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Abstract 

The article intertwines the study of wave packet dynamics with information-theoretic 

measurements in one dimensional (   ) system. A localized wave packet at time     

has been considered here and its change at later instant of time   is calculated for the 

position space wave function. The momentum space wave function is obtained by taking the 

Fourier transform of the position space wave function at time    . These wave functions 

are then employed to construct the wave packet's respective probability densities in position 

and momentum space, and later have been used to compute the corresponding position and 

momentum space Shannon (S) and Fisher information (I) entropies. It has been observed 

that although the Shannon and Fisher information entropies explicitly depend on the 

standard deviation, neither the Shannon entropy sum nor the product of Fisher information 

entropies is. Moreover, for   dimensional systems, the computed values of the Shannon and 

Fisher entropies are found to satisfy the lower bounds of the Bialynicki-Birula and 

Myceilski (BBM) inequality relation and the Stam-Cramer-Rao inequalities better known as 

the Fisher based uncertainty relation. Thus, our theoretical study explores the validation of 

information-theoretic measurements for wave packet dynamics using the basic formulations 

of information theory. 
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1.   Introduction 

Erwin Schr ̈dinger introduced the concept of wave packets that follow a classical 

trajectory in order to reduce the gap between the classical and quantum descriptions of 

nature [1]. This approach has culminated in Ehrenfest's theorem, which states that in the 

classical limit, the quantum mechanical expectation values behave classically [2]. The 

wave packets had no practical use for a long time because their preparation seemed 

impossible. However, recent advances in the physics and chemistry of laser interactions 

with atoms and molecules have brought wave packets and their dynamics into the 

limelight. Wave packets are being utilized in other areas of physics too. For example, the 
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low temperatures achieved in laser cooling lead to cold collisions of atoms, which require 

a wave packet treatment. The strong possibility of laser-induced excitation and subsequent 

spontaneous decay during such a collision makes it difficult to use any time-independent 

methods [3]. Wave packets are also proving useful in atom optics, where the packet 

represents an atomic matter-wave, and in semiconductor physics. A localized wave 

function is called a wave packet. A wave packet, therefore, comprises a group of waves of 

slightly different wavelengths, with phases and amplitudes so chosen such that they 

interfere constructively over a small region of space, outside of which they produce 

amplitude that reduces to zero rapidly as a result of destructive interference. 

 Not only is the wave packet useful in the description of 'isolated' particles confined to 

certain spatial regions, but they also play a key role in understanding the connection 

between quantum mechanics and classical mechanics. Therefore, the wave packet concept 

represents a unifying mathematical tool that can cope with and embody nature's particle-

like behavior and its wave-like behavior [4]. In all natural sciences, measurements play a 

fundamental role. Every measurement has some uncertainty, so the mathematical and 

theoretical tools are to be directly correlated with the knowledge of that uncertainty. Here 

the term' uncertainty' is used as a measure of missing information. It can be interpreted in 

a different way by reversing its sign. The 'lack of information' can be associated with 

'negative information',which can be termed 'uncertainty'. Since Bohr and Heisenberg 

formulated, the uncertainty relations have become the landmark of quantum theory. 

Information theory is primarily rooted in two classic papers by Claude E. Shannon in 

1948 [5]. A key measure in information theory is 'entropy'. Entropy is the amount of 

information contained in a system. It should come as no surprise that information theory 

provides a way to measure uncertainty. The position–momentum uncertainty principle is 

likely to be the most prominent difference between classical and quantum physics. The 

information entropy fits perfectly with the statistical nature of quantum mechanical 

measurements. The first mathematical realization of this principle was proposed by 

Heisenberg [6] and Kennard [7] in terms of the standard deviations ( ) of the quantum 

mechanical probability densities  ( ⃗) and  ( ⃗) of the particle in position and momentum 

spaces. Quantum-mechanical uncertainty relations state that probability distributions of 

canonically conjugate variables of a physical system cannot be simultaneously localized 

sharply. The standard uncertainty relation is the variance-based Heisenberg principle 

given by the expression  

     
 

 
 (1) 

where,    and    denote the variances of the probability densities  ( ⃗) and  ( ⃗) 

respectively in position and momentum space. The probability densities are assumed to be 

normalized to unity. This inequality is relevant in quantum mechanics, not because of its 

accuracy (generally, very small) but because it indicates that refined single-particle 

position measurements require large indeterminations for the single-particle momentum. 

This principle and its momentum-based generalizations [8] reflect the essential 

inadequacy of the classical concepts of single-particle position and momentum to describe 
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real systems. There are different types of entropy measures, namely Shannon information 

entropy (S), Fisher information entropy (I), R ́nyi entropy (R) Tsallis entropy (T) [9-13]. 

The use of information-theoretic quantities as uncertainty measures has led to deriving 

uncertainty relations that improve the standard uncertainty relation. This is the case of the 

celebrated entropic uncertainty relation,  

          (     ) (2) 

where, D represents the spatial dimension of the system and  

    ∫  ( ⃗)   ( ⃗)     (3) 

that describes the Shannon information entropy of the probability density in three-

dimensional position space [14], whereas,  

    ∫  ( ⃗)   ( ⃗)    (4) 

denotes the corresponding momentum space Shannon entropy of the system; with 

              ,                and               is the solid angle with  ( ⃗) 

being the normalized wave function in position space. The relation in Eq. (2) was 

conjectured by Hirschman [15] in 1957 and proved by Beckner [16] and Bialynicki-Birula 

and Mycielski [17]. Shannon connected the measure of the information content with 

probability density. It is necessary to mention that Shannon information entropy (S) and 

Fisher information entropy (I) [18] are both characterized by probability density or the 

charge density corresponding to changes in some observables [19]. The two most 

important entropic measures of the information theories are the Shannon information 

entropy (S) and Fisher information entropy (I) [20,21]. These two information entropies 

carry out a vital role in different areas of physics and chemistry. The entropic uncertainty 

relations in quantum information theory have been proven to be an alternative to the 

Heisenberg uncertainty relation in quantum mechanics [22-25].  

 On the one hand, the Shannon entropic uncertainty relation in position and 

momentum space satisfies the Bialynicki-Birula and Mycielski (BBM) inequality relation  

          (     ). The Shannon information entropy is usually regarded as the 

measure of the spatial spread of the wave function for different states [26]. One of the 

consequences of the BBM inequality is that it represents the lower bound values of the 

Shannon entropy sum. If the position entropy increases, then the momentum entropy will 

decrease in such a way that their sum bounds above (BBM) inequality. The most 

important information theoretic alternative to the Shannon entropy as an uncertainty 

measure is the Fisher information, [27] given by in position and momentum space as 

follows: 

   ∫
 

 ( ⃗)
, ⃗⃗⃗ ( ⃗)-     (5) 

and 

   ∫
 

 ( ⃗)
, ⃗⃗⃗ ( ⃗)-     (6) 

The above-mentioned expressions in Eqs. (5) and (6) for Fisher information entropies in 

position and momentum space can also be written in equivalent forms [28] as 
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    ∫    ⃗⃗⃗  ( ⃗)      (7) 

and 

    ∫    ⃗⃗⃗  ( ⃗)      .                 (8) 

Working with eqs. (7) and (8) for computational purposes will be profitable. The Shannon 

entropy represents a global measure of the spreading of the density because it is a 

logarithmic function, whereas the Fisher information has a locality property as it is a 

gradient function of the density. The higher this quantity, the more localized the density. 

Meanwhile, when the uncertainty becomes smaller, the accuracy in predicting particle 

localization becomes higher [29,30].  

 On the other hand, the Fisher information is the basic variable of the principle 

extreme physical information in the same manner as the Shannon entropy is the 

cornerstone of the maximum entropy method [31,32]. Moreover, it has been used (a) to 

describe some macroscopic quantities such as the kinetic [33] and the Weiszäcker [34,35] 

energies, (b) to characterize correlation properties in atomic systems [36], and (c) to 

identify the most distinctive nonlinear phenomena (the avoided crossings) of the energy 

spectra of atomic and molecular systems in strong external fields [37]. Other quantum-

mechanical uses of the Fisher information are available in literature [29,38,39]. 

 Unlike the Shannon entropy that satisfies the BBM inequality, the Fisher information 

fulfills the Stam inequalities [40],      〈  〉 ,       〈  〉 and the Cramer–Rao 

inequalities [41]    
 

〈  〉
 ,     

 

〈  〉
 .  

 It has been shown by E. Romera et al. see Ref. [40] that the Fisher information of 

single-particle systems with a central potential in D-dimensional (   ) position and 

momentum space satisfy the following uncertainty relation,  

          (   
(      )| |

  (     )
) (   ),   (9) 

where ' ' and ' ' represent the hyper-angular quantum numbers and magnetic quantum 

numbers. 

When     and    , the inequality of Eq. (9) reduces to 

          ,                     (10) 

and when    , it gives the trivial inequality as 

      .     (11) 

Our present work aims to theoretically study wave packet dynamics using information 

theory. The study intertwines the dynamics of wave packets with the information-theoretic 

measurements for the numerical values of the Shannon (  and   ) and Fisher information 

entropies (   and   ) in position and momentum space satisfying the entropic uncertainty 

relations.  

The article is organized as follows: 

The materials and method Section has been focused on obtaining the expression of the 

position space wave function for a localized wave packet of a free particle. The change of 

minimum wave packet with time and the dynamical changes of the wave packet's spread 
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have been mathematically delineated [42,43]. It can be observed that the amplitude factor 

of the wave function of the initial wave packet depends on the standard deviation ( ), but 

at a later instant of time   when the wave packet starts spreading, the amplitude factor no 

longer remains dependent on the standard deviation ( ). Later the momentum space wave 

function  (    )   (  ) is obtained by the recourse of the Fourier transform [44] of the 

position space wave function  (   )   ( ). 

 In the results and discussion Section, the constructions of the position and momentum 

space probability densities [ (   )   ( ) and  (    )   (  )] for the wave functions 

 ( ) and   (  ) at      i.e.  〈 〉  〈  〉   ; have been described respectively. These 

probability densities have been used to compute the numerical values of the position and 

momentum space Shannon (  and   ) and Fisher information entropies (   and   ).  Later, 

the numerical values so obtained (in the case of a one-dimensional system) have been 

found to satisfy the BBM inequality relation (     )         for the Shannon entropy 

sum(     ) [45] and the Fisher-based inequality relation        for the product of 

Fisher information entropies (    ) respectively in the position and momentum space.    

Finally, the conclusion Section has been devoted to summarizing the present work with 

some concluding remarks. 

 

2. Materials and Method 

 

Let us take for simplicity that the wave packet centered at the origin at time     has the 

form with 〈 〉 [or  〈  〉 ]. In terms of standard deviation ( ), we have the position space 

wave function as below: 

 (   )  
 

√ √ 
 

,   
  

    -
  ,  

 

 
〈  〉  -

.     (12) 

Its Fourier transform at     gives the momentum space wave function  (  ) and it can 

be expressed as follows: 

 (    )  
 

√   
∫  (   )

 

  
  ,    

 

 
    -         

Or,  (    )  
 

√   

 

√ √ 
∫  

,  
  

    - 

  
  ,  

 

 
〈  〉  -  ,    

 

 
    -    

Or,   (  )  
 

√   

 

√ √ 
∫  

  
  

    

  
      

 

 
(     〈  〉)     

Or,  (  )  √
 

 √ 
 

  
  

    (     〈  〉) 

.   (13) 

Therefore, the wave packet at a later instant of time ' ' has the form given by the Fourier 

transform: 

 (   )  
 

√   
∫  (  )

 

  
  

 

 
 (              )     ,                  (14) 

where,    
  

 

  
 for a free particle wave function. 
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  (   )  
 

√   
√

 

 √ 
∫  

  
  

    (       〈  〉) 

 

  

  
 

 
 (        

  
 

  
  )    

 √
 

     √ 
∫  

   
  

    (      〈  〉) 

 

  

  
 

 
 (        

  
 

  
  )    

  ∫  
  

  

    (      〈  〉) 

 

  

  
 

 
 (        

  
 

  
  )    

where,   √
 

     √ 
.                      (15) 

  (   )   ∫  
  

  

    (     〈  〉)  

  
  

 

 
 (        

  
 

  
  )   .    (16) 

Let,      〈  〉    (17) 

      〈  〉 (18) 

and (     〈  〉)     (19) 

Also,        〈  〉  (20) 

and  

      .  (21)  

Now, substituting the values of Eqs. (17) to (21) for the expression of  (   ) in Eq. (16), 

we have, 

 (   )   ∫  
  

  

      

  
  

 

 
 ,      〈  〉     

(  〈  〉) 

  
  -   (22) 

  ∫  
  

  

     

 

  

 
 

 
   

 

 
〈  〉     

 

 
 ,

(    〈  〉) 

  
  -   

  ∫  
  

  

     

 

  

 
 

 
   

 

 
〈  〉     

 

 

,( )        〈  〉   (〈  〉) - 

     

    
 

 
〈  〉     

 

 

〈  〉  

  ∫  
  

  

      

  
 

 

 
      

 

 

(          〈  〉) 

    .      (23) 

Let,      
 

 
〈  〉     

 

 

〈  〉  

   (24) 

and   ∫  
  

  

      

  
 

 

 
      

 

 

(        〈  〉) 

    ,   (25) 

such that  

 (   )     .         (26) 

Let us calculate ' ': 

  ∫  
  

  

     

 

  

 
 

 
      

 

 

(          〈  〉) 
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 ∫  
  

  

     

 

  

 
 

 
      

 

 

(          〈  〉) 

     

 ∫  
  

  

     

 

  

 
     

       
  

  
    

      (           〈  〉 ) 
   

 ∫  
  

    ,       
   

      
  

   (           〈  〉 )-

 

  

   

 ∫  
  

    , .       
  

        /  .
   

       
  

        〈  〉  /-

 

  

   

 ∫  
  

    ,     .    
   

   /    
    

   (    
〈  〉 

 
 )-

 

  

   

 ∫  
  

    , 
      (     

   

   )         (      
〈  〉 

  )

  -

 

  

   

 ∫  
  

    , 
    (       

   
 )         (    

〈  〉 
  )

  - 

  
                (27) 

Now, let the term:    .     
   

 
/ (28) 

Now the expression for ' ' from Eq. (27) can be rewritten as follows: 

  ∫  
  

    , 
               (    

〈  〉 
  )

  -

 

  

   

 ∫  
  

    , 
  

   (       
    (      

〈  〉 
 )

  )-

 

  

   

 ∫  
  

      ,           
  (      

〈  〉 
 )

     *
  (      

〈  〉 
 )

  +    *
  (      

〈  〉 
 )

  +  -

 

  

   

 ∫  
  

      ,(
  (      

〈  〉 
 )

  )    *( )        
  (      

〈  〉 
 )

     (
  (      

〈  〉 
 )

  )  +-

 

  

   

 ∫  
  

      ,(
  (      

〈  〉 
 )

  )    *     
  (      

〈  〉 
 )

  +  -

 

  

   

 ∫  
  

      (
  (      

〈  〉 
 )

  ) 
 

  

  
  

  

      *    
  (      

〈  〉 
 )

  + 
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 ∫  
  

      
    

  (      
〈  〉 

 
) 

 

  

  
  

  

      *     
  (      

〈  〉 
 )

  + 

   

 ∫  
  

 

   (     
〈  〉 

 
)  

  
  

  
  

      *     
  (      

〈  〉 
 )

  + 

   (29) 

Let, *   
  .      

〈  〉 

 
/

  +    (30) 

and the standard integral  

∫       

  
   √

 

 
 (31) 

Substituting the values of Eqs. (30) and (31) in Eq. (29) we have, 

   
  

 

   (      
〈  〉 

 
) 

∫  
  

  

      

  
        

   

   
  

 

   (      
〈  〉 

 
) 

 √
 
  

   

 

   
  

(      
〈  〉 

 ) 

    √
     

   (32) 

Substituting the values of  ,    and   respectively, from Eqs. (15), (24), and (32) in Eq. 

(26), we have, 

 (   )      

    
 

 
〈  〉     

 

 

〈  〉  

    
  

(      
〈  〉 

 ) 

    √
     

   (33) 

 √
 

     √ 
   

 

 
〈  〉      

 

 

〈  〉  

    
  

(      
〈  〉 

 ) 

    √
     

  
 

 √
 

     √ 
 
     

  
   

 

 
〈  〉      

 

 

〈  〉  

    
  

(      
〈  〉 

 ) 

    

 √
 

  √ 
   

 

 
〈  〉 (     

〈  〉 

  
 )   

  
(      

〈  〉 
 ) 

    

 √
     

      √ 
   

 

 
〈  〉 (     

〈  〉 

  
 )   

  
*      

〈  〉 
 + 

    

 
 

√  √ 
  

 

 
  

  
*      

〈  〉 
 + 

    
 

 
〈  〉 (     

〈  〉 

  
 )
 (34) 
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Finally the expression for the wave packet at a later instant of time   becomes 

  (   )  
 

√  √ 
  

 

 
  

  
*      

〈  〉 
 + 

    
 

 
〈  〉 (     

〈  〉 

  
 )
 (35) 

where,     .     
   

 
/. 

 

3. Results and Discussion 

 

At time    ,  〈 〉  〈  〉   , the position and momentum space wave functions are 

written as follows: 

 (   )  
 

√ √ 
 

,   
  

    -
 and   (    )  √

 

 √ 
 

   
     

 

   . 

The probability density in position space for the wave packet is expressed as 

 (   )   ( )    (   ) (   )  
 

 √ 
 

   
  

   (36) 

and in momentum space the same can be expressed as 

 (    )   (  )    (  ) (  )  
 

 √ 
 

   
    

 

  .    (37) 

The Shannon entropies (   and   ) in position and momentum space which are defined in 

Eqs. (3) and (4) in three dimensions, can be expressed in one-dimension respectively as 

follows: 

     ∫  
 

  
      (38) 

and  

     ∫  
 

  
      .  (39) 

The Shannon entropy in position space (  ) is 

     ∫  

 

  

      

  ∫ (
 

 √ 
 

   
  

  )

 

  

  (
 

 √ 
 

   
  

  )    

  ∫ (
 

 √ 
 

   
  

  )

 

  

,  (
 

 √ 
)    ( 

   
  

  )-   

  
 

 √ 
  (

 

 √ 
) ∫ ( 

   
  

  )

 

  

   
 

 √ 
∫ ( 

   
  

  )

 

  

  ( 
   

  

  )-   



660 A Theoretical Study on Wave Packet Dynamics 

 

  
 

 √ 
  (

 

 √ 
)   √   

 

 √ 
( 

 √ 

 
) 

 
 

 
    (

 

 √ 
) 

 
 

 
    (  )    ( √ ) 

 
 

 
   ( )    (√ ) 

     ∫  
 

  
      

 

 
   ( )    (√ ).    (40) 

      ∫  

 

  

       

   ∫  

 

 

       

   [
 

 
   ( )    (√ )] 

      ( )     (√ ).   (41) 

The Shannon entropy in momentum space (  ) is 

     ∫  

 

  

       

   ∫ (
 

 √ 
 

   
     

 

  )

 

  

  (
 

 √ 
 

   
     

 

  )     

   ∫ (
 

 √ 
 

   
     

 

  )

 

  

 ,  (
 

 √ 
)    ( 

   
     

 

  )-    

   
 

 √ 
  (

 

 √ 
) ∫ ( 

   
     

 

  )

 

  

    
 

 √ 
∫  

   
     

 

  

 

  

  ( 
   

     
 

  )     

   
 

 √ 
  (

 

 √ 
)

√ 

√
  

  

 
 

 √ 
(  

 

 
 

√ 

√
  

  

)  

   
 

 √ 

 √ 

 
   (

 

 √ 
)  

 

 √ 

 √ 
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     (
 

 √ 
)  

 

 
 

 
 

 
   ( √ )    ( ) 

 
 

 
   (√ )    ( )     [     -.                    (42) 

      ∫  

 

  

        

   ∫  

 

 

        

      (√ )     ( ).    (43) 

Now, the Shannon entropy sum, i.e. (      ) by using the values obtained from Eq. (41) 

and (43) becomes 

        

 {     ( )     (√ )}   {     (√ )     ( )} 

      (√ ) 

           

        .    (44) 

Similarly, the position and momentum space Fisher information entropy (       ) defined 

in Eqs. (7) and (8) in three dimensions can be expressed in one-dimension respectively as 

follows: 

    ∫    ⃗⃗⃗  ( )     (45) 

And 

    ∫    ⃗⃗⃗  (  )     .    (46) 

The Fisher information entropy (  ) in position space is 

    ∫    ⃗⃗⃗  ( )     

 ∫  

 

 

(
 

  
  

     

√    
 

  
  

  

  

√    
 

 
  

  

  

√      
)    

 ∫  
 

 
(

 
  

  

     

√     
  

  
  

  

√    )    ∫  
 

 
(

 
  

  

  

√      
)    (47) 
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The second integral of Eq. (47) i.e.  ∫  
 

 
(

 
  

  

  

√     
)    is an improper type integral. The 

integral of  (
 

  
  

  

  ) does not converge in the limit (   to  ). But, it converges at all 

values of  , except at    . Thus by ignoring the contribution of the said improper 

integral, we obtain the Fisher information entropy (  ) in position space as follows: 

   ∫  

 

 

(
 

  
  

    

√   
 

  
  

  

  

√   
)    

  
  √

 

  

 
 

  
 

  .   (48) 

The Fisher information entropy (  ) in momentum space is 

    ∫    ⃗⃗⃗  (  )      

 ∫  

 

 

(
 

  
  

    

    
   

√   
 

  
  

  
    

    

√   
 

 
  

  
    

   

  
 √  

)    

 ∫  
 

 
(

 
  

  
    

    
    

√    
  

  
  

    

    

√   )    + ∫  
 

 
(

 
  

  
    

   

  
 √  

)    (49) 

Similarly, the integral in Eq. (49) i.e. ∫  
 

 
(

 
  

  
    

   

  
 √  

)     is an improper integral. The 

integral of (
 

  
  

    

  

  
 ) does not converge in the limit (   to  ). But, it converges at all 

values of    except at     . Thus by ignoring the contribution of the said improper 

integral, we obtain the Fisher information entropy (  ) in momentum space as follows: 

   ∫  

 

 

(
 

  
  

   

    
   

√   
 

  
  

  
   

    

√   
)     

  
  √
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  .   (50) 

The product of the Fisher information entropies, 

     . 
 

  / . 
   

  /  
 

      [     -.    (51) 

 

4. Conclusion 

 

In the present article, the dynamics of wave packets and the entropic uncertainty relations 

for the Shannon and Fisher information entropies have been addressed mainly. Here, a 

wave packet localized in a very small region at time     has been considered. The 

change with time of the wave packet at a later instant of time   is calculated for the 

position space wave function so that it evolves the wave function  (   ) to  (   ). It can 

be observed that although the amplitude of the wave function of the initial wave packet 

depends on the standard deviation ( ), but at a later instant of time   when the wave 

packet starts spreading, it doesn’t. The momentum analog  (  ) for the wave packet is 

obtained by the recourse of the Fourier transform of the position space wave function 

 ( ). The probability densities [ ( ) and  (  )] in position space and momentum space 

have been constructed with the help of these wave functions [ ( ) and  (  )]. Further, 

these probability densities [ ( ) and  (  )] have been used to compute the corresponding 

Shannon (S) and Fisher information (I) entropies both in the position and momentum 

space. It has been observed that though the numerical values of the position and 

momentum space Shannon (  and   ) and Fisher information (   and   ) entropies 

explicitly depend on the standard deviation ( ) but neither the Shannon entropy sum 

(      ) nor the product of Fisher information entropies (    ) is. By using Eq. (2) and 

(10) in one-dimension , one can find the numerical values for the Shannon entropy sum 

and the Fisher-based uncertainty relation respectively as (     )         and  

      . Herein, all our calculations, we have taken     and used the traditional 

atomic units (       ). In our present work, the numerical values for Shannon 

entropy sum have been obtained as (      )          and for the Stam-Cramer-Rao 

inequalities (Fisher based uncertainty relation) as       . Therefore, the computed 

values for the Shannon and Fisher information entropies are found to satisfy the lower 

bound of the Bialynicki-Birula and Myceilski (BBM) inequality relation (     )  

 (     ) and the Stam-Cramer-Rao inequalities, better known as the Fisher-based 

uncertainty relation         . Thus, our theoretical study explores the validation of the 

information-theoretic measurements for the wave packet dynamics in respect of the lower 

bounds for the BBM inequality and the Fisher-based uncertainty relation using the basic 

formulations of the information theory. Finally, this work finds a useful and different view 

of the problems and possibilities associated with the works of wave packet dynamics and 

the information theory exploring the broader applicability. We believe that our present 

work could be treated as a valuable reference and facilitate further research on 'wave 

packet dynamics using information theory' drawing more attention in the near future, 

giving a deeper insight into it. 
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