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Abstract 

The Cahn-Allen equation is a reaction-diffusion equation of mathematical physics that 

describes the process of phase separation in multi-component alloy systems and order-

disorder transitions. This paper presented a numerical solution of Cahn-Allen equations by 

Lifting scheme using different wavelet filter coefficients. The numerical results obtained 

using this scheme are compared with the exact solution to demonstrate the accuracy and fast 

convergence in less computational time than the existing scheme. Some problems are taken 

to show the validity and applicability of the scheme. 
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1.   Introduction 

The Cahn-Allen equation is a parabolic partial differential equation that simulates a 

natural phenomenon in some ways. Numerous physical issues, including crystal 

formation, image fragmentation, and curvature flow, have been studied using this 

equation. It has specifically evolved into the fundamental mathematical model of the 

linking approach used in physical science research on phase transformation and face 

flexibility. As a result, finding a reliable and precise solution to this issue has gained the 

interest of numerous researchers. It is difficult to find precise answers or figures for 

various non-line integers. But now that powerful software and contemporary computers 

have been developed, it is possible to use analytical or numerical methods to solve these 

issues [1]. Recently, methods have been utilized to solve partial differential equations, 

both linear and nonlinear, numerically and analytically, for instance, Hermite polynomials 

[2], a comprehensive approximation system based on biorthogonal wavelets [3], the 

Adomian Decomposition Method and Haar Wavelet Method [4] etc. 

 Wavelets have been employed as a partial differential equation (PDE) solution ever 

since the 1980s. The analyzed data demonstrates the benefits of this approach to 
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establishing unity, odd structures, and transient situations. Galerkin's approach or the 

collocation method are the foundations of PDE wavelet resolution algorithms.  

 Some of the works on wavelet-based methods are discrete wavelet transforms (DWT) 

and full approximation schemes (FAS) [5,6]. The wavelet-based full approximation 

scheme (WFAS) has proven to be a very efficient and effective approach to many 

problems related to the fields of computer science and engineering [7]. These techniques 

can be used as an iterative solution or as a precaution, providing, in many cases, better 

performance than other highly developed and existing FAS algorithms. 

 Because of the effectiveness and power of the WFAS, more research has been done to 

improve it. To accomplish this task, create a flexible orthogonal/biorthogonal discrete 

wavelet function using the lifting scheme [8]. A wavelet-based lifting scheme was 

introduced by Sweldens [9], which allows some to improve existing wavelet transform 

structures. A wavelet-based numerical solution for elasto hydrodynamic lubrication 

problems with a lift pattern was developed by Shirolasheti et al. [10]. The strategy has 

certain quantitative advantages, such as a reduced number of tasks, which are important in 

the context of repetitive solutions. Obviously, all efforts to simplify the wavelet PDE 

solutions are welcome. In PDE, the matrices resulting from the system are dense with a 

smooth diagonal and smooth off-diagonal. This matrix slip is minimized using a wavelet 

transform, resulting in an efficient wavelet-based lift scheme. 

 The lifting scheme is a new way to construct second-generation wavelets, which do 

not broadcast or expand a single function. The latter refers to wavelets of the first 

generation or classical methods. The lifting scheme has additional advantages over 

classical wavelets. This change applies to signals of arbitrary size with proper boundary 

management. Another feature of the propositional schema is that all objects are in the 

local domain. This is in contrast to the traditional method, which relies heavily on the 

frequency domain. 

 The two major advantages are (i) it leads to a more attractive treatment that is better 

suited to those who love apps than the basics of mathematics, and (ii) it makes the 

calculation time more accurate and sometimes increases the calculation speed. 

 The lifting process starts with a series of well-known filters, after which lifting steps 

are applied to improve (left) the decay properties of the corresponding wavelet. This 

process has certain mathematical advantages in the form of a reduced number of critical 

functions in the context of iterative solutions. In addition, the current work proposes using 

the scheme to offer a numerical solution to the Cahn-Allen equation. 

 The current paper is structured as follows: Section 2 introduces the wavelet filter 

coefficients and lifting scheme. The solution method describes in section 3. In section 4 

we provide the numerical results for the problems, and finally, in section 5 the conclusion 

of the proposed work is given. 
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2. Preliminaries of Wavelet Filter Coefficients and Lifting Scheme 

 

The lifting program begins with a collection of well-known filters; then, lifting measures 

are used in an effort to improve the decay properties of the corresponding wavelet. 

Now, we have discussed the various wavelet filters as follows: 

 

2.1. Haar wavelet filter coefficients 

 

We know that low-pass filter coefficients, [     ]
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play a significant role in decomposition.  

 

2.2. Daubechies wavelet filter coefficients 

 

The Daubechies presented scaling functions with very short support. The measurement 

function    is supported [     ], while the corresponding wavelet    has support in 
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2.3. Biorthogonal (CDF (2,2)) wavelets 

 

Let's consider the (5, 3) biorthogonal spline wavelet filter pair; the low pass filter pair are 
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Foundations of lifting scheme: Consider the numbers h and g as two neighboring 

samples in sequence, and this has some connection that we would like to take advantage. 

A simple line replacement of h and g with a scale of average s and a difference d, i.e.,                             

  
   

 
        

 The theory is that if a and b are closely related, the total expected value of their 

difference d will be smaller and can be represented by bits of fever. In the case of a = b, 

the difference is simply zero. We have not lost any information because we can always 

return h and g to give s and d as:      
 

 
       

 

 
 

Finally, the wavelet transformation formed by lifting consists of three steps: split. Predict 

and update as given in Fig. 1 [11]. 

Split: Splitting the signal into two separate sets of samples. 
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Predict: If a signal contains a specific structure, we may expect a correlation between the 

sample and its immediate neighbors, i.e.                        

Update: Given an even entry, we have predicted that the next odd entry has the same 

value and stored the difference. We then update our even entry to reflect our knowledge of 

the signal. i.e.                      

A detailed algorithm that uses different wavelets is given in the next section. The general 

lifting stages of decomposition and signal reconstruction are given in Fig. 2. 

                  

   

 

 

 

 

 

 

 Fig. 1. Steps in lifting scheme.                       Fig. 2. Lifting wavelet algorithm.            

 

A detailed algorithm that uses different wavelets is given in the next section. 

 

3. Method of Solution 

 

Consider the Cahn-Allen equation. 

  

  
 

   

                                    (3.1) 

Where   is any constant.  

After discretizing equation (3.1) through the finite difference method (FDM), we get 

a system of algebraic equations. Through this system, we can write the system as  

                                                              (3.2) 

where   is     coefficient matrix,   is     matrix, and   is     matrix to be 

determined. where     ,   is the number of grid points, and   is the level of resolution. 

 Solve Eq. (3.2) using the iterative method, we find a approximate solution. The 

approximate solution contains a specific error, so the sought solution is equal to the sum 

of the solution and the error. There are many ways to minimize such an error to find an 

exact solution. Some of them are FAS, WFAS, etc. We now use an advanced method 

based on different wavelets called a lifting scheme. More recently, lifting schemes have 

played an important role in signal analysis and image processing in science and 

technology. But now it reaches statistical measurement [7]. Here, we discuss the 

algorithm for lifting schemes as follows: 

 

3.1. Haar wavelet lifting scheme (HWLS) 

 

Dabeshis and Sveldens showed that every wavelet filter can be transformed into lift steps 

[8]. More details on the advantages and other important advantages of the proposed 
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method framework can be found in literature [9]. Representation of the Haar wavelet in 

the form of a nomination presented as; 

Decomposition: 

Consider an approximate solution     as a signal and use the HWLS (finer to coarser) 

decomposition process such as, 

               

           
 

 
        √     

     
 

√ 
    

}
 
 

 
 

                    (3.3) 

At this point in the end, we get a new approximation as, 

  [   ]                                                                                 (3.4) 

Reconstruction: 

Consider Eq. (3.2) and apply the Here, we get a new approximation process of rebuilding 

HWLS (coarser to finer) as, 

     √   

     
 

√ 
   

           
 

 
    

                    }
 
 

 
 

                    (3.5) 

which is the required solution of the given equation. 

 

3.2. Daubechies wavelet lifting scheme (DWLS) 

 

As discussed in section 3.1, we followed the same procedure but used a different wavelet, 

i.e., Daubechies 4th  order wavelet coefficient. The DWLS process is as follows; 

Decomposition: 
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Here, we find a new approximation as, 

  [   ]                                                                   (3.7) 

Reconstruction: 

Consider Eq. (3.5), and use the DWLS reconstruction process (coarser to finer) such as, 
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which is the required solution of the given equation. 

 

3.3. Biorthogonal wavelet lifting scheme (BWLS) 

 

As discussed in sections 3.1 and 3.2, we follow the same procedure here using another 

wavelet, i.e., biorthogonal wavelet (CDF (2,2)). The BWLS process is as follows; 

Decomposition:         
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In this stage, finally, we get a new signal as, 

  [   ]                                                                   (3.10) 

Reconstruction: 

Consider Eqn. (3.10), then apply the DWLS reconstruction (coarser to finer) procedure as 
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which is the required solution of the given equation. 

Coefficients   
   

 and   
   

 are the average and detailed coefficients, respectively, of the 

approximate solution    . New methods are tested for some numerical problems, and the 

results are shown in the next section. 

 

4. Numerical Illustration 

 

In this section, we have used the Lifting scheme for the numerical solution of Cahn-

Allen's equations and demonstrated the power and effectiveness of HWLS, DWLS, and 

BWLS. The error is calculated as,    max , ,ma x e au x t u x tE  
 

where 

        and         are exact and approximate solutions, respectively. 
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Problem 4.1: Consider the Cahn-Allen equation 
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Which has the exact solution        
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 [12].   

Using the methods described in section 3, we find the numerical solutions and, in 

comparison with the exact solutions, are presented in Fig. 3. The maximum absolute 

errors with CPU time of the methods are presented in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a)                                                b)              

Fig. 3. Comparison of numerical solutions with the exact solution of problem 4.1. for 

a)         and b)            . 
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Table 1. Maximum error and CPU time (in seconds) for the methods of problem 4.1.  
 

    Method      Setup time Running time Total time 

    

FDM 2.6118e-03    6.9161 0.0019 6.9180 

HWLS 2.6118e-03    0.0010 0.0029 0.0039 

DWLS 2.6118e-03    0.0003 0.0095 0.0098 

BWLS 2.6118e-03    0.0003 0.0040 0.0043 

      

FDM 5.5119e-04    7.0204 0.0023 7.0227 

HWLS 5.5119e-04    0.0012 0.0029 0.0041 

DWLS 5.5119e-04    0.0003 0.0043 0.0046 

BWLS 5.5119e-04    0.0005 0.0027 0.0032 

      

FDM 1.6530e-04    8.1284 0.0039 8.1323 

HWLS 1.6530e-04    0.0009 0.0032 0.0041 

DWLS 1.6530e-04    0.0003 0.0096 0.0099 

BWLS 1.6530e-04    0.0004 0.0043 0.0047 

 

Problem 4.2: Consider, another Cahn-Allen equation with different conditions 
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 [13].   

By applying the methods explained in Section 3, we get the numerical solutions and 

compared them with the exact solutions presented in Fig. 4. The maximum absolute errors 

with the CPU time of the methods are presented in Table 2. 
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b)                                                b)              

 

Fig. 4. Comparison of numerical solutions with the exact solution of problem 4.2. for    

a)          and b)            . 

 
Table 2. Maximum error and CPU time (in seconds) for the methods of problem 4.2.  
 

    Method      Setup time Running time Total time 

1 2 3 4 5 6 

 

    

FDM 1.1747e-03 3.7246 0.0019 3.7265 

HWLS 1.1747e-03 0.0010 0.0029 0.0039 

DWLS 1.1747e-03 0.0003 0.0098 0.0101 

BWLS 1.1747e-03 0.0003 0.0040 0.0043 

 

    

FDM 6.1610e-04 5.1221 0.0569 5.1790 

HWLS 6.1610e-04 0.0093 0.0646 0.0739 

DWLS 6.1610e-04 0.0075 0.2419 0.2494 

BWLS 6.1610e-04 0.0076 0.0934 0.1010 

 

      

FDM 3.2847e-04 3.5575 0.0023 3.5598 

HWLS 3.2847e-04 0.0010 0.0029 0.0039 

DWLS 3.2847e-04 0.0003 0.0096 0.0099 

BWLS 3.2847e-04 0.0004 0.0040 0.0044 

      

FDM 1.7954e-04 5.3060 0.0028 5.3088 

HWLS 1.7954e-04 0.0010 0.0040 0.0050 

DWLS 1.7954e-04 0.0003 0.0094 0.0097 

BWLS 1.7954e-04 0.0003 0.0041 0.0044 

      

FDM 1.0187e-04 7.2244 0.0040 7.2284 

HWLS 1.0187e-04 0.0010 0.0030 0.0040 

DWLS 1.0187e-04 0.0003 0.0097 0.0100 

BWLS 1.0187e-04 0.0004 0.0044 0.0048 
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5. Conclusion 

 

In this paper, we find the numerical solution of Cahn-Allen equations using different 

wavelet filters by Lifting schemes. We observe that  

o The numerical solutions obtained by the different Lifting schemes agree with the 

exact solution.  

o The convergence of the presented schemes, i.e., the error decreases as the level of 

resolution N increases.  

o In addition, the calculations involved in the lifting schemes are simpler, more 

straightforward, and lower in calculation costs compared to the classical method, i.e., 

FDM.  

The Lifting schemes introduced in particular by HWLS and BWLS are therefore very 

effective for solving nonlinear partial differential equations. 
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