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Abstract 

The present study concerns an examination of a cosmological model that exhibits axially 

symmetric and incorporates perfect fluid within the context of Lyra geometry. The field 

equations are solved by utilising the relation between the metric coefficients and the 

equation of state for a stiff fluid. The physical and kinematic properties, namely the Hubble 

parameter, the deceleration parameter, the energy density, and the pressure, have been 

examined, and their graphical behaviour has been analysed. Furthermore, we examined 

several additional parameters, including the redshift and the Om(z) diagnostic, and verified 

the stability of the model by utilising the sound speed ratio and perturbation technique. 
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1.   Introduction 

Since the introduction of Einstein's theory of gravitation, attempts have been made to 

unify the field theories; such a theory would be required to generalize the usual 

Riemannian space-time. Weyl [1] made one of the best attempts in this direction. He 

proposed a more general theory in which electromagnetism is also described 

geometrically. Later, Lyra [2] suggested a modification of Riemannian geometry, which 

may also be considered a modification of Weyl's geometry, by introducing a gauge 

function into the structure less manifold, which removes the non-integrability condition of 

the length of a vector under parallel transport and a cosmological constant is naturally 

introduced from the geometry. In the subsequent investigations, Sen [3], Dunn et al. [4] 

formulated a new scalar-tensor theory of gravitation and constructed an analog of 

Einstein's field equations based on Lyra's geometry. 

 Halford [5] says that the current theory predicts the same effects within the limits of 

what can be seen when it comes to the classic tests of the solar system. Soleng [6] has 

pointed out that the constant displacement field in Lyra's geometry will either include a 

creation field and be equal to Hoyle's creation field in cosmology [7-9] or contain a 
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special vacuum field, which together with the gauge vector term may be considered a 

cosmological term. 

 The field equations (in geometrized units for which c = 1, G = 1), in normal gauge for 

Lyra's manifold, obtained by Sen [3] as  

    
 

 
     

 

 
     

 

 
    

                                    (1) 

where     is the displacement vector field and defined as    ( (          and  

Conservation law                                                  (2) 

Agrawal et al. [10] studied vacuum solutions of FRW and axially symmetric space-

time in f(R) theory of gravity, Mete et al. [11] investigated an axially symmetric non-static 

space-time in the presence of bulk stress in the scalar-tensor theory formulated by Saez 

and Ballester, Sahoo et al. [12] studied an axially symmetric cosmological model in f(R, 

T) gravity in the presence of perfect fluid. Vinutha et al. [13] studied the Kantowski–

Sachs perfect fluid cosmological model in R2-Gravity. Hadole et al. [14] studied Bianchi 

type VI0 string cosmological model in Lyra’s manifold. Pradhan et al. [15] examined 

some exact Bianchi type-V cosmological  models in scalar tensor theory : kinematic tests. 

Reddy et al. [16] studied axially symmetric cosmic strings and domain walls in Lyra 

geometry. Adhau et al. [17] investigated an axially symmetric non-static space-time in the 

presence of thick domain walls with scalar-tensor theories formulated by Brans and 

Dicke. Sharma et al. [18] presented a comparative study of transit FRW and axially 

symmetric cosmological models in the framework of domain walls in f(R, T ) modified 

theory of gravity considering the time-dependent deceleration parameter. Hegazy et al. 

[19] studied Bianchi's type VI0 model in Lyra geometry. Yadav et al. [20] investigated a 

model of the quintessence universe with the dominance of dark energy in Lyra geometry. 

Aditya et al. [21] studied the Bianchi type-IX model in the presence of anisotropic dark 

energy and a massive scalar meson field in Lyra geometry. Mollah et al. [22] investigated 

the behavior of viscous fluid in string cosmological models within the framework of Lyra 

geometry. Reddy [23] static and non-static plane-symmetric string cosmological models 

are obtained in the Lyra manifold.  

 Many authors have studied the stability of cosmological models using various 

techniques, some of them are Nimkar et al. [24], Geovanny et al. [25], Katore et al. [26, 

27], Shah et al. [28], Ahmed et al. [29], Sharif et al. [30], Knutsen [31,32], and Wanas et 

al. [33], Vinutha et al. [34], Koussour et al. [35], Yadav et al. [36], Chiang-Mei Chen et 

al. [37], and Saha et al. [38]. Also, Santhi et al. [39], Thakur [40], Zhai et al. [41], and 

Debnath et al. [42] proposed a new parameter called the   (   diagnostic. 

 Drawing inspiration from the previously mentioned works, this research investigates 

an axially symmetric cosmological model with perfect fluid in the presence of Lyra 

geometry. The work is organised as follows: after the introduction, Section 2 provides a 

description of the metric and field equations. Section 3 is devoted to the solution of the 

field equations. Section 4 is dedicated to the examination of the physical and kinematical 

properties of the model. Section 5, Stability Analysis, and the last section contain some 

conclusions. 
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2. Metric and Field Equations 

 

Consider the axially symmetric space-time given by Bhattacharya and Karade [43] in the 

form          

          (  (      (         (                               (3)                        

Where  ,   are functions of the proper time t alone while f is a function of co-ordinate   

alone. 

The energy-momentum tensor for perfect fluid is given by     

    (                           (4)                                                                                            

Here   is the pressure,   is the energy density, and ui is the four-velocity vectors of the 

distribution, respectively. 

From Eq. (4), we have     

  
    

    
     and   

                      (5)                 

The trace of energy-momentum tensor is given by                           

    
    

    
    

                                                                                                                 

Using the equations (1), (2), (4), and (5), the field equations of metric (3) are 
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Where the subscript '4' denote ordinary differentiation with respect to t. Together with 

equations (7) and (8), the functional dependency of the metric provides 

   

 
       Constant 

If    , then  (    (constant f ) ,       

By selecting the appropriate units for  , it is possible to set this constant to 1. Thus, 

equations (7) and (8) will be transformed into the following as  (     results in the flat 

model of the universe [16]. 
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3. Solutions of Feld Equations 

 

The field equations (6), (10), and (11) are three equations in five unknowns          . 

Hence to get a determinate solution, one has to assume the relation between metric 

coefficients, i.e.,      and the condition of stiff fluid     gives, 

   

 
   

  

 
                                                                                      (12)             

The above equation admits an exact solution given by  

    {      }
 

    ⁄                                                                             (13)             

   {      }
 

    ⁄                                                                               (14) 

Also, 

   
(     
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{      }
 +                                                                     (15) 
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{      }
 +                                                                      (16) 

and    
 

 
,
  (      

  (      

{      }
 -                                                                   (17) 

The axially symmetric cosmological model in equation (3) takes the form 

           (       
  

    ⁄ [      (     ]    (       
 

    ⁄     

 

4. Physical and Kinematical Properties of the Model 

 

In this section, some of the important physical parameters are given. Expansion Scalar, 

Hubble parameter, spatial Volume, Shear Scalar, and deceleration parameter are given by 

Expansion Scalar:        
  

 (       
                                             (18)                 

Hubble Parameter:    
  

(       
                                                                        (19) 

Spatial Volume:    √        (                                (20)              

Shear Scalar :    
 

 
       

  
 

  (       
                                                             (21)     

Deceleration Parameter:    
  

  *    
  

 

 
  +                                           (22) 

Average Scale factor  (    
 

 ⁄  (     (         
 

          (23) 

Graphs are plotted for particular values of the physical parameters and other integration 

constants. 
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The decomposition of a time-like tidal tensor is 

        (
 

    
)   (       
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)   (       

    

                                  (24) 

and, Vorticity                                  (25)               

The vorticity of the model along x, y, z, and t-axes is zero. So, the obtained model is non-

rotating. Whereas Vorticity is nonzero, the model is rotating. 

Fig. 1. Plot of Expansion Scalar Vs. Cosmic 

time for 𝑘  𝑘  1    .                                  
Fig. 2. Plot of Hubble Parameter Vs. Cosmic 

time for 𝑘  𝑘  1         

Fig. 3. Plot of Shear Scalar Vs.                                         

Cosmic time for 𝑘  𝑘  1    .     

Fig. 4. Plot of Spatial Volume Cosmic 

time for 𝑛   .5 and 𝑘  𝑘  1    . 
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4.1. Redshift  

 

The scale factor   and redshift   are connected through the relation 

1    
  (  

 (  
                                                                                              (26) 

Where    (   is the present value of the scale factor, take   (   1. 

Using equation (23) and the relation  (   
 

   
, with z being the redshift, gives us the 

following relation 

  
(          

     

   
     

                                                                  (27) 

From equation (19) and (27), gives 

 (      
     (1                                                                     (28) 

 

4.2. Om (z) diagnostics 

 

The starting point for Om(z) diagnostics is the Hubble parameter, and it is defined as  

  (   
(
  

  
)
 

 1

(1      1
 

Thus, Om(z) involves only the first derivative of the scale factor through the Hubble 

parameter and is easier to reconstruct from observational data, gives  

  (   
[   

     (     ]
 
   

 

  
 [(       ]

                                               (29) 

From equation (29), it is observed that   (   increases as   decreases, so   (   

increases due to the evolution of the universe. 

 

5. Stability Analysis 

 

In this section, check the stability of obtained model using the ratio of sound speed and 

perturbation technique. 

Firstly, discuss the stability of the model by observing the ratio of sound speed given by 
  

  
   

 , A positive value of this ratio i.e.,   
   ,  indicates a stable model, while a 

negative value i.e.,   
    indicates an unstable model. 

In the present model,  

  
  

  

  
 

(     (    
     

 (    
  (      )

                                                                            (30) 

From Fig. 5, it is observed that for       1and    .5, the ratio of sound speed    
  

is positive, it gives the present cosmological model is a stable. Whereas for    .5  the 
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ratio of sound speed   
  is negative, so the present cosmological model is unstable. The 

stability condition of the model also depends on values of constant.  

                                          

               

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Plot of ratio of sound speed Vs. constant n for       1. 

     

Now, check the stability of the solution with respect to the perturbation of the metric. 

By using a perturbative technique, a through investigation of the stability of the relevant 

solutions may be performed. To ensure the stability of the precise or approximative 

background solution, perturbations of a gravitational system's fields should be compared 

to the background evolutionary solution [33-37]. Then investigate the stability of the 

background solution concerning metric perturbations. Here, the solutions' metric 

perturbation stability is as follows: 

              (1  
   

   
)     (1       

where     
   

   
 

Similarly, represent the perturbation in the spatial Volume as   ∏   
 
   , directional 

Hubble parameter     
  
 

  
 and mean Hubble parameter     

 

 
∑   

 
   as follows 

       ∑     , 

       ∑     , 

     
1

 
∑   

 

 

The following equations can be used to demonstrate how the metric perturbations    , to 

the linear order in    , obey them. 

∑   
  

    ∑      
 

                                                                              (31) 
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                                                                  (32) 

∑   
 

                                                                                                          (33) 

Solving equations (31)-(33), it gives 

  
  

  
 
 

 

  
  

 

                                                                                           (34) 

For our model, background spatial volumes    is given by 

        (                                                                                          (35) 

From above equations (31)-(35), obtain 

    
 

        
   (           

Where   and    are integrating constants. Therefore, the "actual" fluctuations for each 

expansion factor            is given by 

    *
 

        
   (          + 

 (        (       
             (36) 

The behavior of actual fluctuations     as a function of time can be seen in equation (36), 

which also demonstrates that     begins with a slightly positive value and rapidly 

decreases to zero as the universe expands. So, even when the gravitational field is 

perturbed, the background solution remains stable. 

 

Conclusion 

 

The present study examines a cosmological model that is axially symmetric and features 

Lyra geometry within a perfect fluid. In order to solve the field equations, we use the 

relation      and the condition of the stiff fluid. In the present study, negative pressure 

and positive energy density were found. The concept of repulsive gravity is associated 

with the negative pressure that is present on a cosmological scale or within spherical 

entities like planets. Graphically, it can be observed that the spatial volume of the universe 

exhibits an increase as time progresses. This suggests that the universe's expansion 

originated from a finite volume and continues to expand as time elapses. Also, it is 

interesting to note that as t gradually increases, the scalar expansion θ, Hubble parameter 

H, and shear scalar.    decreases, which means all the physical parameters are well-

behaved. In the present model   (   increases as   decreases, so   (   increases due to 

the evolution of the universe. For the values of       1 and    .5, the ratio of 

sound speed    
  is positive, This positive ratio leads to the stability of the current 

cosmological model. While for    .5  the ratio of sound speed   
  is negative, the 

present cosmological model is unstable. The values of the constants also have a role in 

determining the stability condition of the model.  As the universe continues to expand, the 

value of the actual fluctuations     starts out with a little positive sign and quickly 
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approaches zero. As a result, the background solution is stable against the perturbation of 

the metric. 
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