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Abstract 

The nonlinear fractional differential equation (FDE) is discussed in this study. First, the 

research will investigate the existence and unique solution of the nonlinear differential 

equation to the Atangana-Baleanu fractional derivative in the sense of Caputo with the 

initial periodic condition, an integral boundary condition by Krasnoselskii's and Banach 

fixed point theorems. Then, this work will study the Hyers-Ulam stability of our problem. 

Finally, an example to demonstrate the use of our main theorems will be presented. 
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1.   Introduction 

Fractional calculus has a 300-year history, with the subject's growth-focused mainly on 

pure mathematics. In the nineteenth century, Liouville, Riemann, Leibniz, and others 

conducted the first more or less systematic investigation [1,2]. Compared to integer order, 

fractional calculus contains some significant changes [3]. Fractional order Differential 

equations have lately been useful tools for modeling a wide range of phenomena in 

science and engineering. Control, porous media, electromagnetic, and other domains can 

benefit from its use [4-6]. Depending on the physical situation at hand, this theory 

employs a variety of boundary conditions. Integral boundary conditions are more 

important and used where classical boundary conditions fail to develop mathematical 

models. In contrast, periodic boundary conditions are widely encountered in 

computational science of various areas, particularly when the physical domain involved is 

infinite or homogeneous along with one or more directions [6,7]. Different techniques for 

fractional derivatives have been proposed in research investigations, including Riemann–

Liouville, Caputo, Caputo–Fabrizio, Caputo–Hadamard, Grunwald–Letnikov, and 

Atangana–Baleanu derivatives. Many mathematicians have worked on difficulties 
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concerning fractional differential equations' existence and uniqueness [8–11]. Various 

well-known approaches related to fixed point theory, such as Banach and Krasnoselskii's 

fixed point theorems [11], are frequently applied. 

    In this article, we consider the following ABC-fractional boundary value problem 

with periodic and integral boundary conditions:  

(   
 

    )( )   (   ( ))                      ,   -    ,             (1) 

with 

 ( )   ( )                     (2) 

  ( )   
 

 
  ( )  .         (3) 

 On the other hand, the theory of FDEs has been researched, and several basic 

conclusions, including stability theory, have been established. The subject of stability is 

crucial in both physical and biological systems. One of the necessary qualitative theories 

of dynamical systems is the idea of stability. As a result of its applications, the theory of 

stability characteristics has garnered significant attention in various study domains. Many 

academics have studied the Ulam-Hyers stability analysis and its applications to many 

types of differential equations [12,13]. Ulam stability has been introduced for the 

functional equation by Ulam. Ulam first addressed the consistency of functional equations 

in a 1940 speech at the University of Wisconsin. His query was: under what conditions 

does an additive mapping occur, as opposed to an approximately additive mapping? In 

Banach spaces, Hyers provided the first solution to Ulam's question in 1941. The Ulam–

Hyers stability is the name of this form of stability. Rassias provided a notable expansion 

of the Ulam–Hyers stability of maps by taking variables into account in 1978. [14-16]. 

 This article is divided into four sections. In Section 2, the current study reviews 

various Atangana-Baleanu fractional notations and definitions. Section 3 is divided into 

two parts. In the first section, we use Krasnoseleskii,s fixed point theorem to demonstrate 

the existence of the solution to our presented problems (1)-(3). The second section uses 

the Banach fixed point theorem to demonstrate a unique solution. Section 4 uses Hyers-

Ulam stable (HU) to demonstrate the solution's stability. Finally, an example to further 

clarify our findings will present. 

 

2. Mathematical Tools  

 

The current research presents several definitions, lemmas, and theorems relevant to our 

main results in this section, which will be required in the next section. 

For    , the left Riemann-Liouville integral is defined as [17]. 

(   
  )( )  

 

 ( )
  

 

 
 (   )    ( )  .         

For      , the left Riemann-Liouville fractional derivative is given as [17]. 

(   
  )( )  

 

  
.

 

 (   )
  

 

 
 (   )   ( )  /. 

For      , the Caputo fractional derivative is read as [16]. 
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(  
    )( )  

 

 (   )
  

 

 
 (   )    ( )  . 

Definition 2.1 [18]. Let  ,   - ,      (   ), where    , then the Caputo AB-

derivative is 

 ( 
      )( )  

 ( )

   
  

 

 
   ( )  0  

(   ) 

   
1   . 

Where    is the Mittag-Leffler function,  ( ) is a positive normalizing function 

satisfying  ( )   ( )   . 

The associated fractional integral of the Caputo AB-derivative is defined by  

(  
     )( )  

   

 ( )
 ( )  

 

 ( )
(   

  )( ) 

where   
  is the left Riemann-Liouville integral 

Lemma 2.2 [19]  The     fractional derivative and    fractional integral of the function 

 ( ) satisfies the following formula given 

   
    

 (        
  ( ))   ( )   ( ) 

Lemma 2.3  [20]. For  ( ) defined on ,   -,   (     -, for some     we have 

I. (  
       

     )( )   ( ). 

II. (  
       

      )( )   ( )      
    

  ( )

  
(    ) . 

III.  (  
       

      )( )   ( )      
  

  ( )

  
(    ) . 

Theorem 2.4 [21] Arzela Fixed Point Theorem. Let   be a compact Hausdorff metric 

space. Then    ( ) is said to be relatively compact whenever   is equicontinuous and 

bounded uniformly. 

 

3. Mean Results 

 

In this part, the well-known fixed-point theorems are used to show the existence and 

uniqueness of solutions to ABC-fractional boundary value problem (1)-(3), by 

Krasnoselskii's and Banach's fixed point. First, the following theorem, which is critical for 

obtaining the existence of solution results is shown. 

Theorem 3.1. Let   ,   -    be a continuous function, and a function   ( ) is a 

solution of the following ABC-fractional  

(   
 

    )( )   (   ( ))                   ,   -            

With 

 ( )   ( )   ( )   
 

 
  ( )   

iff   ( ) is the solution of the following integral equation: 

 ( )   
 

 
  (   ) (   ( ))   

Where,  
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 (   )      

{
 
 
 
 

 
 
 
 

(   )(       )

  (   ) 
 

(   )(       )

  (   ) ( ) 
(   )   

 
(   )

 (   ) 
(   )  

(   )

 (   ) (   ) 
(   )             

(   )(       )

  (   ) 
 

(   )(       )

  (   ) ( ) 
(   )   

 
(   )

 (   ) 
(   )  

(   )

 (   ) (   ) 
(   )  

   

 (   )
 

     

 (   ) ( )
(   )                                               

 

Proof. Consider the following fractional differential equation:  

(   
 

    )( )   (   ( ))                ,   -            

By  using Lemma 2.3,  obtain that  

 ( )   ( )    ( )  
   

 (   )
 

 

 
  (   ( ))   

(   )

 (   ) ( )
 

 

 
 (  

 )    (   ( ))  .      (4) 

Now, using the boundary conditions  ( )   ( ),   ( )   
 

 
  ( )   and with the 

necessity  ( )   , we get  

 ( )  .
  

 
  / .

   

 (   ) 
/  

 

 
  (   ( ))   . 

  

 
  / .

(   )

 (   ) ( ) 
/ 

 

 
 (  

 )    (   ( ))   
(   )

 (   ) 
 

 

 
 (   ) (   ( ))   

(   )

 (   ) (   ) 
 

 

 
 (  

 )  (   ( ))  .  

and  

  ( )  
 (   )

 (   ) 
 

 

 
  (   ( ))   

(   )

 (   ) ( ) 
 

 

 
 (   )    (   ( ))  ,  

Putting the values of ( ) ,   ( ) in equation (4), find that   

 ( )  

(   )(       )

  (   ) 
 

 

 
  (   ( ))   

(   )(       )

  (   ) ( ) 
 

 

 
 (   )    (   ( ))   

(   )

 (   ) 
 

 

 
 (   ) (   ( ))   

(   )

 (   ) (   ) 
 

 

 
 (   )  (   ( ))   

   

 (   )
 

 

 
  (   ( ))   

(   )

 (   ) ( )
 

 

 
 (   )    (   ( ))  .   

After simplifications and replacing the value of  (   ), obtain that  

 ( )   
 

 
  (   ) (   ( ))  . 

This proves the theorem.   
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3.1. Existences solution using Krasnoselskii's fixed point theorem  

 

In this part, one of the key fixed-point theorems was utilized to demonstrate the solution 

contains at least one fixed point. This theorem guarantees the fixed point's sum of 

compact and a contractive operator. This study, start with Krasnoselskii's fixed point 

theorem. 

Theorem 3.2.[22] Let   be a closed convex nonempty subset of a Banach space (     ). 

Suppose that    and    map   into   s.t 

(i)                (      ). 

(ii)    is continuous and     is contained in a compact set. 

(iii)    is a contraction with constant    . 

Then there is a     with          . 

For easier understanding assume the following: 

Let    (,   -  ) denote the Banach space of continuous function   ,   -    with 

norm            ,   -  ( ) . Assume that      ,   -  the following assumptions are 

correct. 

(  )       (    ( ))   (    ( ))          . 

(  )      (   )    ( )         . 

(  )       
  ,   -

    (   )   .   

Where    ,     ,      and     . 

Theorem 3.3. Assume that all assumptions (  ), (  ) and  

(a4)        0
(   )(       )

  (   ) ( )
 

    

 
 

(   )

 (   ) (   ) 
 

    

 
  

(   )

 (   ) ( )

  

 
1    

hold, then (1)-(3) has at least one solution on ,   -. 

Proof.  Consider    *         +, where 

   (   ( )        
  ))    ,      *  (   ( )        

  )+ and  

   0
(   )(       )

  (   )
 

(   )(       )    

  (   ) (   )
 

 (   ) 

  (   )
 

(   )  

 (   ) (   )
 

(   )  

 (   ) (   )
1. 

Now, define the operators  1 and    on    as  

(   )( )  
(   )(       )

  (   ) 
  

 

 
 (   ( ))   

(   )

 (   ) 
  

 

 
 (   ) (   ( ))    

 
   

 (   )
  

 

 
  (   ( ))  , 

and  

(   )( )  
(   )(       )

  (   ) ( ) 
 

 

 
 (   )    (   ( ))   

(   )

 (   ) (   ) 
 

 

 
 (  

 )  (   ( ))    
(   )

 (   ) ( )
 

 

 
 (   )    (   ( ))     

For        , consider  
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            ‖
(   )(       )

  (   ) 
  (   ( ))  

 

 
 

(   )

 (   ) 
 (   ) (   ( ))  

 

 
 

   

 (   )
  (   ( ))  

 

 
 

(   )(       )

  (   ) ( ) 
 (   )    (   ( ))  

 

 
 

(   )

 (   ) (   ) 
 (   )  (   ( ))  

 

 
 

(   )

 (   ) ( )
 (   )    (   ( ))  

 

 
‖. 

 
(   )(       )

  (   )
(    ( )        

  )  
(   )(       )

  (   ) ( ) 

  

 
(    ( )        

  )  

   

 (   ) 
 

  

 
(    ( )        

  )  
(   ) 

 (   )
(    ( )        

  )  

(   )

 (   ) (   ) 

    

   
(|   ( ) |    |  

  )  
(   )

 (   ) ( )
 
  

 
(    ( )        

  ). 

        0
(   )(       )

  (   )
 

(   )(       )    

  (   ) (   )
 

 (   ) 

  (   )
 

(   )  

 (   ) (   )
   

       
(   )  

 (   ) (   )
1  (    ( )        

  ),  

Therefore, obtaining that 

              (    ( )        
  )   . 

Hence   ( )    ( )    . 

Now, to show that the operator    is a contraction mapping, using (  ), 

    ( )    ( )         ,   -         . 

    ( )    ( )   

‖
(   )(       )

  (   ) ( ) 
 

 

 
 (   )    (   ( ))   

(   )

 (   ) (   ) 
 

 

 
 (  

 )  (   ( ))   
(   )

 (   ) ( )
 

 

 
 (   )    (   ( ))   0

(   )(       )

  (   ) ( ) 
 

 

 
 (  

 )    (   ( ))   
(   )

 (   ) (   ) 
 

 

 
 (   )  (   ( ))   

(   )

 (   ) ( )
 

 

 
 (  

 )    (   ( ))  1‖. 

    ( )    ( )   
(   )(       ) 

  (   ) ( ) 

  

 
‖   ‖  

(   ) 

 (   ) (   ) 

    

 
‖   ‖    

 
(   ) 

 (   ) ( )

  

 
‖   ‖. 

  0
(   )(       ) 

  (   ) ( ) 

  

 
 

(   ) 

 (   ) (   ) 

    

 
 

(   ) 

 (   ) ( )

  

 
1 ‖   ‖    

Therefore, find that  

    ( )    ( )     ‖   ‖. 

Then    is a contraction mapping. 

The operator   is continuous, also   is uniformly bounded on    as  
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    ( )( )   
(   )[       ]

  (   )
(           

  ). 

Now, to prove that the compactness of the operator    is continuous, the view of (  ) was 

used.  

  (   )(  )  (   )(  )   ‖
(   )(       )

  (   ) 
 

 

 
  (   ( ))   

(   )

 (   ) 
 

 

 
 (  

 ) (   ( ))   
   

 (   )
  (   ( ))  

  
 

 
(   )(       )

  (   ) 
 

 

 
  (   ( ))   

   

 (   ) 
 

 

 
 (   ) (   ( ))   

   

 (   )
  (   ( ))  

  
 

‖. 

 ‖
(   )

 (   )
(  (   ( ))  

  
 

   (   ( ))  )
  
 

‖   

So that, we get 

  (   )(  )  (   )(  )   
   

 (   )
(           

  )         . 

Which is independent of   and tends to zero as       thus,   is relatively compact on 

  . Hence, by Theorem 2.4,   is compact on   . 

Hence the boundary value problem (1)-(3) has at least one solution on ,   -. 
 

3.2. Unique solution using Banach fixed point theorem  

 

The purpose of this section is to find a unique solution to the problem (1)-(3). The unique 

solution is the most significant thing in any mathematical model. Having more than one 

solution can be useless and may not provide the required information. Therefore, this 

research use a well-known theorem named the Banach contraction principle to obtain a 

unique solution, starting with the Banach fixed point theorem. 

Theorem 3.4. [23] (Banach's fixed point theorem). Let   be a non-empty closed subset of 

a Banach space  . Then any contraction mapping   of   into itself has a unique fixed 

point. 

Theorem 3.5. Assume (  ), (  ) and  

(a5)      0
(   )(       )

  (   )
 

(   )(       )    

  (   ) (   )
 

 (   ) 

  (   ))
  

(   )  

 (   ) (   )
 

(   )  

 (   ) (   )
-    

hold. Then (1)-(3) has a unique solution. 

Proof. Consider     *          +, where    
  

    
 , with         , then 

‖(  )( )‖  

‖
(   )(       )

  (   ) 
  (   ( ))  

 

 
 

(   )(       )

  (   ) ( ) 
 (   )    (   ( ))  
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 (   ) 
 (   )  (   ( ))  

 

 
 

(   )

 (   ) (   ) 
 (    )  (   ( ))  

 

 
  

   

 (   )
  (   ( ))  

 

 
 

(   )

 (   ) ( )
 (   )    (   ( ))  

 

 
‖. 

 
(   )(       )

  (   ) 
‖ ( (   ( )   (   )   (   ))

 

 
  ‖  

(   )(       )

  (   ) ( ) 
‖ (  

 

 

 )   ( (   ( )   (   )   (   ))  ‖  
   

 (   ) 
‖ (   )( (   ( )  

 

 

 (   )   (   ))  ‖  
   

 (   ) (   ) 
‖ (   ) ( (   ( )   (   )  

 

 

 (   ))   ‖  
   

 (   )
‖ ( (   ( )   (   )   (   ))  

 

 
‖  

(   )

 (   ) ( )
‖ (  

 

 

 )    ( (   ( )   (   )   (   ))  ‖  

Hence, obtaining that  

‖(  )( )‖  
(   )(       )

  (   )
( ‖ ( )‖   ))  

(   )(       )

  (   ) ( ) 
 
  

 
( ‖ ( )‖   )  

   

 (   ) 
 

  

 
( ‖ ( )‖   )  

(   )

 (   ) (   ) 
 

    

   
( ‖ ( )‖   )  

(   ) 

 (   )
( ‖ ( )‖   )  

(   )

 (   ) ( )
 

  

 
( ‖ ( )‖   ). 

 

(   )(       )

  (   )
 

(   )(       )

  (   ) ( )
 

    

 
 

 (   ) 

  (   )
 

(   )  

 (   ) (   )
 

(   )  

 (   ) (   )
1 (     )  so that  

‖(  )( )‖         . 

This show that   is a self-mapping on    . 

Now, operator   is shown as the contraction principle. For all        and for all 

  ,   -. 

‖(  )( )  (  )( )‖  ‖
(   )(       )

  (   ) 
∫  (   ( ))  

 

 
 

(   )(       )

  (   ) ( ) 
  

 

 
(  

 )    (   ( ))   
(   )

 (   ) 
   

 

 
 (   ) (   ( ))   

(   )

 (   ) (   ) 
  

 

 
 (  

 )  (   ( ))    
   

 (   )
  

 

 
  (   ( ))   

(   )

 (   ) ( )
  

 

 
 (  

 )    (   ( ))    0
(   )(       )

  (   ) 
  

 

 
  (   ( ))   

(   )(       )

  (   ) ( ) 
  

 

 
 (  
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 )    (   ( ))   
(   )

 (   ) 
  

 

 
 (   ) (   ( ))   

(   )

 (   ) (   ) 
 (  

 

 

 )  (   ( ))   
   

 (   )
  (   ( ))  

 

 
  

(   )

 (   ) ( )
 (   )    (   ( ))  

 

 
1‖. 

 

 
(   )(       ) 

  (   )
‖   ‖  

(   )(       )

  (   ) ( ) 
( ‖   ‖)(

  

 
)  

   

 (   ) 
( ‖  

 ‖)(
  

 
)  

(   )

 (   ) (   ) 
( ‖   ‖)(

    

   
)  

(   ) 

 (   )
( ‖   ‖)  

(   )

 (   ) ( )
( ‖  

 ‖)(
  

 
). 

 

 0
(   )(       )

  (   )
 

(   )(       )    

  (   )  (   )
 

 (   ) 

  (   )
 

(   )  

 (   )  (   )
 

(   )   

 (   )  (   ))
1 ‖   ‖. 

‖(  )( )  (  )( )‖    ‖   ‖. 

Since     , by Banach fixed point theorem, the problem (1)-(3) is a unique solution.  

 

4. Hyers-Ulam Stability  

 

In this part, the stability will discuss. After that, it was clear that the problem (1)-(3) had a 

unique solution in section (3.2). We use Hyers-Ulam Stability for our problems (1)-(3). 

The notes and definitions that follow will be beneficial for our primary result. 

Definition 4.1.[24]. The problem (1)-(3) is said to be Hyers-Ulam stable if there exists a 

real number      such that for each     and for each solution     of the 

inequality 

|(  
      )( )   (   ( ))|   ,  for all   ,   -  

there exists a solution     of the problem (1)-(3) such that 

  ( )   ( )         ,   -. 

Remark 4.2. [24] A function     is a solution of the inequality  

|(  
      )( )   (   ( ))|   ,  for all   ,   -  

if and only if there exists a function     (which depends on z) such that: 

(i)   ( )            ,   -. 

(ii) (  
      )( )   (   ( ))   ( )         ,   -. 

Remark 4.3. From Theorem 3.1. 

 ( )   
 

 
  (   ) (   ( ))  .  

where 
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 (   )      

{
 
 
 
 

 
 
 
 

(   )(       )

  (   ) 
 

(   )(       )

  (   ) ( ) 
(   )   

 
(   )

 (   ) 
(   )  

(   )

 (   ) (   ) 
(   )             

(   )(       )

  (   ) 
 

(   )(       )

  (   ) ( ) 
(   )   

 
(   )

 (   ) 
(   )  

(   )

 (   ) (   ) 
(   )  

   

 (   )
 

     

 (   ) ( )
(   )                                               

 

Note that     (   )   . 

Theorem 4.4. Suppose   ,   -      is a continuous function and satisfying (  ), 

then the problem (1)-(3) is Hyers-Ulam stability. 

 

Proof. Let  ( )    be any solution to the inequality 

|(  
      )( )   (   ( ))|   ,  for all   ,   -  

Using Remark 4.2. 

(  
      )( )   (   ( ))   ( )    ,   -  

and, using Remark 4.3., written that  

 ( )   
 

 
  (   ) (   ( ))  . 

Which implies that  

| ( )    (   ) (   ( ))  
 

 
|     . 

Where   (   )    , was defined in remark 4.3. 

Now, let  ( )    be a unique solution to the fractional boundary value problem (1)-(3). 

Consider that  

  ( )   ( )  | ( )    
 

 
  (   ) (   ( ))  |. 

  ( )   ( )  | ( )    
 

 
  (   ) (   ( ))     

 

 
  (   ) (   ( ))   

   
 

 
  (   ) (   ( ))  |. 

  ( )   ( )            ( )   ( ) . 

Taking up over t   ,   -, obtain that  

‖   ‖         ‖   ‖. 

‖   ‖       . 

 ‖   ‖  
 

 
. 

‖   ‖      , where     
 

 
   . 

Therefore, the problem (1)-(3) is Hyers-Ulam stable.         
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5. Example   

 

This section contains an example to illustrate the previous theorems. Consider the 

following fractional differential equation  

(        
     

  )( )  
 

     
 ( )  

 

 (   ) 
   ( ( ))                        ,   -    (5.5) 

with 

 ( )   ( )       ( )   
 

 
  ( )  .                                                                       (5.6) 

such that       ,   -, with the initial periodic condition  ( )   ( ), where         
     

  

denotes the Atangana-Baleanu fractional derivative in the sense of Caputo.  (  (   -) .  

Here       (   ( ))  
 

     
 ( )  

 

 (   ) 
   ( ( )) ,  obtain that               

 

Table 1.  Calculated values of      and              (   - and T = 2. 
 

  (   -         (   -       

1.01 0.0097 0.9727 1.6 0.3945 0.6965 

1.1 0.0930 0.9304 1.7 0.4196 0.6433 

1.2 0.1758 0.8852 1.8 0.4332 0.5872 

1.3 0.2479 0.8404 1.9 0.4356 0.5288 

1.4 0.3086 0.7946 2  0.4277 0.4684 

1.5 0.3575 0.7469    

 

From Table 1, All values of      and     were obtained that are less than one, where 

    0
(   )(       )

  (   ) ( )
 

    

 
 

(   )

 (   ) (   ) 
 

    

 
  

(   )

 (   ) ( )

  

 
1. 

    0
(   )(       )

  (   )
 

(   )(       )    

  (   ) (   )
 

 (   ) 

  (   ))
  

(   )  

 (   ) (   )
 

(   )  

 (   ) (   )
- . 

Therefore, from theorem 3.3 and theorem 3.5, a unique solution existed to the nonlinear 

fractional differential equation (5.1) and (5.2). Also, from Theorem 4.4, the problem (5.1)-

(5.2) is Hyers-Ulam stable.      

 

6. Conclusion 

 

The existence and stability of solutions were studied for the nonlinear differential 

equation's nonlinear fractional differential equation to the Atangana-Baleanu fractional 

derivative in the sense of Caputo with the initial periodic condition and an integral 

boundary condition Krasnoselskii's and Banach fixed point theorems.  Also, the Hyers-

Ulam stability of solutions was investigated for the nonlinear fractional differential. 

Finally, an example to demonstrate our main theorems was presented. 
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