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Abstract 

The laminar forced convection MHD Couette-Poiseuille flow of a viscous incompressible 

fluid with the viscous and Joule dissipations has been studied.  Two different orientations of 

the wall thermal boundary-conditions have been considered, namely: the constant heat-flux 

at the upper moving plate with the adiabatic stationary lower plate and the constant heat flux 

at the stationary lower plate with an adiabatic moving upper plate. The governing equations 

are solved analytically. It is observed that the fluid velocity increases near the stationary 

plate and it decreases near the moving plate with an increase in magnetic parameter. The 

temperature field is significantly affected by the modified Brinkman number. The fluid 

temperature increases when the lower plate is adiabatic and the upper plate is at positive 

constant heat flux while it decreases in case the lower plate is at negative constant heat flux 

and the upper plate is adiabatic with an increase in modified Brinkman number for the 

combined effects of viscous and Joule dissipations. Further, the fluid temperature decreases 

for positive heat flux case while it increases for negative heat flux case with an increase in 

either magnetic parameter or velocity parameter when the combined effects of viscous and 

Joule dissipations are taken into account.  

Keywords: MHD; Couette-Poiseuille flow; Viscous dissipation; Joule dissipation and 

modified Brinkman number.  
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1.   Introduction 

Couette-Poiseuille flow in the presence of transverse magnetic field between two plane 

parallel plates is an interesting phenomenon. For many decades engineers have studied 

such flows for both steady and unsteady cases. This flow is important in many material-

processing applications such as extrusion, metal forming, continuous casting as well as 

wire and glass fiber drawing. The viscous dissipation changes the temperature distribution 

by playing a roll like an internal heat generation source in the energy transfer. This heat 

source is caused by the shearing of fluid layers. The merit of the effect of viscous 

dissipation depends on whether the plate is being cooled or heated. Apart from the viscous 

dissipation in MHD flows, the Joule dissipation also acts as a volumetric heat source. 

Singer [1] has assessed the unsteady free convection heat transfer with 
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magnetohydrodynamic effects in a channel regime. The effect of Joule heating on MHD 

combined heat and mass transfer flow of an electrically conducting viscous 

incompressible fluid past an infinite plate has been considered by Hossain [2]. Sacheti et 

al. [3] have discussed an exact solution for unsteady magnetohydrodynamic free 

convection flow with constant heat flux. El-Hakiem et al. [4] have studied Joule heating 

effects on magnetohydrodynamic free convection flow of a micro-polar fluid. Davaa et al. 

[5] have numerically studied fully-developed laminar heat transfer to non-Newtonian 

fluids flowing between parallel plates with the axial movement of one of the plates with 

an emphasis on the viscous dissipation effect. Hashemabadi et al. [6] have obtained an 

analytical solution to predict the fully-developed, steady and laminar heat transfer of 

viscoelastic fluids between parallel plates. Aydin [7,8] has investigated the effects of 

viscous dissipation on the heat transfer in a forced pipe-flow of different types. Aydin and 

Avci [9] have studied the viscous dissipation effects on the heat transfer in a Poiseuille 

flow. Duwairi [10] has presented the effects of Joule heating and viscous dissipation on 

the forced convection flow in the presence of thermal radiation. Aydin and Avci [11] have 

analytically examined laminar forced convection in a Couette-Poiseuille flow of a 

Newtonian fluid with constant properties by taking the viscous dissipation into account.  

Analysis of laminar heat transfer in micro-Poiseuille flow has been investigated by Aydin 

and Avci [12].  Umavathi et al. [13] have studied the magnetohydrodynamics Couette-

Poiseuille flow and heat transfer in an inclined channel. Tso et al. [14] have obtained 

viscous dissipation effects of power- law fluid within parallel plates with constant heat 

fluxes. Combined effects of Hall currents and radiation on MHD free convective Couette  

flow in a rotating system have been studied by Sarkar et al. [15]. Sheela-Francisca et al. 

[16] have investigated the heat transfer with viscous dissipation in Couette-Poiseuille flow 

under asymmetric wall heat fluxes. Mecili and Mezaache [17] have examined slug flow 

heat transfer in parallel plate microchannel including slip effects and axial conduction. 

Jamalabadi and Park [18] have investigated thermal radiation, Joule heating, and viscous 

dissipation effects on MHD forced convection flow with uniform surface temperature. 

Omowaye and Koriko [19] have investigated Steady Arrhenius Laminar free convective 

MHD flow and heat transfer past a vertical stretching sheet with viscous dissipation. 

Effect of Hall Current on Unsteady MHD Couette Flow and Heat Transfer of Nanofluids 

in a Rotating System have been studied by Ali et al. [20]. Developing the laminar MHD 

forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed 

the uniform heat flux has been obtained by Karimipour et al. [21]. Kuiry and Bahadur 

[22] have studied an unsteady MHD flow of a Dusty Visco-elastic fluid between parallel 

plates with exponentially decaying pressure gradient in an inclined magnetic field. Reddy 

et al. [23]  have discussed an MHD free convection heat transfer couette flow in rotating 

system. Ramesh [24] has studied effects of viscous dissipation and Joule heating on the 

Couette and Poiseuille flows of a Jeffrey fluid with slip boundary conditions. 

Mathematical Model and Solution for an Unsteady MHD Fourth Grade Fluid Flow over a 

Vertical Plate in a Porous Medium with Magnetic Field and Suction/Injection Effects have 

been investigated by Fenuga et al. [25]. Uwaezuoke [26] has studied Laminar forced 
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convection heat transfer in Couette-Poiseuille flow with viscous dissipation effects on 

asymmetric wall heat fluxes. Recently, Uwaezuoke and Ihekuna [27] have discussed 

Laminar forced convection with viscous dissipation in Couette-Poiseuille flow of Pseudo-

Plastic fluids. 

Our present paper is devoted to study the laminar MHD Couette-Poiseuille flow of a 

viscous incompressible fluid with a simultaneous pressure gradient and the axial 

movement of the upper plate with the viscous and Joule dissipations.  Three different 

conditions of the upper plate are considered: (i) stationary, (ii) moving in the positive z-

direction and (iii) moving in the negative z-direction. The effects of the magnetic 

parameter, velocity parameter and the modified Brinkman number on the fluid velocity 

and temperature distributions are discussed for two different thermal boundary conditions. 

 

2.  Formulation of the Problem and Its Solutions 

 

Consider a steady hydromagnetic and thermally developed laminar flow of a viscous 

incompressible fluid between two infinite parallel plates separated by a distance h  in the 

presence of a transverse magnetic field on taking viscous and joule dissipation into 

account. The upper plate is assumed to move at a uniform velocity 
0u  in the direction of 

the flow while the lower one is stationary. Choose a cartesian co-ordinates system with z

-axis along the lower plate in the direction of flow, the y -axis is normal to the plates. A 

uniform magnetic field of strength 
0B  is applied perpendicular to the plates. Since the 

plates are infinitely long, all physical variables, except pressure, depend on y  only. The 

axial heat-conduction in the fluid and in the plates is neglected. 

 
Fig. 1. Geometry of the problem.  

 
The momentum equation in the z -direction can be written as  

22
0

2

1
= ,

Bp u
u

z y




 

 


 
 (1) 

The equation of energy including viscous and Joule dissipations is given by  
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where u  is the fluid velocity in the z -direction, T  the fluid temperature,   the kinematic 

coefficient of viscosity,   the fluid density, k  the thermal conductivity, pc  the specific 

heat at constant pressure and   the coefficient of viscosity. 

The boundary conditions for velocity field are  

0= 0 a = 0; = a = .u t y u u t y h  (3) 

Introducing the non-dimensional variables  

1 = , = ,
m

yu
u

u h
  (4) 

 equation (1) becomes  
2

1 2

12
= ,

d u
M u C

d
   (5) 

 where 
2 2

02 =
B h

M



 is the magnetic parameter, 

2

=
m

ph
C

u z

 
  

 
 a constant and 

mu  the 

mean velocity. 

The boundary conditions for 
1u  are  

1 1= 0 a = 0; = a =1,u t u t    (6) 

 where 
0

=
m

u

u
  is the velocity parameter. 

The constant heat-flux at the plate is assumed as  

 

=

= ,h

h

T
k q







 (7) 

 where 
hq  is positive when its direction is along the fluid in case of the hot plate, 

otherwise it is negative in case of the cold plate. 

For the uniform plate heat-flux case  

= .
hdTT

z dz




  (8) 

 
Introducing the non-dimensional temperature  

= ,
h

h

T T

q h

k


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 equation (2) becomes  
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where =
m h

h

u kPrh T
a

q z




, =

pc
Pr

k


 the prandtl number, 

2

=
2

m

h

u
Br

hq


 the modified Brinkman 

number and   is a constant, = 0  or 1  according as Joule dissipation is neglected or 

taken into account. 
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The solution of the equations (5) subject to the boundary conditions (6) is  

 

1

sinh (1 cosh ) sinh (1 )sinh sinh
= 1 .

sinh 2(1 cosh ) sinh sinh sinh
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 (11) 

 

If 2 = 0M , then the equation (11) is identical with the equation (5) of Aydin and 

Avci [11]. 

Two different forms of thermal boundary conditions are applied. These two different 

cases are separately discussed as follows: 

 

2.1.  Case-A: Consider a constant positive heat-flux at the upper moving plate with an 

adiabatic lower stationary plate.  

In this case, the dimensionless thermal boundary conditions are  
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On the use of equation (11), the solution of equation (10) subject to the thermal 

boundary conditions (12) is   
2
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Without magnetic field ( 2 = 0M ) and without joule dissipation ( 0  ) into account 

the equation (13) is same as the equation (12) of Aydin and Avci [11]. 

 

2.2.  Case-B: Consider a constant negative heat-flux at the lower stationary plate with an 

adiabatic upper moving plate.  

In this case, the dimensionless thermal boundary conditions are  
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The solution of equation (10), on using (11), subject to the boundary conditions (15) 

is   
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 and a , 
1A , 

2A  and 
1C  are given by (14). 

Without magnetic field ( 2 = 0M ) and without joule dissipation ( 0  ) into account 

the equation (16) is identical with the equation (14) of Aydin and Avci [11]. 

 

3. Results and Discussion 

 

We have presented the non-dimensional velocity and temperature distributions for several 

values of the magnetic parameter 2M , the velocity parameter   and the modified 

Brinkman number Br  in Figs. 2-18. Figs. 2 and 3 represent the fluid velocity 
1 ( )u   

against   for several values of the magnetic parameter 2M  and the velocity parameter  . 

Interestingly one can make a note from Fig. 2 that the fluid velocity 
1 ( )u   increases in the 

region 0 < 0.41   and then changes its behaviour and decreases for > 0.41  with an 

increase in magnetic parameter 2M . That means magnetic field acts as an acting body 

force in the region 0 < 0.41 
 
but in general a magnetic field normal to the flow 

direction has the tendency to slow down the movement of the fluids due to opposite 

direction of Lorentz force which is shown for > 0.41 .  Magnetic field can not regulate 

the flow field at  0.41  .  The practice of magnetic fields has effectively been applied to 

monitoring the fluid flow in many engineering applications. It is seen from Fig.3 that the 

fluid velocity 
1 ( )u   decreases in the region 0 < 0.68   and it has an increasing trend 

for > 0.68  with an increase in velocity parameter  . It is also noticed from Fig. 3 that 

if the upper plate is moving in the opposite direction to the flow field then the reverse 

flow occurs near the upper plate. 
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Fig. 2. Velocity profiles for 

2M when =1  

 
Fig. 3. Velocity profiles for   when 

2 = 5M   

 
Figs. 4-18 represent the fluid temperature ( )   against   for several values of the 

magnetic parameter 2M , the velocity parameter   and the modified Brinkman number 

Br  for the case-A (positive  heat-flux) and case-B (negative heat-flux). The bulk fluid is 

heated for positive heat-flux and it is cooled for negative heat-flux.  The comparision of 

the effects of physical parameters on the temperature fields without joule dissipation (

0  ) and with joule dissipation ( 1  ) respectively has been shown with the helps of 

graphs. Fig.4 reveals that the fluid temperature ( )   increases for the case-A while it 

decreases for the case-B with different magnitude of upper plate velocity (indicating by 

velocity parameter  ) in the absence of viscous dissipation ( = 0Br ).  Positive values of 

velocity parameter   represents the velocity movement of the upper plate is in the 

positive z-direction, while the negative values indicates in the opposite direction, 0   
means the upper plate is stationary.  It is known that the viscous dissipation behaves like 

an energy source due to viscosity of the fluid  and  Joule dissipation behaves like an 

energy source due to magnetic field.  Both of these dissipation  enhance  the temperature 

of the bulk fluid.  For the positive heat flux case at the plate, the increasing viscous 

dissipation will result in decreasing temperature-differences between the plate and the 

bulk fluid whereas  for the negative heat-flux case at the plate, it will increase temperature 

differences between the plate and the bulk fluid which is the main driving mechanism for 

heat transfer from plate to fluid. It is seen from Figs. 5, 7 and 9 that for case-A the fluid 

temperature ( )   increases in the vicinity of the lower plate and it decreases away from 

the stationary plate for enhance of the viscous dissipation only (increase of Br ) whereas it 

increases for the combined effects of viscous and Joule dissipations with an increase in 

modified Brinkman number Br . In case-B for negative heat-flux Figs. 6, 8 and 10 

demonstrate that the fluid temperature ( )   decreases with an increase in modified 

Brinkman number Br  either for only viscous dissipation or both viscous and Joule 

dissipations taken into account. It is interesting to see that the fluid temperature 

distribution with joule dissipation effect ( 1  ) is in general greater than the fluid 
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temperature distribution without joule dissipation ( 0  ). This is a good agreement of 

joule dissipation effect in fluid temperature distribution. It is seen from Fig.11 that for 

positive heat-flux, the fluid temperature ( )   increases for only viscous dissipation effect 

whereas  ( )   decreases  for the combined effects of viscous and Joule dissipations with 

an increase in velocity parameter  . It is observed from Fig12 that  for negative heat-flux, 

the fluid temperature ( )   decreases for only viscous dissipation effect whereas  ( )   

increases  for the combined effects of viscous and Joule dissipations with an increase in 

velocity parameter  . It means that joule dissipation effect has a influence to reverse  the 

effects of upper plate velocity on the fluid temperature distribution.  It is observed from 

Figs. 13, 15 and 17 that for positive heat-flux, the fluid temperature ( )   increases with 

an increase in magnetic parameter 2M  for only viscous dissipation and the reversed 

effects are shown for the combined effects of viscous and Joule dissipations. It is also 

observed from Figs. 14, 16 and 18 that for negative heat-flux, the fluid temperature ( )   

decreases with an increase in magnetic parameter 2M  for viscous dissipation only and the 

reversed effects are shown for combined effects of viscous and Joule dissipations. 
 

 
Fig. 4. Temperature profiles for  when 

2 = 5M , = 0Br    

 
Fig. 5. Temperature profiles for Br when 

2 = 5M , = 1   for case-A. 

 
Fig. 6. Temperature profiles for Br when 

2 = 5M , = 1   for case-B. 
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Fig. 7. Temperature profiles for Br when

2 = 5M , = 0  for case-A. 

 
Fig. 8. Temperature profiles for Br when 

2 = 5M , = 0  for case-B. 
  

 
Fig. 9. Temperature profiles for Br when  

2 = 5M , =1  for case-A.   

 
Fig. 10. Temperature profiles for Br   when  

2 = 5M , =1  for case-B.  

 
Fig. 11. Temperature profiles for    when  

2 = 5M , = 0.01Br  for case-A.   

 
Fig. 12. Temperature profiles for    when  

2 = 5M , = 0.01Br  for case-A.   
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Fig. 13. Temperature profiles for 

2M   when  

= 1  , = 0.01Br  for case-A.   

 
Fig. 14. Temperature profiles for 

2M  when  

= 1  , = 0.01Br  for case –B. 

 
Fig. 15. Temperature profiles for 

2M  when  

= 0 , = 0.01Br  for case-A.   

 
Fig. 16. Temperature profiles for 

2M  when  

= 0 , = 0.01Br  for case-B. 

 
Fig. 17. Temperature profiles for 

2M  when  

=1 , = 0.01Br  for case-A. 

 
Fig. 18. Temperature profiles for 

2M  when 

=1 , = 0.01Br  for case-B. 
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4. Conclusion  

 

The laminar forced convection MHD Couette-Poiseuille flow of a viscous incompressible 

fluid between plane parallel plates with a simultaneous pressure-gradient and the 

movement of the upper plate  with viscous and Joule dissipations into account has been 

investigated. Two different thermal boundary-conditions have been considered in Case A 

and Case B.  In Case A, a constant heat-flux at the upper plate with an adiabatic lower 

plate and in Case B, a constant heat-flux at the lower plate with an adiabatic upper plate 

have been considered respectively. It is found that the magnetic field accelerates the fluid 

velocity in the vicinity of the stationary plate and it retards the fluid velocity near the 

moving plate. The fluid temperature field is significantly affected by the modified 

Brinkman number. The fluid temperature increases in case the lower plate is adiabatic and 

the upper plate is at positive constant heat flux while it decreases when the lower plate is 

at negative constant heat flux and the upper plate is adiabatic with an increase in modified 

Brinkman number for combined effects of viscous and Joule dissipations. Further, the 

magnetic field tends to reduce the temperature field for positive heat flux case while it has 

a tendency to enhance the temperature field for negative heat flux case when combined 

effects of viscous and Joule dissipations are taken. The velocity of the upper plate in z-

direction or opposite to the z-direction involves significant effects on temperature 

distribution. It is interesting to note that viscous and Joule dissipations behave like an 

energy source which increases the temperature of the bulk fluid. 
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