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Abstract 

In the present paper, we considered Bianchi type-II space-time in the presence of a 

macroscopic body in the self-creation theory formulated by Barber. The relation between 

metric coefficient and state equation has helped present the exact cosmological model in 

theory. The features, stability, and some physical & kinematical properties of the obtained 

model are also discussed. 
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1.   Introduction 

Einstein's general theory of relativity is one of the most beautiful structures in theoretical 

physics. It describes the successful theory of gravity in terms of geometry. It also serves 

as the basis of the universe model. Two "self-creation" theories based on two sets of 

general relativity field equations, including matter and scalar fields, are proposed by 

Barber [1]. This theory explained that the gravitational relationship of Einstein's field 

equations could be a variable scalar in the space-time manifold. The second theory 

proposed by Barber is a modification of general relativity, including continuous creation 

and being within the observable range. Doing so changed the general theory of relativity, 

making it a variable theory. The scalar field is not directly affected by gravity but only 

shares the matter tensor with the scalar, and the scalar acts as an anti-gravitational 

constant. 

The Barber field equation in the second self-creation theory can be expressed as  

    
 

 
         

      (1) 

And 

         
   

   

 
  (2) 

Where   is the Barber's scalar,     is the energy-momentum tensor,     is the invariant 

D'Alembertian, T is the trace of the energy-momentum tensor     and   is a coupling 
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constant. In the limit    , this theory approaches Einstein's general theory of relativity 

in every respect. 

 Due to the nature of space-time, Barber's scalar   is a function of 't.' Venkateswarlu 

et al. [2] presented Bianchi type I cosmological models in the self-creation theory of 

gravitation for perfect fluid distribution. Shanthi et al. [3] investigated Bianchi Type-II 

and III models in self-creation cosmology. Pawar et al. [4] discussed the magnetized 

Bianchi type IX cosmological model in Barber's second self-creation theory. Kumar et al. 

[5] investigated the field equations for a five-dimensional Kaluza-Klein model in the 

presence of bulk viscosity within the framework of Barber's second self-creation theory. 

Vinutha et al. [6] studied the Dynamics of FRW type Kaluza-Klen mhrde cosmological 

model in self-creation theory. Hegazy [7] investigated Bulk Viscous Bianchi Type VI0 

Cosmological Model in the self-creation Theory of Gravitation and in the General Theory 

of Relativity. Wankhade et al. [8] studied Wet Dark Fluid Cosmological Model in Barber 

Self-Creation Theory of Gravitation. Singh et al. [9,10] discussed Bianchi type-II 

cosmological models in Brans–Dicke theory and in Lyra Geometry. Yang [11] 

investigated the energy of the Universe in the Bianchi type-II cosmological model. 

 Also, Katore et al. [12,13], Nasr Amhmed et al. [14], and Shah et al. [15] are among 

the authors who have analyzed the stability of cosmological models.  

 The current work aims to get Bianchi type-II cosmological model in the presence of a 

macroscopic body. The present paper is organized as follows. In section 2, Metric and 

Field Equations. Section 3, Solutions of field Equations, Section 4, is mainly concerned 

with the physical and Kinematical properties of the model, and Section 5, Stability 

Solution. The last section contains some conclusions. 

 

2. Metric and Field Equation 

 

We consider the Bianchi type II space-time in the form, 

          (      )               (3) 

Where A, B, and C are functions of 't' only. 

The energy momentum-tensor for a macroscopic body (Landue and Lifshitz) [16] is given 

by    

ikkiik pguupT  )(   (4) 

Here   is the pressure,   is the energy density, and ui is the four-velocity vectors of the 

distribution, respectively. Where    will satisfy    
      

From equation (4) we get 

  
    

    
           

     (5) 

Using the equations (1), (2), and (4), the field equations of metric (3) are 
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Where, subscript '4' of the field variable denotes ordinary differentiation with respect to 

time. 

 

3. Solutions of Field Equations  

 

The equations (6) to (10) are a system of five independent equations with six 

unknowns               Hence to get a determinate solution, one has to assume the 

relation between metric coefficients i.e.          and radiation universe      

we get, 

         
     

 (   )  (11) 

The above equation (11) admits an exact solution given by   

    
 (      )

 

       (12) 
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       (13) 
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       (14) 

Where   (     )
 

      

And the scalar field is given by 
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The pressure and energy density are given by 
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Using equations (12), (13), and (14), the cosmological model in equation (3) takes the 

form 
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4. Physical and Kinematical Properties 

 

Spatial volume   √     
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Scalar Expansion   
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Shear Scalar   
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Also, the expression for the energy density W, energy flow vector S, and stress tensor 
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If the velocity of the macroscopic motion is less in comparison with the velocity of the 

light, then we have approximately   (   )   

Since 
 

  
 is the momentum density and 

(   )

  
 plays the role of the mass density of the body. 

From the expression (4), we get  

  
        (26)                                                                                                                 

But,   
  ∑      √  

  
 

  
 (    )  (27)                                               

Comparing the relationship (26) with the general formula (27), we saw that it works for 

the arbitrary system. Since we are considering a macroscopic object, (27) should be 

averaged over all values  per unit volume. 

We obtained the result  

     ∑      √  
  
 

  
  (28) 

Here the summation extends over all particles in unit volume  

The right side of this equation tends to zero in the ultra-relativistic limit, 

So, in this limit, the equation of state of matter is   
 

 
. 



A. S. Nimkar et al., J. Sci. Res. 15 (1), 55-62 (2023) 59 

 

The decomposition of a time-like tidal tensor is 

     
  

(     )(      )
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 (      )
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     +      (29) 

And, Vorticity                   (30)                                                

The vorticity of the model along the x, y, z, and t-axes is zero. So, the obtained model is 

non-rotational. Whereas when vorticity is nonzero, the model is rotating. 

 Now, let us look at the present model's uniformity with a few observational 

parameters such as red-shift, look-back time, and luminosity distance. This study focuses 

on targeting the formation of the Universe, which has astronomical importance. 

 

4.1. Red-shift 

 

Red-shift is a very important phenomenon in cosmology and astronomy. Red-shifts are 

used by astronomers to measure how the Universe is expanding. The average scale factor 

  and red-shift   are related by 

  
  

   
  (31) 

Where     is the present value of the scale factor. Hence, we get, 

    
     

 (      )
     

 (     )  (32) 

This follows that 

    (
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 (     )
  (33) 

 

4.2. Look –back time  

 

Look-back time is defined as the difference in the current age of the Universe. i.e. (   ) 

and age of the Universe when a particular ray is emitted with a red-shift  . It depends on 

the dynamics of the Universe.  

       ( )   (34) 

Where    indicates the current age of the Universe, and   indicates the red-shift of a well-

measured amount of light from a distant object such as a galaxy. The expansion of the 

Universe causes the emission of red shift light. For a given red-shift  , the average 

universe scale factor is  ( ) for the current universe scale factor, which is 

    
  ( )

 ( )
    (35) 

Solving the above equations, we get the required look-back time 
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Where   is the Hubble constant at present, measured in            and its value lies 

between 50 and 100          . 

 

4.3. Luminosity-distance red-shift 

 

The luminosity distance  of the light source is defined as, 

       ( )(   )      (37) 

Where the radial coordinate distance   ( ) of the object at the light emission is 

  ( )  ∫
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From equations (37) and (38) we get, 

   
 (     )(   )
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     ]  (39) 

 

5. Stability Solutions 
 

Here we discuss the stability of the model by observing the ratio of sound speed given by 
  

  
   

 , when the ratio 
  

  
 is positive, i.e.,   

   , we have a stable model. Whereas 

when the ratio
  

  
 is negative, i.e.,  

   , we have an unstable model. 

In this model, 

  

  
 
   

 (      )  

   
 (      )  

  (40) 

From equation (40), it is noticed that the ratio of sound speed 
  

  
 is positive for     

                   , the model is a stable.  

Graphs are plotted for particular values of the physical parameters and other integration 

constants. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Plot of spatial volume vs. cosmic time         Fig. 2. Plot of expansion scalar vs. cosmic time.  

for                                                                  for          
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Fig. 3. Plot of Hubble Parameter vs. Cosmic            Fig. 4. Plot of Shear Scalar vs. Cosmic Time. 

Time for                                                          for          

 

Conclusion 

 

In this paper, we have considered the Bianchi type-II cosmological model in Barber's 

second self-creation theory in the presence of the macroscopic body. For solving the field 

equations, the relation between metric coefficients, i.e.,           and radiation 

universe is used. Also, it is interesting to note that initially, spatial volume is constant, and 

as t gradually increases, volume increase (Fig. 1) and the scalar expansion θ (Fig. 2), 

Hubble parameter H (Fig. 3) decrease, and finally, they vanish when t→∞. The shear 

scalar (Fig. 4) was large at the time of the big bang. Therefore, the shape of the Universe 

was initially different than the present shear scalar and tended to be constant for a large 

time. The Universe is anisotropic. From equation (40), it is clear that the ratio of sound 

speed 
  

  
 is positive for                        , the model is stable and the 

vorticity of the model along x, y, z, and t-axes is zero. Hence, the model is non-rotational 

throughout the evolution of the Universe. The Universe is expanding with the increase of 

cosmic time. From equations (16) and (17) it is observed that the pressure and energy 

density are decreasing the cosmic time function. 
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