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Abstract 

The paper deals with an M/M/2 Queueing Model with working vacations and reneging of 

customers due to impatience. The matrix geometric method is used to find the distribution 

of the number of customers in the system. A cost function is constructed to obtain the 

optimal value of the service rate to optimize (minimize) the cost function using the 

Quadratic Fit Search Method (QFSM). Further, the effects on the system's performance 

measures using numerical analysis and graphical representation are studied. 

Keywords: Queue; Working vacation; Optimization; Matrix geometric method; Quadratic fit 

search method. 
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1.   Introduction 

In many real-life situations, the queueing problem can be seen in our day-to-day life, such 

as in banks, hospitals, airlines, telecommunication, etc. Many queueing models are 

designed to provide better facilities to customers in a short period with minimum cost. To 

receive service, customers form a queue, and when it gets long, customers start leaving 

from queue due to impatience. The customer either leaves the queue after staying in the 

queue for some time (Reneging) or decides not to join the queue (Balking), or discourages 

arrivals. In the Discouraged arrival queueing system, customers, due to long queues, get 

impatient and get discouraged from joining the queue. P. Vijaya Laxmi and Kassahun [1] 

studied multi-server queues with working vacations, reneging of customers, and 

discouraged arrivals and obtained the system's steady state and steady probabilities. V. 

Goswami [2] studied a discrete-time queue with reneging, balking, and working vacations 

and constructed a cost model to optimize service rate at a minimum cost using the 

quadratic fit search method. The concept of reneging and discouraged arrivals are used in 

this paper. 

 A rich literature is available on queueing theory on the concept of working vacations, 

and this paper also focuses on finding new results using working vacations. In working 

vacation, the server, instead of no service, provides the service at a lower rate than during 
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regular busy periods. If a customer is in the queue, the server interrupts the vacation and 

starts working with the normal service rate. Then if the queue gets empty, the server takes 

another vacation. This vacation policy is called a multiple working vacation. Servi and 

Finn [3] studied and analyzed the queueing model using the concept of multiple working 

vacations. Baba [4] analyzed a GI/M/1 queueing model with working vacations and 

obtained the steady state distribution and sojourn time of the customers for this model.   

 In this paper, the matrix geometric method is used to obtain the distribution of the 

number of customers in the system. Zhang and Xu [5] derived the steady state distribution 

of the number of customers in the M/M/1 queueing model with multiple working 

vacations and N-policy. Yang et al. [6] considered the F- policy M/M/1/K/WV queueing 

system and obtained the steady state probability vector using the matrix geometric 

method. Further, optimization is investigated using the direct search method and the 

Quasi-Newton method. Laxmi et al. [7] analyzed a multiple working vacation queue 

under the N policy with reneging, balking, and vacation interruption. They obtained 

steady-state length distribution at arbitrary epochs, and cost analysis was carried out using 

the quadratic fit search method and particle swarm optimization. Chakravarthy et al. [8] 

studied MAP/PH/1 queueing model using the matrix geometric method under certain 

conditions like server breakdown, vacations, repairs, and backup servers and established 

results for steady-state analysis with illustrative examples. Gupta and Kumar [9] 

investigated an M/M/1 retrial queueing model with working vacation and vacation 

interruption due to breakdown and repair. Mean system size and probabilities in various 

server states are obtained using the probability-generating function technique. Further, an 

optimal value of slow service rate is estimated using a quadratic fit search approach. 

Bouchentouf et al. [10] analyzed an M/M/1 queueing model under single and multiple 

vacation policies with balking, reneging, and multi-phase random environment and 

obtained steady-state probabilities using the probability generating function method. 

 In this paper, a cost model is constructed to find the minimum cost function for the 

optimal value of regular busy period service rate using the quadratic fit search method 

(QFSM). The rest of the paper is arranged in the following sequence: Section 2 describes 

the queueing model used in this paper. Section 3 deals with the steady-state of the model, 

steady-state probabilities, and the rate matrix R is derived. In section 4, some system 

performance measures are established for this model, followed by its numerical and 

graphical analysis in section 5. In section 6, a cost model is constructed, and for the 

optimization of the cost function, an algorithm of the quadratic fit search method is 

discussed and applied to the cost function. The paper is concluded in section 7. 

 

2. Description of the Model 

 

An M/M/2 Queueing Model with working vacations and impatient customers is 

considered in this paper. Whenever the size of the queue increases, customers are 

discouraged and reneged from the system, which results in the loss of the customer. The 

arrivals of customers follow a Poisson distribution with parameter    where 
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   {
                          

 

        
           

                                      (2.1) 

There are 2 identical servers available and infinite waiting space for the customers. The 

customer is served immediately if the server is available. When the system gets empty, 

both servers go on vacation. If a customer arrives for service, the server interrupts the 

vacation and serves the customer, known as the working vacation period. In working 

vacation, the server serves at a lower service rate in comparison to regular busy periods. 

Let the service rate during regular busy periods be    and during working vacation 

periods, be    where      . Both the service rates are exponentially distributed. On 

completion of vacation, if the server finds an empty queue, then again server goes for 

another working vacation. If the server finds any customer, then it starts serving with a 

regular busy service rate   . Let the vacation period be exponentially distributed with 

parameter   and the probability of reneging of customers due to impatience be    Let 

reneging time be exponentially distributed with parameter     where 

   {
                                         
    {   }               

                                (2.2) 

where N in equations (2.1) and (2.2) is a fixed large integer. Here, all distributions are 

independent, including inter-arrival time, service time, reneging time, and vacation time. 

Further, service to the customers is provided based on First Come, First Served. 

Let      denote the number of customers in the system at time   and state variables are  

     {
                                           

                                              
 

Then, the Markov process denoted by {         } with the state space 

  {                            

Here state       shows that server is in a working vacation state when there are   

customers in the queue, and state       shows that the server is in a regular busy period. 

Further, state (1,0) shows that the system is closed as      i.e., there is no customer in 

the system for the service. 

In lexicographical sequence, the state transition matrix given by Neuts [11] is written as 
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3. Steady State Analysis of the Model 

 

Theorem: The state transition rate matrix R satisfies the quadratic equation  

                                                      (3.1) 

      has a non-negative minimal solution given by 
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Proof: The same theorem was proved for the M/M/1 Model under repair in the paper [12]. 

Substituting the values of            from equations (2.4), (2.5), and (2.6), respectively 

into equation (3.1) and solving it for each interval like      ,         and 

   , the results of the theorem are obtained. 

   

 3.1. Steady-state probabilities 

 

Let steady-state probability be denoted by      which means that the system is in state 

   where      ), and   is the number of customers in the system. 

Let        and    [            ]               

In matrix form, 

     

where 

                              

and   is given by equation (2.3) 

From above, we have the following system of equations 

                                                                             (3.1.1) 
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                                                                            (3.1.2) 

                                                                         (3.1.3) 

                                                                              (3.1.4) 

where            

As we know that the sum of probabilities is always equal to one. 

Hence, we can write 

    ∑     ∑      

 

   

 

   

 

          This implies, 

         ∑     ∑    

 

   

 

   

 

where 

        
           and          

           

Hence, by using equations (3.1.1) to (3.1.4) and the probability law of sum, we  

         obtain 

        
              

and                         

with  

   [
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]                                  (3.1.5) 

 

4. System Performance Measures 

 

The following system performance measures for this queueing system are obtained here in 

this section. 

(i) The probability that the system is in a regular busy period (    and the probability 

that the system is in a working vacation period      is given by 

   ∑                   ∑     

 

   

 

   

 

(ii) Expected system size      is given by 

             ∑       ∑      
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where     is the expected system size during the working vacation period and      is the 

expected system size during the regular busy period. 

(iii) Expected number of customers served      be 

             

(iv)  The expected waiting time in the system (    be 

   
  

 
 

(v) The average Loss Rate (LR) is given by 

LR= Average Discouragement Rate+ Average Reneging Rate 

 ∑            ∑    

 

   

 

   

      

where            

 

5. Numerical Analysis 

 

In this section, the effect of some parameters on various system performance measures of 

the queueing system will be studied. The data used is randomly chosen for the numerical 

analysis. 

Let                                   

 
Table 5.1. Effect of 𝛌 on Various Performance Measures. 
 

𝛌             LR 

30 0.1471 3.4892 0.1130 6.8123 2.5832 

35 0.1428 3.5324 0.1092 6.7098 3.9621 

40 0.1396 3.8294 0.1051 6.6941 6.4034 

45 0.1311 4.0121 0.1033 6.5824 9.1124 

50 0.1258 4.1111 0.1026 6.5723 11.2348 

55 0.1201 4.2129 0.1005 6.4296 13.6141 

60 0.1183 4.3648 0.0985 6.3891 16.8132 

65 0.1153 4.5621 0.0980 6.3342 18.9189 

70 0.1129 4.6634 0.0978 6.3041 21.3481 

 

Let                                

 
Table 5.2. Effect of    on various performance measures. 
 

                LR 

4 0.1549 4.6015 0.1261 3.0421 4.9724 

5 0.1560 4.5389 0.1250 3.1480 4.9428 

6 0.1579 4.5012 0.1241 3.1562 4.9132 

7 0.1591 4.4987 0.1235 3.1791 4.8920 

8 0.1601 4.4732 0.1226 3.1820 4.8631 

9 0.1621 4.4720 0.1218 3.1947 4.7620 

10 0.1638 4.4719 0.1215 3.2012 4.5265 
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From Table 5.1, it is evident that an increase in the arrival of customers (𝛌) increases 

the expected system size (  ) and average loss rate (LR). It is also found that an increase 

in arrival rate has no significant impact on the values of               The results are 

shown graphically in Figs. 5.1 and 5.2 

 From Table 5.2, it is evident that, due to an increase in the service rate in the regular 

busy period, there is an increase in the probability of an empty state       which is logical 

as a higher service rate will improve the speed of service, customers will get service in a 

short period, and so the probability of an empty system will increase. Further, the 

expected queue size (    and expected waiting time in the system (    decreases due to an 

increase in the service rate. Due to the improved service rate, there is also a decrease in 

the average loss rate (LR). Effects of the average service rate in the regular busy periods 

are shown graphically in Figs. 5.3 and 5.4. 

 
Fig. 5.1. Effect of arrivals (𝛌) on expected system Size (  ). 

 
 

Fig. 5.2. Effect of arrivals (𝛌) on average loss rate (LR). 
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Fig. 5.3. Effect of average service rate in a regular busy period        on expected system size (  ). 

 
Fig. 5.4. Effect of average service rate in the regular busy period on average loss rate. 

 

6. Cost Model 

 

Practically, it is always seen that minimization of operating cost is demanded in each and 

every application of queueing models. Now, the following cost factors are applicable to 

construct a total expected cost function per unit of time in this queueing model. 

The total expected cost function per unit of time is given by 

                         

(Here, in the cost function, 2 is used as there are 2 servers) 

Where 

          =  Cost to hold each customer per unit of time in the system 

           Cost to serve each customer per unit of time 
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          =  Cost of losing customers per unit of time 

           Cost per server 

The main objective of this cost model is to obtain the minimum total expected cost per 

unit of time for the optimum value of   which is   . To achieve this objective, an 

optimization technique is used, which is known as Quadratic Fit Search Method (QFSM).  

 

6.1. Algorithm for QFSM 

 

In this algorithm, all other parameters are kept constant. The following steps are involved 

in this algorithm: 

 

Step 1: Start by selecting a 3-point pattern              with stopping tolerance   and set 

the iteration      

Step 2: Approximate optimal solution is    if |     |    

Step 3: Calculate the optimum value   which is the quadratic fit given by 

  
 

 
 
        

    
           

    
           

    
  

                                      
  

If     , then move to step 5, and if     , then move to step 6. 

Step 4: Now   must overlap with current    . If    is away from     than from   , adjust 

left      
 

 
 and move to step 5. Otherwise, perturb right       

 

 
 and  

move to step 6. 

Step 5: Left: If       is superior than      (i.e.; less in case of minimization and greater  

in case of maximization), then update       , otherwise replace           . 

Another way, move from iteration   to     and return to step 2. 

Step 6: Right: If       is superior than      (i.e., less in case of minimization and 

greater in case of maximization), then update      , otherwise replace           . 

Another way, move from iteration   to     and return to step 2. 

 
Table  6.1. Search for optimum service rate (   . (𝛌                                   . 
 

                  

1 5.5 5.75 6.0 5.78 315.036 

2 5.75 5.78 6.0 5.77324 315.036 

3 5.75 5.77324 5.78 5.77321 315.036 

4 5.75 5.77321 5.77324 5.77321 315.036 

5 5.75 5.77321 5.77321 5.77322 315.038 

6 5.75 5.77321 5.77322 5.77321 315.039 

7 5.77321 5.77321 5.77322 5.77320 315.039 

8 5.77321 5.77321 5.77322 5.77320 315.039 

 

It is clear from Table 6.1 that using QFSM, the minimum total expected cost       = 

315.039 is obtained after 8 iterations at the optimum regular busy service rate     

5.77320. 
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7. Conclusion 

 

An M/M/2 queueing model with working vacations and reneging of customers is studied 

in this paper. A matrix geometric method is used to find the model's steady-state and 

steady-state probabilities. Further, the various system performance measures are also 

analyzed numerically and graphically. The result shows that an increase in arrival rate 

increases the expected system size and average loss rate, whereas an improved service rate 

reduces the expected queue size, expected waiting time, and average loss rate, although 

the probability of an empty state increases. A cost function is also constructed to obtain 

the optimal (minimum) cost function corresponding to the optimal service rate through 

Quadratic Fit Search Method (QFSM). The investigation shows that after some iterations, 

the minimum total expected cost is obtained at the optimum regular busy service rate. 
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