solution m

 
=

 
20s

 
+

 
3, 

the following four equations are to be considered: 

20s
 
+

 
3

 
=

 
6a

 
+

 
1, 20s

 
+

 
3

 
=

 
8c

 
+

 
7, 20s

 
+

 
3

 
=

 
9d

 
+

 
5, 20s

 
+

 
3

 
=

 
9e

 
+

 
7, 

whose solutions are respectively 

s
 
=

 
3a

 
+

 
2, a

 


 
0, s

 
=

 
2b

 
+

 
1, b

 


 
0, s

 
=

 
9c

 
+

 
8, c

 


 
0, s

 
=

 
9d

 
+

 
2, d

 


 
0. 

To prove part (5) of the lemma, replacing m by 13m in Lemma 3.7, the condition therein 

becomes 13m
 
=

 
6(12a

 
+

 
5), whose solution is m

 
=

 
6(12s

 
+

 
5). Here, the Diophantine 

equations to be considered are 

6(20s
 
+

 
5)

 
=

 
6a

 
+

 
1, 6(20s

 
+

 
5)

 
=

 
8c

 
+

 
7, 6(20s

 
+

 
5)

 
=

 
9d

 
+

 
5, 6(20s

 
+

 
5)

 
=

 
9e

 
+

 
7, 

6(20s
 
+

 
5)

 
=

 
20f

 
+

 
3, 6(20s

 
+

 
5)

 
=

 
2(10g

 
+

 
9). 

The solution of the last equation is s
 
=

 
5t

 
+

 
4, t

 


 
0, while none of the remaining equations 

possesses a solution.  

Using Lemma 3.6, the following values may be obtained. 

SS(60060)
 
=

 
60054, SS(420420) = 420414, SS(780780) = 780774, SS(1141140) = 

1141134,   

SS(900900) = 9008922, SS(1381380) = 1381372, SS(2342340) = 2342332,   

SS(30030) = 300291, SS(840840) = 840831, SS(960960) = 960951,   

SS(180180) = 180170, SS(1081080) = 1081070, SS(2282280) = 2282270, 

SS(1801800) = 1801788, SS(6126120)
 
=

 
6126108, SS(10450440) = 10450428. 

Note that SS(60060m)
 


 
60060m

 
–

 
13 for any integer m (

 


 
1). 

 

4. Some Remarks 

 

This section derives some interesting results involving the function SS(n). 

Lemma 4.1: Let the equation  

SS(n
 
+

 
1)

 
=

 
SS(n)

 
+

 
m                                               (4.1) 

have a solution for some (positive) integers n and m. Then, with this m, the equation 

SS(n
 
+

 
1)

 
=

 
SS(n)

 
–

 
m + 2                                            (4.2) 

has also a solution. 

Proof: Let, for some integer m (
 
>

 
0) fixed, n0 be a solution of the equation (4.1). Then, n0 

must be even, for otherwise, n0 is odd, so that 

SS(n0
 
+

 
1)

 


 
n0

 
–

 
2, SS(n0)

 
=

 
n0

 
–

 
2, 

violating the equation (4.1). Hence, n0 must be even with 

SS(n0
 
+

 
1)

 
=

 
n0

 
–

 
1, SS(n0)

 
=

 
n0

 
–

 
m

 
–

 
1. 

Now, SS(n0 – 1)
 
=

 
n0

 
–

 
3, so that 

SS(n0)
 
–

 
SS(n0 – 1)

 
=

 
2

 
–

 
m, 

which shows that n = n0 –
 
1 is a solution of the equation (4.2). 

Lemma 4.2: The equation  
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SS(n
 
+

 
1)

 
=

 
SS(n)

 
–

 
1                                                (4.3) 

has an infinite number of solutions. 

Proof: Let N
 
=

 
24m

 
+

 
18, m

 


 
0 being any integer. Then, by Lemma 1.3, SS(N)

 
=

 
N

 
–

 
4, and 

by Lemma 1.1, SS(N
 
+

 
1)

 
=

 
N

 
–

 
1, so that N

 
=

 
24m

 
+

 
18 is a solution of the equation SS(n

 
+

 

1)
 
=

 
SS(n)

 
+

 
3. Therefore, by Lemma 4.1, n

 
=

 
24m

 
+

 
17, m  0, is a solution of the equation 

(4.3). Since there is an infinite number of such n, the lemma is proved. 

Lemma 4.3: The equation  

SS(n
 
+

 
1)

 
=

 
SS(n)

 
–

 
2                                                (4.4) 

has an infinite number of solutions. 

Proof: Letting N = 12m (m
 


 
0 being an integer not divisible by 5), by Theorem 3.3,   

SS(N)
 
=

 
N

 
–

 
5. Since SS(N

 
+

 
1)

 
=

 
N

 
–

 
1, such an N is a solution of the equation SS(n

 
+

 
1)

 
=

 

SS(n)
 
+

 
4. Then, by Lemma 4.1, n

 
=

 
12m

 
–

 
1 (m

 


 
0 being an integer not divisible by 5) is a 

solution of the equation (4.4). Clearly, there is an infinite number of such n. 

A second solution of the equation (4.4) is given as follows: Let n
 
=

 
24m

 
+

 
12 with m

 


 
5s

 
+

 

2, s
 


 
0 being an integer. By part (3) of Lemma 3.3, SS(n)

 
=

 
n

 
–

 
5, so that  SS(n

 
+

 
1)

 
=

 
SS(n)

 

+
 
5. Therefore, by Lemma 4.1, n = 24m + 11, m

 


 
5s

 
+

 
2, s

 


 
0, is a solution of the equation 

(4.4). Note that there is an infinite number of solutions of (4.5). 

Lemma 4.4: The equation  

SS(n
 
+

 
1)

 
=

 
SS(n)

 
–

 
3                                                (4.5)  

has an infinite number of solutions. 

Proof: Let N
 
=

 
60m, m

 
=

 
6s

 
+

 
5, s

 


 
0. By (3.6), SS(N)

 
=

 
N

 
–

 
6. Thus, SS(N

 
+

 
1)

 
=

 
SS(N)

 
+

 
5. 

Therefore, by Lemma 4.1, n = 60m – 1, m =
 
6s

 
+

 
5, s

 


 
0, is a solution of the equation (4.5). 

Clearly, there is an infinite number of solutions of (4.5).  

Lemma 4.5: The equation  

SS(n
 
+

 
1)

 
=

 
SS(n)

 
–

 
4                                                (4.6)  

has an infinite number of solutions. 

Proof: Let N
 
=

 
12m

 
+

 
6, m

 
=

 
2(5s

 
+

 
1) (for any integer s

 


 
0). By part (6b) of Corollary 3.4, 

SS(N) = N – 7, so that SS(N
 
+

 
1)

 
=

 
SS(N)

 
+

 
6. Then, by Lemma 4.1, n

 
=

 
12m

 
+

 
5, m

 
=

 
2(5s

 
+

 

1), (s
 


 
0) is a solution of the equation (4.6).  

 

5. Conclusion 

 

This paper studies a newly introduced Smarandache-type arithmetic funcation called 

Sandor-Smarandache function, SS(n). Recently, a set of necessary and sufficient 

conditions has been derived such that SS(n)
 
=

 
n

 
–

 
4. This study finds the necessary and 

sufficient conditions for SS(n)
 
=

 
n

 
–

 
5 and SS(n)

 
=

 
n

 
–

 
6. Theorem 3.3 involves the function 

SS(12m). Then, the paper derives the expressions of SS(60m), SS(420m), SS(4620m), 

SS(60060m) and their values are appended here successively. The analysis so far reveals 

the following facts about the function SS(n) : 

(1) SS(n)
 
=

 
n

 
–

 
5, if n

 
=

 
12m (m

 


 
1) and 5 does not divide n, 

(2) n
 
– 6  SS(n)  n – 7, if n = 60m (m  1) and 7 does not divide n, 

(3) n
 
– 6  SS(n)  n – 11, if n = 420m (m  1) and 11 does not divide n, 
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(4) n
 
– 6  SS(n)  n – 13, if n = 4620m (m  1) and 13 does not divide n. 

It thus appears that SS(n) depends, to some extent, on the prime factors of n in their 

sequential order 2, 3, 5, …. However, if p is the largest prime factor of n, then SS(n)
 


 
n–p. 

It may open a new research horizon regarding Sandor-Smarandache function.  
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Appendices 

 

Table A-1. Values of SS(60m), 1  m  200. 
 

n SS(n) n SS(n) n SS(n) n SS(n) n SS(n) 

60 53 2460 2454 4860 4853 7260 7253 9660 9654 

120 113 2520 2509 4920 4913 7320 7313 9720 9713 

180 173 2580 2573 4980 4974 7380 7373 9780 9773 

240 233 2640 2633 5040 5029 7440 7433 9840 9833 

300 294 2700 2693 5100 5093 7500 7494 9900 9893 

360 353 2760 2753 5160 5153 7560 7549 9960 9953 

420 412 2820 2814 5220 5213 7620 7613 10020 10014 

480 473 2880 2873 5280 5273 7680 7673 10080 10069 

540 533 2940 2929 5340 5334 7740 7733 10140 10133 

600 593 3000 2993 5400 5393 7800 7793 10200 10193 

660 654 3060 3053 5460 5451 7860 7854 10260 10253 

720 713 3120 3113 5520 5513 7920 7913 10320 10313 

780 773 3180 3174 5580 5573 7980 7969 10380 10374 

840 831 3240 3233 5640 5633 8040 8033 10440 10433 

900 893 3300 3293 5700 5694 8100 8093 10500 10492 

960 953 3360 3349 5760 5753 8160 8153 10560 10553 

1020 1014 3420 3413 5820 5813 8220 8214 10620 10613 

1080 1073 3480 3473 5880 5870 8280 8273 10680 10673 

1140 1133 3540 3534 5940 5933 8340 8333 10740 10734 

1200 1193 3600 3593 6000 5993 8400 8391 10800 10793 

1260 1249 3660 3653 6060 6054 8460 8453 10860 10853 

1320 1313 3720 3713 6120 6113 8520 8513 10920 10909 

1380 1374 3780 3772 6180 6173 8580 8574 10980 10973 

1440 1433 3840 3833 6240 6233 8640 8633 11040 11033 

1500 1493 3900 3894 6300 6289 8700 8693 11100 11094 

1560 1553 3960 3953 6360 6353 8760 8753 11160 11153 

1620 1613 4020 4013 6420 6414 8820 8809 11220 11213 

1680 1671 4080 4073 6480 6473 8880 8873 11280 11273 

1740 1734 4140 4133 6540 6533 8940 8934 11340 11329 

1800 1793 4200 4189 6600 6593 9000 8993 11400 11393 

1860 1853 4260 4254 6660 6653 9060 9053 11460 11454 

1920 1913 4320 4313 6720 6709 9120 9113 11520 11513 

1980 1973 4380 4373 6780 6774 9180 9173 11580 11573 

2040 2033 4440 4433 6840 6833 9240 9231 11640 11633 

2100 2094 4500 4493 6900 6893 9300 9294 11700 11693 

2160 2153 4560 4553 6960 6953 9360 9353 11760 11749 

2220 2213 4620 4614 7020 7013 9420 9413 11820 11814 

2280 2273 4680 4673 7080 7073 9480 9473 11880 11873 

2340 2333 4740 4733 7140 7134 9540 9533 11940 11933 

2400 2393 4800 4793 7200 7193 9600 9593 12000 11993 
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Table A-2. Values of SS(420m), 1  m  200. 
 

n SS(n) n SS(n) n SS(n) n SS(n) n SS(n) 

420 412 17220 17214 34020 34012 50820 50812 67620 67614 

840 831 17640 17629 34440 34429 51240 51229 68040 68029 

1260 1249 18060 18049 34860 34854 51660 51649 68460 68449 

1680 1671 18480 18467 35280 35269 52080 52069 68880 68871 

2100 2094 18900 18889 35700 35691 52500 52494 69300 69287 

2520 2509 19320 19309 36120 36109 52920 52909 69720 69711 

2940 2929 19740 19734 36540 36529 53340 53329 70140 70134 

3360 3349 20160 20149 36960 36947 53760 53751 70560 70549 

3780 3772 20580 20572 37380 37374 54180 54172 70980 70972 

4200 4189 21000 20989 37800 37789 54600 54591 71400 71389 

4620 4614 21420 21409 38220 38209 55020 55014 71820 71809 

5040 5029 21840 21829 38640 38631 55440 55427 72240 72229 

5460 5451 22260 22254 39060 39049 55860 55849 72660 72654 

5880 5870 22680 22670 39480 39471 56280 56270 73080 73070 

6300 6289 23100 23087 39900 39894 56700 56689 73500 73491 

6720 6709 23520 23511 40320 40309 57120 57109 73920 73907 

7140 7134 23940 23932 40740 40732 57540 57534 74340 74332 

7560 7549 24360 24351 41160 41149 57960 57949 74760 74749 

7980 7969 24780 24774 41580 41567 58380 58371 75180 75174 

8400 8391 25200 25189 42000 41989 58800 58789 75600 75589 

8820 8809 25620 25609 42420 42414 59220 59209 76020 76009 

9240 9231 26040 26029 42840 42829 59640 59629 76440 76431 

9660 9654 26460 26449 43260 43251 60060 60054 76860 76849 

10080 10069 26880 26869 43680 43669 60480 60469 77280 77271 

10500 10492 27300 27294 44100 44092 60900 60892 77700 77694 

10920 10909 27720 27707 44520 44509 61320 61311 78120 78109 

11340 11329 28140 28131 44940 44934 61740 61729 78540 78527 

11760 11749 28560 28549 45360 45349 62160 62151 78960 78949 

12180 12174 28980 28970 45780 45770 62580 62574 79380 79370 

12600 12589 29400 29389 46200 46191 63000 62989 79800 79789 

13020 13011 29820 29814 46620 46609 63420 63409 80220 80214 

13440 13429 30240 30229 47040 47031 63840 63829 80640 80629 

13860 13852 30660 30652 47460 47454 64260 64252 81060 81052 

14280 14270 31080 31071 47880 47870 64680 64670 81480 81470 

14700 14694 31500 31489 48300 48289 65100 65094 81900 81889 

15120 15109 31920 31911 48720 48709 65520 65509 82320 82309 

15540 15529 32340 32334 49140 49129 65940 65931 82740 82734 

15960 15951 32760 32749 49560 49549 66360 66349 83160 83147 

16380 16369 33180 33169 49980 49974 66780 66769 83580 83569 

16800 16791 33600 33589 50400 50389 67200 67189 84000 83991 
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Table A-3. Values of SS(4620m), 1  m  160. 
 

n SS(n) n SS(n) n SS(n) n SS(n) 

4620 4614 189420 189407 374220 374207 559020 559014 

9240 9231 194040 194027 378840 378831 563640 563627 

13860 13852 198660 198654 383460 383452 568260 568252 

18480 18467 203280 203267 388080 388067 572880 572867 

23100 23087 207900 207887 392700 392694 577500 577487 

27720 27707 212520 212511 397320 397307 582120 582107 

32340 32334 217140 217131 401940 401927 586740 586734 

36960 36947 221760 221747 406560 406547 591360 591351 

41580 41567 226380 226374 411180 411167 595980 595967 

46200 46191 231000 230987 415800 415787 600600 600586 

50820 50812 235620 235612 420420 420414 605220 605212 

55440 55427 240240 240223 425040 425031 609840 609827 

60060 60054 244860 244847 429660 429647 614460 614454 

64680 64670 249480 249470 434280 434270 619080 619070 

69300 69287 254100 254094 438900 438887 623700 623687 

73920 73907 258720 258711 443520 443507 628320 628311 

78540 78527 263340 263327 448140 448134 632940 632931 

83160 83147 267960 267947 452760 452747 637560 637547 

87780 87774 272580 272572 457380 457372 642180 642174 

92400 92391 277200 277187 462000 461991 646800 646787 

97020 97007 281820 281814 466620 466611 651420 651407 

101640 101627 286440 286427 471240 471228 656040 656027 

106260 106247 291060 291047 475860 475854 660660 660643 

110880 110867 295680 295671 480480 480463 665280 665267 

115500 115494 300300 300291 485100 485087 669900 669894 

120120 120103 304920 304907 489720 489707 674520 674511 

124740 124732 309540 309534 494340 494332 679140 679132 

129360 129351 314160 314147 498960 498947 683760 683747 

133980 133971 318780 318767 503580 503574 688380 688367 

138600 138588 323400 323387 508200 508191 693000 692987 

143220 143214 328020 328007 512820 512807 697620 697614 

147840 147827 332640 332627 517440 517427 702240 702227 

152460 152447 337260 337254 522060 522047 706860 706847 

157080 157070 341880 341871 526680 526670 711480 711471 

161700 161692 346500 346492 531300 531294 716100 716092 

166320 166307 351120 351107 535920 535907 720720 720703 

170940 170934 355740 355727 540540 540523 725340 725334 

175560 175551 360360 360343 545160 545151 729960 729947 

180180 180170 364980 364974 549780 549771 734580 734570 

184800 184787 369600 369587 554400 554387 739200 739187 
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Table A-4. Values of SS(60060m), 1  m  120. 
 

n SS(n) n SS(n) n SS(n) 

60060 60054 2462460 2462451 4864860 4864843 

120120 120103 2522520 2522503 4924920 4924903 

180180 180170 2582580 2582574 4984980 4984970 

240240 240223 2642640 2642623 5045040 5045023 

300300 300291 2702700 2702686 5105100 5105094 

360360 360343 2762760 2762745 5165160 5165151 

420420 420414 2822820 2822812 5225220 5225212 

480480 480463 2882880 2882865 5285280 5285271 

540540 540523 2942940 2942934 5345340 5345323 

600600 600586 3003000 3002991 5405400 5405383 

660660 660643 3063060 3063041 5465460 5465454 

720720 720703 3123120 3123111 5525520 5525503 

780780 780774 3183180 3183164 5585580 5585565 

840840 840831 3243240 3243223 5645640 5645626 

900900 900892 3303300 3303294 5705700 5705692 

960960 960951 3363360 3363343 5765760 5765743 

1021020 1021006 3423420 3423403 5825820 5825814 

1081080 1081070 3483480 3483470 5885880 5885870 

1141140 1141134 3543540 3543531 5945940 5945923 

1201200 1201183 3603600 3603583 6006000 6005983 

1261260 1261245 3663660 3663654 6066060 6066046 

1321320 1321303 3723720 3723703 6126120 6126108 

1381380 1381372 3783780 3783772 6186180 6186174 

1441440 1441423 3843840 3843823 6246240 6246231 

1501500 1501494 3903900 3903883 6306300 6306283 

1561560 1561543 3963960 3963946 6366360 6366351 

1621620 1621603 4024020 4024014 6426420 6426403 

1681680 1681665 4084080 4084071 6486480 6486463 

1741740 1741723 4144140 4144124 6546540 6546534 

1801800 1801788 4204200 4204191 6606600 6606584 

1861860 1861854 4264260 4264252 6666660 6666652 

1921920 1921911 4324320 4324303 6726720 6726703 

1981980 1981963 4384380 4384374 6786780 6786771 

2042040 2042031 4444440 4444423 6846840 6846823 

2102100 2102083 4504500 4504483 6906900 6906894 

2162160 2162143 4564560 4564545 6966960 6966943 

2222220 2222214 4624620 4624611 7027020 7027004 

2282280 2282270 4684680 4684670 7087080 7087070 

2342340 2342332 4744740 4744734 7147140 7147132 

2402400 2402383 4804800 4804783 7207200 7207183 

 

 

 


