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Abstract 

This study centers on estimating parameters in a linear regression model in the presence of 

multicollinearity. Multicollinearity poses a threat to the efficiency of the Ordinary Least 

Squares (OLS) estimator. Some alternative estimators have been developed as remedial 

measures to the earlier mentioned problem. This study introduces a new unbiased modified 

two-parameter estimator based on prior information. Its properties are also considered; the 

new estimator was compared with other estimators’ Mean Square Error (MSE). A numerical 

example and Monte Carlo simulation were used to illustrate the performance of the new 

estimator. 
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1.   Introduction 

The linear regression model is expressed as:  

Y = Xβ + e, (1) 

where Y is an n×1 vector of observations on the dependent variable, X is an n×p matrix of 

the predictor variables, β is a p×1 vector of unknown regression coefficients, e is an n×1 

vector of random error with ei ~ N(0,  ).  

The Ordinary Least Square (OLS) estimator of β is given as: 

 ̂    = (   )-1
 (   )   (2) 

where  ̂    is a p×1 vector of unknown regression coefficients, (   ) is a p×p orthogonal 

matrix, (   ) is a p×1 vector and  ̂~ N(β, 𝝈2
(   )

-1
). The OLS estimator is unbiased and 

possesses minimum variance among other estimators. However, one of the notable 

limitations of this estimator occurs when the predictor variables are highly correlated. 

This is termed multicollinearity, in the presence of which the OLS becomes unstable and 
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gives misleading regression results. Several biased estimators have been proposed in the 

literature to overcome the problem of multicollinearity. 

Hoerl et al. [1] proposed the Ridge Regression (RR) estimator.  

 ̂  (      )        (3) 

where k is the ridge parameter (or biasing constant) and 0   k  1. 

 Amin et al. [2] proposed the modified ridge regression estimator based on prior 

information. The estimator is given as: 

 ̂   (   )  (      )  (      )  (4)  

where b is prior information on  . The OLS is a special case of this estimator when k = 0. 

It tends to b as k tends to infinity. 

Liu [3] proposed an estimator to overcome the limitations of RR estimator. He combined 

the benefit of both the estimators given by [1] and [4]. It is given as: 

 ̂    (     )  (      ) ̂    (5)  

where 0 < d < 1. 

Dorugade [5] and Dorugade [6] introduced a modified two-parameter estimator. The 

estimator is given as: 

 ̂   (   )  (       )  (   ) ̂      (6)  

where k > 0, 0 < d < 1. 

This estimator is a general estimator which includes the OLS and RR estimator as special 

cases, when k = 0 or d = 0, it gives the OLS estimator and when d=1, it gives the RR 

estimator. 

 Although these estimators solve the problem of multicollinearity, they are biased 

estimators.  Unbiased estimators have also been proposed by some researchers. The major 

advantage of unbiased estimators over biased estimators is that they produce unbiased 

estimates with minimum variance. 

 Crouse et al. [7] proposed an unbiased ridge estimator with prior information J. The 

estimator is defined as: 

 ̂(   )  (      )  (      )  (7)  

where J ~ N( ,(    ) ) and J is uncorrelated with  ̂     

Amin et al. [8] proposed an Almost Unbiased Two-Parameter (AUTP) estimator. AUTP 

estimator was compared with OLS estimator and Two-Parameter (TP) estimator based on 

MSE criterion. The estimator is given as: 

 ̂(   )   ̂    (   )(      )   ̂    (8)   

where  ̂   (      )  (       ) ̂     (9) 

Wu [9] introduced an Unbiased Two-Parameter (UTP) estimator with prior information 

based on the Two-Parameter (TP) estimator was by. This is defined as follows: 

 ̂   (     )      ̂    (     )   (10) 
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where     (      )  (       )  (11) 

with J being uncorrelated with  ̂    and J~N(  (   (   ))(     ⁄ )   ) and S 

=     

 In this study, a new estimator referred to as an “Unbiased Modified Two-Parameter” 

(UMTP) Estimator to minimize the effect of multicollinearity in a linear regression model 

is introduced. The article is organized as follows. In section 2, the new estimator is 

proposed, and its properties are obtained. The proposed estimator is compared with other 

two-parameter estimators using the MSE criterion in section 3. 

 

2.   Materials and Methodology  

 

2.1. The new estimator and its properties 

 

Dorugade [5] introduced a Modified Two-Parameter (MTP) estimator, which was earlier 

defined in equation (7) as  ̂    (       )  (   ) ̂     where     (    

   )      and 0< k <1, 0 < d < 1. 

Considering the convex estimator below:  

 ̂(   )    ̂    (   )   (12) 

where C is a p×p matrix, I is a p×p Identity matrix and  ̂(   ) is an unbiased estimator of 

 . 

We define the new estimator, the Unbiased Modified Two-Parameter (UMTP) Estimator, 

based on prior information as follows:  

 ̂(     )      ̂    (     )   (13) 

where     (       )     and J~N(β,  2
(kdI)

-1
) for k > 0, 0 < d <1. (14) 

 

2.1.1. Determination of the variance of J (Var(J)) 

 

Recall from equation (12); ̂(   )    ̂    (   )   

MSE { ̂(   ) } =          (   )   ( )(   )          where       

    * ̂(   )+

  
          (   )   ( )     

     ( ),         ( )-  , similarly    ( )    (   )        

Note that Rkd in the proposed estimator corresponds to C in the convex estimator. 

Therefore, for the proposed estimator,    ( )    (     )           (   )  . 

 

2.1.2. Unbiasedness of the proposed estimator 

 

E, ̂(     )-   E,     (     ) -  

= E,    -   ,(     ) -   

= (     )    , -  (     )  (   ) , -  
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= (     )     (     )  (   )   

= (     )   (     )  

E, ̂(     )-                (15) 

  

2.1.3. The variance of the proposed estimator 

 

   , ̂(     )-     ,    ̂  (     ) -    

    ,(     )    ̂     ,((     )     ) -   

 ((     )   )    ,  ̂-((     )   )  (   ) (     )     , -(     )    

  (     )       (     )    (   ) (     )    (   )  (     )    

    (     )     (     )  (   )    

   (     )  (     )  

   , ̂(     )-    (     )    (16)       

Thus  ̂(     )  (    (     )  )      

 

2.1.4. Mean Squared Error (MSE) of the proposed estimator 

 

MSE* ̂(     )+     ( ̂(     ))      ( ̂(     ))     ( ̂(     ))   

where bias ( ̂(     ))     

MSE* ̂(     )+    (     )    (17) 

  

2.2. Comparison of the proposed estimator with other existing estimators based on MSE 

vriterion  

Lemma 1: Let b1 and b2 be two estimators of β. Then b2 is said to be MSE superior to b1 if 

and only if, MSE(b1)   MSE(b2)   0. 

Lemma 2: Let M be a positive definite matrix, such that M ˃ 0, and let   be some vector, 

then        if and only if           
 

2.2.1. Comparison between  ̂(     ) and  ̂   using MSE criterion 

MSE( ̂   )    (   )          (18)  

MSE( ̂   )   MSE( ̂(     ))          (     )        

      (    (     )  )       (19) 

which is a non-negative definite matrix for k > 0 and 0 < d < 1. Thus, according to Lemma 

1 ̂(     ) is superior to  ̂   . 
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2.2.2. Comparison between  ̂(     ) and  ̂   using MSE criterion 

 

Theorem 1:  ̂(     ) is superior to  ̂   if and only if 
  

  (   ) 
(    

        
    )  

     Proof: Bias( ̂  )   (   )(    )     (20) 

Bias( ̂  )   (   )  
             where        and           

Var( ̂  )    (    )  (     )   (     )(    )     

Var( ̂  )      
     

      
    (21) 

MSE( ̂  )      
     

      
     (   )   

       
     (22)      

MSE( ̂(     ))   MSE( ̂  )      
       

     
      

     (   )   
       

    

     
       

     
      

     (   )   
       

    

 
  

  (   ) 
(    

        
    )       (23) 

 

2.2.3. Comparison between  ̂(     ) and  ̂    using MSE criterion   

   

Var( ̂   )    (    )     (     )    

Var( ̂   )      
          (24) 

 MSE( ̂   )      
         (25) 

 MSE( ̂   )   MSE( ̂(     ))        
            

      

   (  
          

  )     (26) 

which is a non-negative definite matrix for k > 0 and 0 < d < 1. Thus, according to Lemma 

1 ̂(     ) is superior to ̂   . 

 

2.2.4. Comparison between  ̂(     ) and  ̂   (   ) using MSE criterion 

 

Theorem 2: The estimator  ̂(     ) is superior to  ̂   (   ) if and only if  

    
  

  
 with k>0 and 0 < d < 1. 

Proof: Bias( ̂   (   ))  (     )   (27) 

Var( ̂   (   ))        
       (28) 

MSE( ̂   (   ))              (     )   (     )   (29) 

MSE( ̂(     ))   MSE( ̂   (   ))    (     )     (     )   (  

   )   ( (     )    )   ( (     )    )  

   (     )     (     )   (     )   (     )        (     )       

   (     )     (     )   (     )        (     )     (     )    

 (     )  ,  (     )             -(     )    

 (     )  ,              -(     )    
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   (     )  ,         -(     )                          (30)   

Since k > 0 and 0 < d <1, by lemma 2, we obtain that MSE( ̂(     ))   

MSE( ̂   (   )) is a non-negative definite matrix if and only if    
  

  
. Thus, we 

conclude that  ̂(     ) is superior to  ̂   (   ) if and only if     
  

  
. 

 

2.2.5. Selection of bias parameters k and d 

 

The bias parameters k and d are used in estimating two-parameter estimators. They are 

very important and crucial as they play a vital role in controlling the regression bias 

towards the mean of the response variable [10]. 

 To examine the performance of the new proposed estimator over other existing 

estimators, the bias parameters k and d are chosen. In this study, we choose  

k = 
  ̂ 

∑  ̂ 
  

 

             [11]         (31) 

and  

d = ∑ [
(    )( ̂     ̂ 

 )   

   
 ]

 
                               [5]                      (32) 

where parameters k and d  are ridge parameters and constant 

 

3. Results and Discussion 

 

3.1. Numerical example and stimulation study 

 

3.1.2. Numerical example 

 

The proposed estimator will be illustrated using Portland cement data that exhibit 

multicollinearity, where multicollinearity is a statistical concept with several independent 

variables in a model correlated. Multicollinearity occurs when two or more independent 

variables are highly correlated with one another in a regression model. This means that an 

independent variable can be predicted from another independent variable in a regression 

model.  Multicollinearity generally occurs when there are high correlations between two 

or more predictor variables. In other words, one predictor variable can be used to predict 

the others. This creates redundant information, skewing the results in a regression model; 

for example, correlated predictor variables are also called multicollinear predictors.  

Portland cement data set that was initially used by [12]. We computed the regression 

coefficient and the MSE of the proposed unbiased modified two-parameter estimator 

 ̂(     ) and also that of the following estimators ̂   ,  ̂   ,   ̂    ,  ̂   ,  ̂  , 

and  ̂   .  

 Note that  ̂     is the MSE of Modified Ridge (MRR) estimator,  ̂     is the MSE 

of Modified Liu (MLIU) estimator,  ̂    is the MSE of the Modified Two-Parameter 

(MTP) estimator,  ̂   is the MSE of Two- Parameter (TP) estimator and  ̂    is the MSE 

of Unbiased Two-Parameter (UTP) estimator. The result is presented in Table 1. 
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Table 1.  Estimated regression parameter and MSE Value. 
 

  ̂     ̂     ̂      ̂     ̂    ̂     ̂(     ) 

 ̂  62.4054 0.1531 0.1611 0.1411 53.0636 0.1629 0.1270 

 ̂  1.5511 2.2305 2.4105 2.1805 1.6452 2.0822 2.1806 

 ̂  0.5102 1.4544 1.5644 1.1544 0.6069 1.0939 1.1546 

 ̂  0.1019 0.8490 0.8990 0.7490 0.1988 0.7192 0.7492 

 ̂  -0.1441 0.4786 0.4907 0.4866 -0.0494 0.4603 0.4867 

MSE 4912.09 3582.51 3612.71 3912.74 3712.21 4361.11 101.26 

 

From Table 1, we observed that the estimated MSE value of the new proposed 

estimator ( ̂(     )) is smaller than the MSE of OLS ( ̂   ), Modified Ridge estimator 

( ̂   ), Modified Liu estimator( ̂    ), Modified Two-Parameter estimator( ̂   ), Two-

Parameter estimator( ̂  ) and Unbiased Two Parameter estimator ( ̂   ). This implies 

that the new proposed estimator performs better in the presence of multicollinearity. 

 

3.2. Simulation study 

 

In order to investigate the performance of the proposed estimator, the MSE of the 

proposed estimator is compared with those of some existing estimators. The simulation 

process uses a linear regression model with fixed independent variables such that there 

exist different levels of multicollinearity among the independent variables. Considering 

the regression model:   

Yi= β0 + β1X1i + β2 X2i + β3X3i + ……+ βp Xpi +    (33) 

where i=1, 2,…, n and p=3, 6.   

The independent variables were generated by the simulation process used by [2,13,14] and 

[15-18] as follows: 

    (    )            i=1, 2,…, n and j = 1, 2,…, p  (34)   

where     are the generated independent variables,   is the correlation between any two 

independent variables,     are random numbers from standard normal distribution and p is 

the number of independent variables. In this study, we take p = 3, 6 and   = 0.8, 0.9, 0.95, 

and 0.99.     are standardized such that    are used to generate the dependent variables 

at specified value of  n, p, σ and   with   = (0.8, 0.1, 0.6) when p =3 and   = (0.8, 0.1, 

0.6, 0.15, 0.19, 0.05) when p =6.   

 The parameter values were chosen such that    =1, which is a common restriction in 

simulation studies of this type  [19-25]. The data set are simulated with sample sizes n = 

20, 50, 100 and   = 1, 5, 10. The process is replicated 2000 times. We obtained the 

estimated MSE values of the following estimators OLS, MRR, MLIU, MTP, TP, UTP, 

and the proposed UMTP, respectively. Their respective MSE is obtained by the following 

computation.  

   ( ̂)  
 

    
∑    

   ∑ ( ̂     )
 ( ̂     )

 
    (35) 
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where  ̂   is the estimate of the i
th

 parameter in the j
th

 replication and    is the true 

parameter value. The estimated MSE values for different combinations of the n, p, and    

are presented in Tables 2 and 3. 
 

Table 2. Estimated MSE values of the new estimator and various two-parameter estimators when p 

=3,   = (0.8, 0.1, 0.6). 
 

      

N 20 50 100 

  1 5 10 1 5 10 1 5 10 

 ̂    0.883 17.219 68.270 0.420  5.709  22.230 0.304  2.765 10.457 

 ̂    0.759 14.119 55.868 0.416  5.569   21.670 0.3031   2.749  10.393  

 ̂     0.880 17.141 67.959 0.421 5.700 22.194  0.304   2.763  10.449  

 ̂    0.580 9.581 37.711 0.384  4.753   18.405  0.295  2.543  9.566 

 ̂   0.824 15.753 62.407 0.415  5.535  21.537  0.302  2.726  10.298  

 ̂    0.669 11.805 46.606 0.396  5.004 19.403  0.296  2.506  9.406 

 ̂(     ) 0.571 9.367 36.854 0.383 4.738 18.347 0.295 2.541 9.559 

      

N 20 50 100 

  1 5 10 1 5 10 1 5 10 

 ̂    1.780   39.660 158.033 0.615  10.551  41.600  0.398   5.115  19.857  

 ̂    1.061 21.625 85.881 0.583  9.734  38.332 0.394  5.004  19.411  

 ̂     1.768 39.357 156.824 0.614 10.520   41.477  0.398  5.108  19.826  

 ̂    0.696  12.284 48.497 0.492  7.422   29.079   0.366  4.305  16.611  

 ̂   1.553  33.978 135.304 0.592   9.970   39.277 0.392 4.969  19.270  

 ̂    0.861 16.480 65.292 0.537  8.512   33.432 0.377  4.507  17.411  

 ̂(     ) 0.669  11.584 45.695 0.489  7.354  28.794  0.366  4.293 16.564  

       

N 20 50 100 

  1 5 10 1 5 10 1 5 10 

 ̂    3.683 87.229  348.31 0.992  20.002  79.405  0.584  9.759  38.433  

 ̂    1.209 25.134 99.893 0.835  16.034  63.532  0.556  9.075  35.694  

 ̂     3.647 86.330 344.714 0.99  19.906  79.021  0.583 9.732  38.325 

 ̂    0.740 12.960 51.148 0.623  10.629  41.896  0.475  6.992   27.354 

 ̂   3.011 70.407 281.02 0.921  18.194  72.172  0.563   9.247  36.384  

 ̂    0.934 18.032 71.465 0.730  13.324  52.680 0.515   7.966  31.245  

 ̂(     ) 0.697 I1.835 46.642 0.613  10.366  40.866 0.473  6.931  27.11 

       

N 20 50 100 

  1 5 10 1 5 10 1 5 10 

 ̂    19.703 487.731 1952.318 3.935   93.531  373.520  2.047  46.351  194.798   

 ̂    1.135 21.770 86.276 1.373  29.237  116.315  1.205  25.190  100.141  

 ̂     19.436 481.062 1923.644 3.897 92.584 369.733   2.033  45.992  183.363   

 ̂    0.691 9.528 37.122 0.828   14.362  56.719 0.772   13.904  54.928  

 ̂   14.742 363.633 1453.916 3.227  75.809  302.628  1.799   39.636  157.854   

 ̂    0.855 14.148 55.710 1.047  20.748  82.313  0.973  19.175  76.045   

 ̂(     ) 0.644 8.156 31.653 0.758 13.025  51.360 0.740  13.086  51.648 
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Table 3. Estimated MSE values of the new estimator and various two-parameter estimators when p 

=6,   = (0.8, 0.1, 0.6, 0.15, 0.19, 0.05). 
 

      

N 20 50 100 

  1 5 10 1 5 10 1 5 10 

 ̂    1.517 33.072 131.680 0.725  13.297  52.583 0.393 4.99  19.356  

 ̂    1.279 27.093 107.779 0.703  12.748  50.389  0.392 4.962  19.244 

 ̂     1.511 32.923 131.085 0.724 13.269  52.472  0.493 4.986  19.341 

 ̂    0.938 20.459 73203 0.601 10.454  41.129 0.377 4.591 17.759  

 ̂   1.405 30.264 120.447 0.714 12.773  50.489 0.390 4.929  19.070 

 ̂    1.105 22.659 90.006 0.650 11.334  44.722  0.377 4.593  17.396 

 ̂(     ) 0.922 18.052 71.573 0.629 10.381 40.927 0.375 4.588 17.746 

      

N 20 50 100 

  1 5 10 1 5 10 1 5 10 

 ̂    2.874 66.991 267.358 1.175  24.548  97.588 0.570  9.421  37.079  

 ̂    1.759 39.02 155.443 1.063  21.728  86.308  0.562  9.221  36.278  

 ̂     2.854 66.508 265.425 1.172  24.461  97.239 0.570  9.407  37.022  

 ̂    1.127 22.961 91.181 0.826  15.772 62.477  0.520  7.945  31.173  

 ̂   2.511 57.911 231.031 1.109  22.898  90.986  0.560  9.154  36.011  

 ̂    1.416 30.288 120.501 0.943  18.669  74.060 0.528  8.287 32.530  

 ̂(     ) 1.083 21.831 86.657 0.817 15.550 61.587 0.511 7.924 31.089 

       

N 20 50 100 

  1 5 10 1 5 10 1 5 10 

 ̂    5.660 136.664 546.048 2.043  46.482  184.324 0.925 18.291  72.558  

 ̂    2.075 46.692 186.105 1.561  34.185  136.132  0.875  17.032  67.566  

 ̂     5.607 148.33 540.712 2.032 45.973  184.072   0.923 18.241  72.358  

 ̂    1.228 25.046 99.470 1.064  21.646    85.964  0.722  13.164  52.048  

 ̂   4.663 111.694 446.159 1.850  41.399  164.991  0.887  17.342  68.765  

 ̂    1.589 34.329 136.628 1.309  27.774  110.477  0.795  14.942  59.148  

 ̂(     ) 1.155 23.187 92.028 1.037 20.951 83.184 0.718 13.052 51.596 

       

N 20 50 100 

  1 5 10 1 5 10 1 5 10 

 ̂    28.462 706.699 2826.192 8.789 212.657   850.024  3.757  89.087  355.745  

 ̂    2.157 47.236 188.116 2.448    56.091  223.723  2,152  48.845  194.760  

 ̂     28.085 697.267 2788.460 8.699  251.391   842.960 4.730  88.494  353.009  

 ̂    1.178 21.537 85.167 1.354    9.0224  108.160  1.305  27.159  108.940  

 ̂   21.442 531.082 2123.695 7.006  170.277   680.499  3.244  76.359  334.352  

 ̂    1.561 32.676 127.777 1.796   39.944 157.111   1.699  37.286  150.485  

 ̂(     ) 1.078 19.805 76.422 1.221   26.555 97.477 1.244 25.601 103.400 

 

It is observed in Tables 2 and 3 that the new proposed two-parameter estimator 

 ̂(     ) is superior to  ̂    and other two-parameter estimators such as 

 ̂   ,  ̂    ,  ̂   ,  ̂  ,  ̂    because it possesses minimum MSE when compared to 
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others. The new proposed estimator performs better for a different number of independent 

variables and various levels of correlation among independent variables (  

                 ). It also performs better when n is small (n = 20) and for various 

combinations of variance (  ) of the error term. The new estimator is an unbiased 

estimator that overcomes the problem of multicollinearity and can be used in the place of 

other estimators considered in this study. 

  

4. Conclusion 

 

A new estimator is proposed, called the Unbiased Modified Two-Parameter (UMTP) 

estimator, based on prior information to minimize the effect of multicollinearity for the 

linear regression model. A Monte Carlo simulation study across different combinations of 

d, k, n, p,   and   are carried out, and the MSE criterion was used to examine the 

performance of the new estimator over the OLS and other existing two-parameter 

estimators reviewed in this st udy. Real-life data with multicollinearity problems were 

also used to evaluate the performance of the new estimator. It was observed that the newly 

proposed Unbiased Modified Two-Parameter (UMTP) estimator performs better than the 

existing estimators in the presence of multicollinearity. 
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