

Implementation of Test Suites using Enhanced State Chart Diagrams: A

Case Study

K. Gupta
*
, P. Goyal

Department of Computer Application and Information Technology, Shri Guru Ram Rai University,

Dehradun-248001, India

Received 6 January 2023, accepted in final revised form 28 May 2023

Abstract

An essential part of software engineering is testing. A series of pre-testing tasks should be

completed before performing testing tasks. Implementing test suites is one of the pre-testing

phases. In this work, a case study has been used to implement the suggested method for

implementing test suites. The strategy is based on an analysis of UML (Unified Modelling

Language) enhanced state chart diagrams (SCDs). UML state chart diagram analysis, AD

(activity diagram) conversion into a graph, AG (activity graph) simplification, and test suite

implementation are all steps in the generating process.

Keywords: Software engineering; Software testing; UML state chart diagrams; Activity

diagram; Test suites.

© 2023 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.

doi: http://doi.org/10.3329/jsr.v15i3.63787 J. Sci. Res. 15 (3), 637-649 (2023)

1. Introduction

One step in the software development life cycle is software artifact testing (SDLC). Some

work must be completed as pre-testing operations, such as implementing the test suites

[1]. Software testing is necessary to ensure that the software complies with its

specifications, but if carried out improperly, it may result in even more problems. Putting

test suites into place aids in locating the software's testing procedures that need

improvement [2]. The test suites are necessary for software testers to use while they

evaluate the application or software. Although test suites can produce excellent testing,

they are expensive in terms of the time and resources they use. The problem has been

explored from a wide variety of perspectives, although many of them lack comprehensive

case studies.

 A case study will be provided in this paper in a comprehensive manner. The case

study was chosen to be the Hospital Management System (HMS) [3]. A number of

software engineering approaches have been taught using this well-known case study. The

approach will be thoroughly discussed using the chosen case study, going over each step

and procedure. The outcomes will be presented in the end.

*
 Corresponding author: kritikagupta47@yahoo.co.in

Available Online

J. Sci. Res. 15 (3), 637-649 (2023)

JOURNAL OF

SCIENTIFIC RESEARCH

www.banglajol.info/index.php/JSR
Publications

http://doi.org/10.3329/jsr.v15i3.63787
mailto:mahbubchem@cu.ac.bd

638 Implementation of Test Suites using Enhanced State Chart Diagrams

 There are various sections in this research article. The field literature review is

covered in the next section. The strategy is then outlined in a section after that.

Subsections in the next section explain the case study in more detail. The research paper's

conclusion part serves as its final bow.

2. Literature Review

To implement the test suites, a variety of strategies have been suggested. The input used

in different implementation strategies for test suites differs. It's crucial to consider how the

suggested methodologies approach UML models, even if most of the literature

concentrates on the implementation of test suites. A survey of the literature is included in

this section for some of the earlier ideas.

 The effectiveness of automated test suite implementation strategies for the Python

project Atomic Simulation Environment used in the material sciences is examined by

Trubenbach et al. [1]. The Principal Component Analysis approach by Li et al. [2] is

suggested in this study for implementing multi-criteria test suites. It delivers better test

suite implementation performance and achieves higher or equal coverage. Gupta et al. [3]

suggested in this study the implementation of test suites by using a use case and activity

diagram, but these test suites contain repeated information or edges. By addressing the

issues caused by concurrency in object-oriented software, Khandai et al. [4] suggested a

technique for creating test suites via sequence diagrams (SDs). In this study, Wang et al.

[5] concentrated on applying evolutionary algorithms for automatically implementing test

suites.

 The automatic construction of software test suites and their differentiation using a

genetic algorithm (GA) were proposed by Haga et al. [6] in this work. The conversion

processes from UML state chart diagram (SCD) to Petri Net to build automatic test tree

and those using SCD were detailed by Chang et al. in this paper [7]. The author of this

study, Kaur et al. [8], include unique methods such as physically merging test path

implementation and analysis criteria and automatically applying tools created using

prefix-based and Chinese postman procedures. In this article, Jena [9] offered a technique

for creating an AFT (Activity Flow Table) with AD and then converting that Table into an

AFG (Activity Flow Graph). The writer implemented the test paths and applied the action

analysis criterion for AFG (Activity Flow Graph) traversal. Li [10] examines the

straightforward modeling technique in this article. The author implemented the test suites

and employed Use Case Sequence Diagrams. Kumar et al. [11] proposed a new approach

for dispersed testing in state-based OOPs (Object Oriented Programming) in this study. In

this study, Elallaoui [12] presented a technique for using the scrum process to convert

consumer sections into sequence diagrams, which are then recycled to create test suites.

Park et al. [13] create the state diagram in this study using a tree-based methodology.

They took a well-researched approach to the problem by creating a tool for the

programmed generation of a State Transition Mapping Tree (STMT) to demonstrate the

application of STMT. In this article, Elallaoui [14] established a prototype for SDs

K. Gupta et al., J. Sci. Res. 15 (3), 637-649 (2023) 639

(sequence diagrams) that can be automatically translated via model-to-model conversion

after this prototype-to-text translation.

 Vemuri [15] presented a strategy using the probabilistic method in this paper for

identifying actors and use cases. For UML state chart diagrams, Bengal [16] created the

coverage of the branch and Modified Condition/Decision Coverage (MC/DC) methods to

calculate the coverage of code. Kumar et al. [17] provide a strategy in this study for

identifying changes at the syntax and semantic levels by merging UML diagrams such as

class diagrams, use cases, and activity diagrams. UML Activity Diagrams are used in this

research by Verma et al. [18] to construct test suites and explain the user registration

process. Ahmad et al. [19] give a thorough overview of the most recent methods for MBT

(model-based testing) using a UML activity diagram (AD) in the article. Cvetkovic et al.

[20] examined various methods for developing test suites in this work, employing either a

single UML model or a collection of diagrams. Panda et al. [21] used a UML SCD

through the Firefly and Differential Algorithm (DA), two methodologies that were

inspired by nature, to create Model-Based Testing. Hamza [22] suggested an approach in

this study that might be created on a use case analysis model. The generation method

includes the study of UML use case diagrams, an AD transformation process, an AD

simplification process, and an information extraction process.

 Jena [23] defined the test suites in this study using a UML Activity diagram. Input

from the system's AD was utilized to create the graphs. The writers then create test suites

while taking into account potential test pathways. Tiwari et al. [24] demonstrate how to

use UML diagrams, such as activity, state, and sequence diagrams, to streamline test

suites. In the testing phase, models are developed using the Unified modeling language in

order to implement test suites. Alsmadi [25] proposed a technique for test suite

implementation estimates that is influenced by the principles of evolutionary algorithms.

In this study, Kansomkeat et al. [26] proposed a method for autonomously collecting

control flow data from decision facts and watching situations in ADs. Models for

condition-classification bushes make use of this reality. Following design, test suites

Table and suites are put into practice. An innovative approach for the automatic

generation of test suites via XML process by ADs was presented by Boghdady et al. in

this study [27].

3. Methodology

The five steps of the proposed methodology for test suites implementation are depicted in

Fig. 1. The foundation of this proposed methodology will be the UML state chart

diagrams (SCD), which are used to develop Hospital Management Systems (HMS). The

necessary data is gathered from each HMS UML state chart object and integrated to

implement a single activity diagram (SAD). The technique is dependent on a collection of

SCOs on which the SAD will be executed. The SAD is then transformed into an Activity

Graph (AG). A set of nodes and edges for linking those nodes that are indicated

sequentially conversing to the information fetched from the previously implemented UML

640 Implementation of Test Suites using Enhanced State Chart Diagrams

state chart objects will be present in an AG. Following this, we modified the activity

graph (AG) by deleting odd nodes like join, merge, and fork and implemented a simplified

activity graph (SAG), which we then traversed to obtain the test suites. The final phase

compares the traversing costs of the test suites created by AG and SAG. Each procedure

will be broken into steps in the following section using the HMS as the approach.

The six steps in this process are as follows:

(i) Designing State Chart Objects (SCOs) for each Hospital Management System (HMS)

object using a UML State Chart Diagram.

(ii) Combining all these SCOs into a Single Activity Diagram (SAD).

(iii) Converting SAD into Activity Graph (AG).

(iv) Simplifying the AG into Simplified Activity Graph (SAG).

(v) Implementing test suites by AG and SAG and comparing both test suites.

Fig. 1. Proposed framework for test suites implementation.

3.1. Designing of state chart objects (SCOs) for each object of HMS using UML SCD

(State Chart Diagram)

The fundamental definition of SCDs has been covered before going into detail about the

first step of the procedure. The SCD (State Chart Diagram) is well-defined

mathematically as follows:

An SCD (State Chart Diagram) is a Five-tuple , where

(i) A finite collection of states called are those in which an object

responds to events uniformly.

(ii) A finite sequence of changes from one state to another brought on by the input is

represented by .

(iii) A finite number of guard conditions, and corresponds

to , is a mapping from to such that .

(iv) is the flow relation between the States and Events.

K. Gupta et al., J. Sci. Res. 15 (3), 637-649 (2023) 641

(v) The starting state is , and the final state is . There is only one instance of

event such that , and for any instance of the event

and .

 This step implements the State Chart Diagram (SCD) for several HMS objects,

including (Doctor Object, Patient Object, Diagnosis Object, Pharmacy Object, and

Payment Object). And each object is a container for the states and transitions of other

objects. The many HMS objects that have been implemented are shown in Fig. 2 using a

UML state chart diagram.

642 Implementation of Test Suites using Enhanced State Chart Diagrams

Fig. 2. Different objects implementation using state chart diagram for HMS.

3.2. Combining different objects of HMS implemented by SCD into the SAD

Before delving deeper into this process step, we first discussed the fundamental definition

of an activity diagram. The AD (Activity Diagram) is well-defined mathematically as

follows:

An AD is a Six-tuple , where

(i) is called a finite collection of activity states, where .

(ii) is called a finite collection of complete transitions, where .

(iii) A finite number of guard conditions exists, and

corresponds to , and is a mapping from to such that .

(iv) is the flow relation between Activities and Transitions.

(v) The starting state is , and the last state is . There is exactly one

transition so that , and for any t’ T, and

 .

The transition is depicted by multiple merges, join, and fork conditions, and each state in

SCD is represented by a separate activity. There are multiple activities shown in different

ways for a single state. SCO symbols that have been transformed into activity symbols are

K. Gupta et al., J. Sci. Res. 15 (3), 637-649 (2023) 643

depicted in Fig. 3. Fig. 4 illustrates how the process of integrating various HMS objects

into a SAD, as performed by SCD, is accomplished. This is as follows:

Fig. 3. Symbols conversion of state chart into an activity diagram.

For each object of HMS, there is a UML state chart diagram, in which each state

represents the different activities accomplished by the object, and the transition is used to

represent the flow of states in performing activities. All the SCOs of HMS are combined

into a single activity diagram (SAD). For example, in Fig. 2, different objects of HMS,

like doctor and Diagnosis objects, are connected through a join node. In the state diagram

single state, for example, S1 (dr. registered) and S2 (check patient) show various activities

in a single state in one object in this doctor object, but in the combining procedure, these

several activities are represented by different activity nodes like A1, A2, A3, A4, etc.

which are shown in Fig. 5. These activities are combined through join/fork/merge (J, F,

and M) edges. Finally, all the activities are connected to the end node (E).

 The objects that are interrelated to each other in the case study HMS and

implemented using SCD are represented differently in the SAD, as presented in Fig. 4.

3.3. Conversion of SAD into AG

This implemented SAD of HMS is then converted into an intermediary graph called

Activity Graph (AG), which is shown in Fig. 5. After that; weight is assigned to every

edge for computing the traversing cost of all test suites. The graph implemented by this

single activity diagram (SAD) is very complex. A complexity-simplified activity graph

(SAG) is implemented to eliminate unusual nodes.

644 Implementation of Test Suites using Enhanced State Chart Diagrams

Fig. 4. Combining different objects of HMS into a single activity diagram.

K. Gupta et al., J. Sci. Res. 15 (3), 637-649 (2023) 645

Fig. 5. Conversion of single activity diagram of HMS into activity graph.

646 Implementation of Test Suites using Enhanced State Chart Diagrams

3.4. Simplifying AG to remove the complexity of AG

The implemented AG using AD remains complicated. The complication looks when

several nodes are converted, and each joins/merge/fork transition flow edges into nodes.

The simplification is proposed to eliminate these J/M/F nodes, which are used for join,

merge, and fork, respectively. The AG, represented in Fig. 5, has 17 paths, but the

traversing cost of these paths is high, as shown in Table 1, and implemented test suites are

lengthy and time-consuming and take up more space in memory. Hence, the simplification

process implements SAG by removing extra nodes that are joined, merged, and forked,

and every activity is connected by its prior activities in the end; all activities are connected

through the end node. The SAG, represented in Fig. 6, has 12 paths, and the traversing

cost of these paths is low, as shown in Table 2 and. Implemented test suites are small,

which a less time-consuming process is and takes less space in memory.

Fig. 6. Simplified activity graph of HMS.

K. Gupta et al., J. Sci. Res. 15 (3), 637-649 (2023) 647

3.5. Test suites implementation using activity graph (AG) before modification

AG is delivered as input for implementing test suites. The AG is traversed using the graph

traversal algorithm like breadth-first search to implement test suites. Here the number of

implemented test suites is 17, and their traversing cost is high, as shown in Table 1.

Table 1. Implemented test suites for HMS before modification in AG.

3.6. Test suites implementation using simplified activity graph (SAG) after modification

in AG

SAG is delivered as input for implementing modified test suites. The SAG is traversed

using the graph traversal algorithm like breadth-first search to implement modified test

suites. Here the number of implemented test suites is 12, as shown in Table 2, and their

traversing cost is less compared to the traversing cost of test suites in Table 1.

Table 2. Final implemented test suites for HMS after modification in AG, i.e., SAG.

4. Conclusion

In order to apply a method of developing test suites, the Hospital Management System

(HMS) has been used as a case study in this work. Because it contains many typical

648 Implementation of Test Suites using Enhanced State Chart Diagrams

scenarios already present in other case studies, the selected case study (HMS) is a good

choice for such a methodology. In particular, software testers will find the case study

presented in this paper useful. The work in this paper is limited by a few issues. If the

order of the state chart objects' occurrences is taken into account, the implemented test

suites may vary and also did not consider the possibility of software engineers using

several diagrams to implement the same software requirements in this case study.

It is possible to further reduce the size of developed test suites by recycling an

appropriate optimization technique, such as Meta-Heuristic algorithms by using this

heuristic approach will try to improve more implemented test suites in future.

References

1. D. Trubenbach, S. Muller, and L. Grunske, ACM 6 (2022).

https://doi.org/10.1145/3526072.3527523

2. D. Li, W. E. Wong, S. Pan, L. S. Koh, S. Li, and M. Chau, IEEE Access 10, 85518 (2022).

https://doi.org/10.1109/ACCESS.2022.3198694

3. K. Gupta and P. Goyal, AIP Conf. Proc. 2576, ID 050012 (2022).

https://doi.org/10.1063/5.0105807

4. M. Khandai, A. A. Acharya, and D. P. Mohapatra, IEEE 11, 157 (2011).

 https://doi.org/10.1109/ICECTECH.2011.5941581

5. P. Wang, X. Hu, N. Qiu, and H. Yang, Recent Adv. Computer Sci. Inform. Eng. 125, 489

(2012). https://doi.org/10.1007/978-3-642-25789-6_66

6. H. Haga and A. Suehiro, IEEE 12, 23 (2012). https://doi.org/10.1109/ICCSCE.2012.6487127

7. C. Chang, C. Lu, W. C. Chu, and X. Huang, IEEE 13, 511 (2013).

 https://doi.org/10.1109/COMPSACW.2013.116

8. P. Kaur and G. Gupta, Int. J. Comp. Sci. Mol. Comp. 2, 302 (2013).

9. K. Jena, S. K. Swain, and D. P. Mohapatra, IEEE 14, 621 (2014).

 https://doi.org/10.1109/ICICICT.2014.6781352

10. Y. Li and L. Jiang, IEEE 14, 1067 (2014). https://doi.org/10.1109/ICCSE.2014.6926626

11. V. K. K. S. and S. Mathew, Proc. Comp. Sci. 46, 859 (2015).

 https://doi.org/10.1016/j.procs.2015.02.155

12. M. Elallaoui, K. Nafil, and R. Touahni, IEEE 16, 65 (2015).

 https://doi.org/10.1109/SITA.2015.7358415

13. J. Park and Y. B. Park, IEEE 16, 1 (2016). https://doi.org/10.1109/PlatCon.2016.7456784

14. M. Elallaoui, K. Nafil, and R. Touahni, IEEE 16, 65 (2016).

 https://doi.org/10.1109/CIST.2016.7804972

15. S. Vemuri, S. Chala, and M. Fathi, IEEE 17, 1 (2017).

 https://doi.org/10.1109/CCECE.2017.7946792

16. A. Dutta, S. Godboley, and D.P. Mohapatra, IEEE 17 (2017).

 https://doi.org/10.1109/INDICON.2017.8487872

17. P. K. Arora and R. Bhatia, Proc. Comp. Sci. 125, 747 (2018).

 https://doi.org/10.1016/j.procs.2017.12.096

18. U. Verma, R. K. Rambola, and P. Meshram, Rev. Business Tech. Res. 15, 102 (2018).

19. T. Ahmad, J. Iqbal, A. Ashraf, D. Truscan, and I. Porres, Comp. Sci. Rev. 33, 98 (2019).

https://doi.org/10.1016/j.cosrev.2019.07.001

20. J. Cvetkovic and M. Cvetkovic, Physica A 525, 1351 (2019).

https://doi.org/10.1016/j.physa.2019.03.101

21. M. Panda and S. Dash, IEEE 8, 179167 (2020).

https://doi.org/10.1109/ACCESS.2020.3026911

22. Z. A. Hamza and M. Hammad, IEEE 20, 1 (2020).

 https://doi.org/10.1109/IEEECONF51154.2020.9319979

https://doi.org/10.1145/3526072.3527523
https://doi.org/10.1109/ACCESS.2022.3198694
https://doi.org/10.1063/5.0105807
https://doi.org/10.1109/ICECTECH.2011.5941581
https://doi.org/10.1007/978-3-642-25789-6_66
https://doi.org/10.1109/ICCSCE.2012.6487127
https://doi.org/10.1109/COMPSACW.2013.116
https://doi.org/10.1109/ICICICT.2014.6781352
https://doi.org/10.1109/ICCSE.2014.6926626
https://doi.org/10.1016/j.procs.2015.02.155
https://doi.org/10.1109/SITA.2015.7358415
https://doi.org/10.1109/PlatCon.2016.7456784
https://doi.org/10.1109/CIST.2016.7804972
https://doi.org/10.1109/CCECE.2017.7946792
https://doi.org/10.1109/INDICON.2017.8487872
https://doi.org/10.1016/j.procs.2017.12.096
https://doi.org/10.1016/j.cosrev.2019.07.001
https://doi.org/10.1016/j.physa.2019.03.101
https://doi.org/10.1109/ACCESS.2020.3026911
https://doi.org/10.1109/IEEECONF51154.2020.9319979

K. Gupta et al., J. Sci. Res. 15 (3), 637-649 (2023) 649

23. S. S. Panigrahi, P. K. Sahoo, B. P. Sahoo, A. Panigrahi, and A. K. Jena, IEEE 21, 263 (2021).

https://doi.org/10.1109/ESCI50559.2021.9396999

24. R. G. Tiwari, A. P. Srivastava, G. Bhardwaj, and V. Kumar, IEEE 21, 457 (2021).

 https://doi.org/10.1109/ICIEM51511.2021.9445383

25. I. Alsmadi, IEEE (2010). https://doi.org/10.1109/CCECE.2010.5575262

26. S. Kansomkeat P. Thiket, and J. Offutt, IEEE 10, 62 (2010).

 https://doi.org/10.1109/ICSTE.2010.5608913

27. P. N. Boghdady, N. L. Badr, M. A. Hashim, and M. F. Tolba, IEEE 11, 289 (2011).

 https://doi.org/10.1109/ICCES.2011.6141058

https://doi.org/10.1109/ESCI50559.2021.9396999
https://doi.org/10.1109/ICIEM51511.2021.9445383
https://doi.org/10.1109/CCECE.2010.5575262
https://doi.org/10.1109/ICSTE.2010.5608913
https://doi.org/10.1109/ICCES.2011.6141058

