
 

Shannon Information Entropy Sum of a Free Particle in Three Dimensions 

Using Cubical and Spherical Symmetry 

S. Singh
1

, A. Saha
2
 

1Department of Physics, Bolpur College, Bolpur, Birbhum, Pin: 731204, W.B., India 

2Department of Physics, Visva-Bharati University, Santiniketan, Pin: 731235, W.B., India 

Received 8 June 2022, accepted in final revised form 17 October 2022 

Abstract 

In this paper, the plane wave solutions of a free particle in three dimensions for Cubical and 

Spherical Symmetry have been considered. The coordinate space wave functions for the 

Cubical and Spherical Symmetry are obtained by solving the Schr ̈dinger differential 

equation. The momentum space wave function is obtained by using the operator form of an 

observable in the case of Cubical Symmetry. For Spherical Symmetry, the same is obtained 

by taking the Fourier transform of the respective coordinate space wave function. The wave 

functions have been used to constitute probability densities in coordinate and momentum 

space for both the symmetries. Further, the Shannon information entropy has been computed 

both in coordinate and momentum space respectively for                (L is the length 

of the side of the cubical box) values for Cubical Symmetry and for             values in 

Spherical Symmetry keeping      (k is the wave vector and p is the momentum of the 

free particle) constant. The values obtained for the Shannon information entropies are found 

to satisfy the Bialynicki-Birula and Myceilski (BBM) inequality at larger   values (   ) in 

case of Cubical Symmetry and for values of           and   in Spherical Symmetry. 

Keywords: Bialynicki-Birula and Myceilski inequality; Cubical symmetry; Spherical 

symmetry; Operator form; Shannon information entropy. 
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1.   Introduction 

Information theory has its primary roots in two classic papers by Claude E. Shannon in 

1948 [1]. It should come as no surprise that information theory provides a way to measure 

uncertainty. It has subsequently been applied to areas ranging from the calculation of the 

ability of a material to be penetrated by charged particles [2] to analyzing binding sites on 

nucleotide sequences [3]. Shannon’s purpose was to develop a mathematical theory to 

quantitatively analyze the passage of information from a source through an information 

channel to a receiver. A key measure in information theory is ‘entropy’. Entropy 

quantifies the amount of uncertainty involved in the value of a random variable or the 

outcome of a random process. Intuitively, uncertainty could be equated with a lack of 
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information. Simply, entropy is the amount of information contained in a system. This is a 

term that reveals the amount of disorderliness in the system. A plain hypothetical system 

with no disorder or in perfect order has no information; only when the disorder sets into 

the system, it starts having information that is proportional to the disorder in the system. 

Information entropy is typically measured in ‘bits’ alternatively called "Shannon’s". There 

are different types of entropy measures, namely Shannon information entropy (S), Fisher 

information entropy (I), R ́nyi entropy (R), Tsallis entropy (T) etc. [4-8]. In this paper, the 

interest is concentrated only on the Shannon information entropy (S). Information entropy 

is subject characterized by the charge density [9] or the probability density of the system 

corresponding to changes in some observable such that the higher the probability density 

lower is the information. So, the lower the entropy is, the more concentrated is the wave 

function. Shannon information entropy (S) is very insensitive to changes in the 

distribution over a small-sized region and thus possesses a global character. The 

coordinate space Shannon information entropy (  ) [10] for a normalized wave function 

 ( ⃗) is written by  

    ∭ ( ⃗)    ( ⃗)                                    (1) 

where,  

 ( ⃗)    ( ⃗)  ( ⃗)    ( ⃗)   (2) 

The probability density  ( ⃗) is also normalized to unity. 

Correspondingly, the momentum space Shannon information entropy (  ) is defined as 

    ∭ ( ⃗)    ( ⃗)                                (3) 

Here  ( ⃗)    ( ⃗) ( ⃗)    ( ⃗)   is the probability density of the particle, where the 

momentum space wave function  ( ⃗) is obtained by taking the Fourier transform [11] of 

the coordinate space wave function  ( ⃗). The coordinate and momentum space 

information entropies [12], as defined by Eq. (1) and (3), allowed Bialynicki-Birula and 

Mycielski [13] to introduce another version of the uncertainty relation, which for a three-

dimensional system reads as follows:  

       (     )                (4) 

This relation was conjectured independently in 1957 by Everett [14] and Hirschman [15] 

and proved in 1975 by Beckner [16] and Bialynicki-Birula and Mycielski. It provides a 

strict improvement on the standard Heisenberg relation [17]. Eq. (4) is known as the BBM 

inequality. Because the information entropy measures the localization of a distribution, 

Eq. (4) places a limit on the simultaneous localization of the coordinate and momentum 

distributions. If one of the entropies becomes small, then the other must become large 

enough to preserve the inequality. This is philosophically consistent with the Heisenberg 

uncertainty principle. BBM also showed that the Heisenberg inequality could be derived 

from their entropic uncertainty relation. The BBM entropic uncertainty relation has a 

constant lower bound and thus overcomes one of the limitations of the Heisenberg 

inequality. These entropic uncertainty relations have recently received considerable 

interest in the literature. The interested reader is referred to Majerník and Richterek [18], 
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Yáñez et al. [19], Majerník and Majerníková [20], and references therein. A few years 

ago, Montgomery [21] considered an infinite square well of length  , centered at the 

origin and confined to the interval –           . The system is symmetric about 

   , and for a quantum mechanical particle defined by this system, the solution is given 

by the wave function described by    ( )  √
 

 
    (

(    )  

 
), where         . In his 

work, he found that the sum of the Shannon information entropies (     ) in one 

dimension ranged from 2.2120 to 3.0175, which satisfies BBM inequality and which is a 

quantitative relation between the coordinate space and momentum space uncertainties. 

This inequality is independent of the value of  . Henry E. Montgomery, Jr. compared his 

work to work done by Majerník et al., where they showed that the limiting value for the 

sum of the Shannon information entropies is (     )        . In his paper, Henry E. 

Montgomery Jr. used the wave function to treat the Shannon information entropy in one 

dimension and examined the entropic uncertainty relation. This paper examines the same 

uncertainty relation (BBM inequality) using the cubical and spherical symmetric plane 

wave solutions in three dimensions.  

 The Materials and Method section shows how the wave functions are obtained in 

coordinate and momentum space both for the Cubical and Spherical Symmetry, along 

with some specific assumptions and brief derivation. The coordinate space wave functions 

for the Cubical and Spherical Symmetry are obtained by solving the Schr ̈dinger 

differential equation, whereas the momentum space wave function is obtained by using 

the operator form of an observable in the case of Cubical Symmetry, and the same is 

found by taking the Fourier transform of the respective coordinate space wave function in 

the case of Spherical Symmetry. Then these wave functions have been used to constitute 

the probability densities both in coordinate and momentum space for both the symmetries. 

The length of the side of the cubical box is taken as    and the value of the momentum of 

the free particle is taken as 

     

    
   

 
 

           
   

  
 

                 (assuming the wavelength,     , where   is the wave vector). 

 

Next, in the Results section, the Shannon information entropy has been computed 

using the respective probability densities for Cubical Symmetry for              

values both in coordinate and momentum space. The same is computed for Spherical 

Symmetry for                 values in both spaces keeping      constant. 

Thereafter the computed values of the Shannon information entropies for both symmetries 

are put into tabular forms separately. Further, the values of the Shannon information 

entropies presented in Table 1 and Table 2 have been represented graphically. The 

graphical representation shows the variations of the Shannon entropy in coordinate space 
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and momentum space along with the Shannon entropy sum depending upon the different 

values of the length of the box (L). The numerical values obtained for the Shannon 

information entropies are found to satisfy the Bialynicki-Birula and Myceilski (BBM) 

inequality at larger   values (   ) in the case of the Cubical Symmetry and for values 

of                  in Spherical Symmetry. It is to remember that we have used the 

atomic units (       ) throughout our entire calculations.  

 Finally, an outlook on the present work has been summarized with some concluding 

remarks.     

 

2. Materials and Method 

 

2.1. The wave function and probability density in cubical symmetry 

 

The exact solutions of Schr ̈dinger wave equation plays an important role in solving and 

understanding some of the complicated systems in physics. Such solutions can be used as 

valuable tools in checking, solving, and improving models for the systems involving 

potentials like ‘the Eckart potential’, the Rosen-Morse potential, etc. [22]. Now, the 

Schr ̈dinger differential equation for a free particle of mass   for the wave functions  

  ( ⃗) with the potential varying as  ( ⃗)     everywhere in space can be written as   

 
  

  
    ( ⃗)      ( ⃗)            (5) 

The solutions for this equation can be expressed using the separation of variables as  

  ( ⃗)   ( ⃗⃗)   ⃗⃗  ⃗                (6) 

These solutions represent plane waves or the momentum eigenfunctions, and they are 

infinite in number since values of    ,    ,    are not restricted along with the condition 

  
     

     
           

   . The momentum wave functions  ( ⃗⃗) are the amplitudes of 

the possible momentum eigenfunctions that superimpose to form the wave functions 

  ( ⃗)  The wave functions   ( ⃗) sometimes have a continuous range of eigenvalues and 

sometimes discrete eigenvalues. In the latter case, normalization of the wave functions is 

carried out by defining the wave function on an arbitrarily large but finite cubical box of 

side   centered at the origin. 

Taking the complex conjugate of the wave function obtained in Eq. (6), we have 

  
 ( ⃗)    ( ⃗⃗)    ⃗⃗  ⃗  (7) 

The wave function   ( ⃗) is said to be normalized if 

∭   
 ( ⃗)   ( ⃗) 

    
 

  
  (8) 

In this case, the box is considered to be of finite length  . 

Then by normalization condition, 

  ( ⃗⃗) ( ⃗⃗) ∭     ⃗⃗  ⃗     ⃗⃗  ⃗ 

 
        

       ∫   
 

 
∫   

 

 
∫   
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 ⁄
 

Thus giving,   ( ⃗⃗)      
 ⁄  

In three-dimensional representations, the normalized wave function, in general, can be 

expressed as 

 ( ⃗)     
 ⁄     ⃗⃗  ⃗                                      (9) 

and the complex conjugate wave function in coordinate space is given by  

    ( ⃗)     
 ⁄      ⃗⃗  ⃗  (10) 

The probability density in coordinate space is  

 ( ⃗)    ( ⃗) ( ⃗)  
 

    (11) 

The momentum space wave function is obtained by using the operator form of an 

observable   (  ) and the eigenfunctions are given by 

 ̂  (  )     (  )  (12) 

    
 

   
 (  )     (  ) 

Where the operator   ̂    
 

   
 , 

  
  (  )

 (  )
 

  

  
  

    (  )      
     

     (13) 

The suffix        indicates that these are eigenfunctions of   in momentum space. The 

eigenvalues form a continuous set. The normalization constant ‘C’ is found by Dirac-delta 

normalization: 

∫    

 

  
(  )   

 
      (     

 )            (14) 

Now from the Eq. (14) we can write 

        ∫    

 

  
(  )   

 
      

        ∫     
     

     
   

   
 

 

  
      

           ∫   
 (     

 )  
 

 

  
     

               (
  

    

 
)  

            (  
    )  (15) 

and 

        (  
    )  (16) 

Now, from Eq. (15) and Eq. (16) we have 
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           (  
    )    (  

    )  

Thus giving,  

   
 

(   )
 

 ⁄
   (17) 

In  -representation, for a particle localized at    , the  -wave functions are 

  (  )  
 

(   )
 

 ⁄
   

     
    (18) 

Then the momentum space wave function in three dimensions can be written as 

 ( ⃗)  
 

(   )
 

 ⁄
     ⃗  ⃗     (19) 

Taking the complex conjugate of the Eq. (19) we have 

    ( ⃗)  
 

(   )
 

 ⁄
    ⃗  ⃗      (20) 

The probability density in momentum space is 

 ( ⃗)    ( ⃗) ( ⃗)  

  
 

(   )
 

 ⁄
   ⃗  ⃗    

(   )
 

 ⁄
    ⃗  ⃗     

  
 

(   ) 
   

   ( ⃗)   
 

(   ) 
   (21) 

 

2.2. The wave function and probability density in spherical symmetry  

 

Considering the plane wave solutions, the wave function in coordinate space can be 

written as 

 ( ⃗)       ⃗⃗  ⃗    (22) 

where     is the normalization constant, and for a spherically symmetric space, the value 

of     is obtained as follows, 

    ∬     
 

 
∬        

 

 
∬   

  

 
      

     
 

    
 
 

 ⁄  

The normalized wave function is thus obtained as        

   ( ⃗)   
 

     
 

 ⁄     ⃗⃗  ⃗  (23) 

Again, the complex conjugate wave function for Eq. (23) we can write, 

  ( ⃗)   
 

     
 

 ⁄      ⃗⃗  ⃗   (24) 

The probability density in coordinate space is  

 ( ⃗)    ( ⃗) ( ⃗)  
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 ⁄      ⃗⃗  ⃗ 
 

     
 

 ⁄     ⃗⃗  ⃗  

   
 

       

   ( ⃗)   
 

      (25) 

To find the momentum representation of the coordinate space wave function, we use the 

generalized expressions as given below, 

 ( ⃗)   
 

(  )
 
 

 ∭  ( ⃗⃗)
 

  
    ⃗⃗⃗⃗    ⃗     (26) 

where 

 ( ⃗⃗)  
 

(  )
 
 

 ∭  ( ⃗)
 

  
     ⃗⃗⃗⃗    ⃗   . (27) 

Thus the momentum space wave function  ( ⃗) of the free particle is obtained by taking 

the Fourier transform of the coordinate space wave function  ( ⃗) as 

 ( ⃗)   
 

(  )
 
 

 ∭  ( ⃗)
 

  
     ⃗   ⃗        

As,   ( ⃗)       ⃗⃗  ⃗ 

Now the momentum space wave function can be obtained as, 

 ( ⃗)   
 

(  )
 
 

 ∭      ⃗⃗  ⃗ 

  
     ⃗   ⃗      (28) 

Using the spherically symmetric property of the wave function we have, 

 ( ⃗)    √
 

 
 
(  (    )     (   )       (   )  )

(   ) 
   (29) 

Substituting the values of wave vector      and putting     in Eq. (29) we get, 

 ( ⃗)    √
 

 
 
(                  )

( ) 
  (30) 

Using the normalization condition for a spherically symmetric wave function from Eq. 

(30), we get the value of the normalization constant as 

  
 

 
 √

 

  
 . 

Thus we get the normalized momentum space wave function as  

 ( ⃗)  √
 

 
 
(                  )

( )  
   (31) 

and the complex conjugate momentum space wave function can be written as,  

     ( ⃗)  √
 

 
 
(                  )

( )  
   (32) 

The probability density in momentum space for      and      is 
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 ( ⃗)    ( ⃗) ( ⃗)  
 

 

(                  ) 

( )      (33) 

It is necessary to follow that the value of     is different for different   values while 

     remains constant. When     ; the value of the normalization constant obtained 

is as    
 

 
 √

 

  
  and for            the values of the normalization constant     are 

obtained respectively as follows 

  
 

 
 √

 

 
 , 

 

  
 √

 

 
 , 

 

  
 √

 

  
 and so on. Then the corresponding wave functions can be 

written with their respective values of the normalization constant    . 

 

3. Results and Discussion 

 

In this section, the numerical values for the Shannon information entropies (S), both in 

coordinate and momentum space of the free particle for Cubical and Spherical Symmetry, 

are calculated. To obtain these values, the expressions of the respective probability 

densities in coordinate and momentum space are employed. In the following cases, the 

values of     and      have been considered only, and the rest of the calculations 

have been computed using all other respective values of   and   accordingly. 

 

3.1. Shannon information entropies for cubical symmetry case   

 

The probability density in coordinate space obtained is given by  

 ( ⃗)    ( ⃗) ( ⃗)  

          
 

    

The coordinate space Shannon entropy is obtained as  

    ∭ ( ⃗)    ( ⃗)     

   ∫ ( 
 

  )   
 

 
*

 

  +    ∫   
 

 
 ∫   

 

 
  

    
 

  
    [

 

  
]     

          

              (34) 

The probability density in momentum space for the wave function  ( ⃗) obtained from the 

Eq. (31) is given by 

 ( ⃗)    ( ⃗) ( ⃗)  

           
 

(   ) 
  

To calculate the momentum space Shannon entropy, the dimension of the wavelength is 

considered to be approximately equal to the length of the cubical box, i.e.,       and the 

momentum of the free particle will then be written as  



S. Singh et al., J. Sci. Res. 15 (1), 71-84 (2023) 79 

 

      

    
   

 
  

 
   

  
  

   
  

 
   (35) 

Using Eq. (21) and Eq. (35) the momentum space Shannon entropy is computed as  

    ∭ ( ⃗)    ( ⃗)      

   ∭
 

(   ) 
  (

 

(   ) 
)

  

 
 

     

   
 

(   ) 
  (

 

(   ) 
) ∫    

  

 
 

∫    

  

 
 

∫    

  

 
 

  

   
 

(   ) 
  (

 

(   ) 
) (

  

 
 ) (

  

 
) (

  

 
)  

 
 

       (   )     

 
    (  ) 

        [         ] 

     
    (  ) 

     (36) 

Further, the numerical values for the Shannon information entropies, in this case, both in 

coordinate and momentum space, have been calculated for different values of   keeping 

     constant, and the obtained values have been put into a tabular form as follows. 

 
Table 1. The numerical values for the Shannon information entropies for Cubical Symmetry in 

coordinate and momentum space along with the Shannon entropy sum. 
 

 

3.2. Shannon information entropies for spherical symmetry case   

 

The probability density in coordinate space is  

 ( ⃗)    ( ⃗) ( ⃗)  

    
 

        (37) 

        (      ) 

1 0 0.6892 0.6892 

2 2.0794 0.0862 2.1656 

3 3.2958 0.0255 3.3213 

4 4.1588 0.0107 4.1695 

5 4.8283 0.0055 4.8336 

6 5.3752 0.0032 5.3784 

7 5.8377 0.0020 5.8397 

8 6.2383 0.0013 6.2396 

9 6.5916 0.0009 6.5925 

10 6.9077 0.0006 6.9083 
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The coordinate space Shannon entropy is obtained as  

    ∭ ( ⃗)    ( ⃗)     

   ∫   
 

      
 

 
  * 

 

     +      ∫        
 

 
 ∫   

  

 
  

      * 
 

     +  

    * 
  

 
 +           

                    (38) 

The probability density in momentum space for      and       is given by 

 ( ⃗)    ( ⃗) ( ⃗)  

      
 

 

(                  ) 

( )      (39) 

The momentum space Shannon entropy is calculated as  

     ∭ ( ⃗)    ( ⃗)      

   ∫    

 
   *

 

 

(                  ) 

( )   +   *
 

 

(                  ) 

( )   + ∫       
 

 
∫   

  

 
  

    ∫    

 
*
 

 

(                  ) 

( )   +   *
 

 

(                  ) 

( )   +      

             for      and     . 

                (40) 

Further, the numerical values for the Shannon information entropies, in this case, both 

in coordinate and momentum space, have been calculated for different normalization 

constant     with different associated   values keeping      constant and the obtained 

values have been put into a tabular form as follows. 

 
Table 2. The numerical values for the Shannon information entropies for Spherical Symmetry in 

coordinate and momentum space along with the Shannon entropy sum. 
 

        (      ) 

1 1.4320 6.7859 8.2179 

2 3.5114 4.6944 8.2058 

3 4.7278 3.4905 8.2183 

4 5.5908 2.6250 8.2158 

5 6.2603 1.9572 8.2175 

 

3.3. Graphical representation of the tabular data in case of cubical and spherical 

symmetry 

 

The following graphs labeled as Fig. 1. (A), (B), (C), and (D) have been plotted with the 

help of the data obtained from Table 1 considering the values of the Shannon information 

entropies in the case of Cubical Symmetry. The graphs represent the variations of the 

values of the coordinate and momentum space Shannon information entropy values along 
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with the Shannon entropy sum for different values of the box lengths in Cubical 

Symmetry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (A) Shannon information entropy in coordinate space (  ) versus the length of the box (L), 

(B) Shannon information entropy in momentum space (  ) versus the length of the box (L), (C) 

Shannon entropy sum (      ) versus the length of the box (L), (D) Shannon information entropy 

in coordinate space (  ), Shannon information entropy in momentum space (  ), Shannon entropy 

sum (      ) versus the length of the box (L) for Cubical Symmetry. 

 

In Fig. 1(A), the curve shows the increase in the values of coordinate space Shannon 

information entropies (  ) with the increase of the length of the box, whereas the opposite 

nature of the curve for the values of the Shannon information entropies in momentum 

space (  ) is observed in Fig. 1(B ). Fig. 1(C) shows the variation in the values of the 

Shannon entropy sum (      ) for different values of the length of the box. The 

composite nature of the curves of  Fig. 1. (A), (B), and (C) can be observed in Fig. 1(D). 

 Similarly, the graphs labeled as Fig. 2. (A), (B), (C), and (D) have been plotted with 

the help of the data obtained from Table 2 considering the values of the Shannon 

information entropies in case of Spherical Symmetry. The graphs are depicted as follows: 
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Fig. 2. (A) Shannon information entropy in coordinate space (  ) versus the length of the box (L), 

(B) Shannon information entropy in momentum space (  ) versus the length of the box (L), (C) 

Shannon entropy sum (      ) versus the length of the box (L), (D) Shannon information entropy 

in coordinate space (  ), Shannon information entropy in momentum space (  ), Shannon entropy 

sum (      ) versus the length of the box (L) for Spherical Symmetry. 

 

The curve in Fig. 2(A) shows the increase in the values of Shannon information 

entropies in coordinate space (  ) with the increase of the length of the box, whereas Fig. 

2(B) shows the decrease in the values of the Shannon information entropies in momentum 

space (  ). Fig. 2(C) shows a linear variation for the values of the Shannon entropy sum 

(      ) for different lengths of the box and the same can be verified from the data 

obtained from Table 2. Moreover, Fig. 2(D) displays the composite nature of the curves of 

Fig. 2(A), (B), and (C). Thus it can be understood that Figs. 1 and 2 display the same 

nature of the curves for the values of the coordinate and momentum space Shannon 

information entropies along with the Shannon entropy sum for both cases of Cubical and 

Spherical Symmetry. It can be realized clearly that the values of the Shannon information 

entropies play a complementary role in coordinate and momentum space. When the values 

of Shannon information entropy augment in coordinate space with the increase of the 

length of the box, then on the other side, the values of the same diminish in the 

momentum space. This complementary nature of the Shannon information entropy has 

been observed consistently in the case of Cubical and Spherical Symmetry.    

 

 

 



S. Singh et al., J. Sci. Res. 15 (1), 71-84 (2023) 83 

 

4. Conclusion 

 

The characterization of information entropic uncertainty relations has become a rich field 

of study with direct relevance in the modern technological era. In the present work, the 

plane wave solutions of a free particle in three dimensions have been used. The coordinate 

space wave functions for the Cubical and Spherical Symmetry are obtained by solving the 

Schr ̈dinger differential equation. The momentum space wave function is obtained by 

using the operator form of an observable in the case of Cubical Symmetry, and in the case 

of Spherical Symmetry, the same is obtained by taking the Fourier transform of the 

respective coordinate space wave function. These wave functions have been used to 

constitute the probability densities both in coordinate and momentum space for both the 

symmetries. Further, the Shannon information entropy has been computed for   

           values in coordinate and momentum space for Cubical Symmetry. The same 

is computed for           and   values in Spherical Symmetry both in coordinate and 

momentum space, keeping      constant. The computed values of Shannon 

information entropy are then put into two Tables. From Table 1, it is noticed that the 

values obtained for the Shannon information entropies are found to satisfy the Bialynicki-

Birula and Myceilski (BBM) inequality at larger   values (   ) in the case of the 

Cubical Symmetry while the Table 2 shows that the same inequality holds good for values 

of           and   in case of Spherical Symmetry. It can be realized that all 

calculations regarding the values presented in Table 1 and Table 2 are very much 

dependent on the different values imposed on the length of the cubical box L and 

prominently dependent on the assumption of the linear value of wave vector k with the 

momentum p of the free particle also. The graphs presented in Figs. 1 and 2 have been 

plotted with the help of the data obtained from Tables 1 and 2, displaying the variations of 

the Shannon entropy values and Shannon entropy sums for the different values of L in 

coordinate and momentum space for both the symmetries considered in this work. The 

graphical representation shows that the values of the Shannon entropy augment in 

coordinate space, but in momentum space, just the opposite role for the same is observed. 

This complementary role of the Shannon information entropy is found consistent with the 

philosophy of the Heisenberg uncertainty principle in preserving the inequality relation 

such that when the values of Shannon entropy augmented in coordinate space, then the 

values of the same got diminished in momentum space. In this work, the solution is 

restricted to plane wave solutions only as the spherical wave solution involves sound 

mathematical knowledge of the spherical Bessel functions and the spherical Neumann 

functions. It is expected that this work will help the students and the researcher to acquire 

basic knowledge about the measures of information entropy and entropic uncertainty 

relations in the fields of quantum physics and quantum chemistry.   

 

References 

 
1. C. E. Shannon, The Bell Syst. Tech. J. 27, 379 (1948).  

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x 

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x


84 Shannon Information Entropy Sum of a Free Particle  

 

2. M. Hồ, D. F. Weaver, V. H. Smith, R. P. Sagar, and R. O. Esquivel, Phys. Rev. A 57, 1412 

(1998).  

3. T. D. Schneider, G. D. Stormo, L.  Gold, and A. Ehrenfeucht, J. Mol. Biol. 188, 415 (1986).  

https://doi.org/10.1016/0022-2836(86)90165-8 

4. I. Nasser, M. Zeama, and A. Abdel-Hady, Results Phys. 7, 3892 (2017).  

https://doi.org/10.1016/j.rinp.2017.10.013 

5. M. Alipour and Z. Badooei, J. Phys. Chem. A 122, 6424 (2018).  

https://doi.org/10.1021/acs.jpca.8b05703 

6. J. H. Ou and Y. K. Ho, Atoms 7, 1 (2019).  

https://doi.org/10.3390/atoms7030070 

7. 7. J. H. Ou and Y. K. Ho, Int. J. Quantum Chem. 119, ID e25928 (2019). 

https://doi.org/10.1002/qua.25928 

8. M. Zeama and I. Nasser, Phys. A Stat. Mech. Appl. 528, ID 121468 (2019). 

https://doi.org/10.1016/j.physa.2019.121468 

9. S. A. Bhuiyan, J. Sci. Res. 11, 209 (2019). 

https://doi.org/10.3329/jsr.v11i2.39632 

10. C. H. Lin and Y. K.Ho, Chem. Phys. Lett. 633, 261 (2015). 

https://doi.org/10.1016/j.cplett.2015.05.029 

11. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 6th Edition (Academic 

Press, New York, 2005). 

12. Hamid Al-Jibbouri, Emerging Sci. J. 6, 776 (2022). 

https://doi.org/10.28991/ESJ-2022-06-04-08 

13. I. Bialynicki-Birula and  J. Myceilski, Commun. Math. Phys. 44, 129 (1975).  

https://doi.org/10.1007/BF01608825 

14. The Many-Worlds Interpretation of Quantum-Mechanics, ed. H. Everett et al. (Princeton, NJ: 

Princeton University Press, 1993). 

15. I. I. Hirschman, Am. J. Math. 79, 152 (1957).  

https://doi.org/10.2307/2372390 

16. W. Beckner, Ann. Math. 102, 159 (1975).  

https://doi.org/10.2307/1970980 

17. J. B. M. Uffink, PhD Thesis, Rijksununiversiteit Utrecht, the   Netherlands, 1990. 

18. V. Majernik and L. Richterek, Eur. J. Phys. 18, 79 (1997). 

https://doi.org/10.1088/0143-0807/18/2/005 

19. R. J. Yáñez, W. van Assche, and J. S. Dehesa, Phys. Rev. A 50, 3065 (1994).  

https://doi.org/10.1103/PhysRevA.50.3065    

20. V. Majerník, R. Charvot, and E. Majerníková, J. Phys. A: Math. Gen. 32, 2207 (1999).   

https://doi.org/10.1088/0305-4470/32/11/013 

21. H. E. Montgomery, Jr., Chem. Educator, 7, 334 (2002).  

https://doi.org/10.1007/s00897020618a 

22. A. N. Ikot, I. E. Akapabio, and E. B. Umeron, J. Sci. Res. 3, 25 (2011). 

https://doi.org/10.3329/jsr.v3i1.5310 

 

https://doi.org/10.1016/0022-2836(86)90165-8
https://doi.org/10.1016/j.rinp.2017.10.013
https://doi.org/10.1021/acs.jpca.8b05703
https://doi.org/10.3390/atoms7030070
https://doi.org/10.1002/qua.25928
https://doi.org/10.1016/j.physa.2019.121468
https://doi.org/10.3329/jsr.v11i2.39632
https://doi.org/10.1016/j.cplett.2015.05.029
https://doi.org/10.28991/ESJ-2022-06-04-08
https://doi.org/10.1007/BF01608825
https://doi.org/10.2307/2372390
https://doi.org/10.2307/1970980
https://doi.org/10.1088/0143-0807/18/2/005
https://doi.org/10.1103/PhysRevA.50.3065
https://doi.org/10.1088/0305-4470/32/11/013
https://doi.org/10.1007/s00897020618a
https://doi.org/10.3329/jsr.v3i1.5310

