

Resource Aware Orthogonal Projected Regressive MapReduce Lottery Load

Balancing in Cloud Computing

M. Ellakkiya
*
, T. N. Ravi

PG and Research Department of Computer Science, Thanthai Periyar Government

Arts and Science College (Autonomous) Affiliated to Bharathidasan University,

Tiruchirappalli, Tamil Nadu, India

Received 6 March 2023, accepted in final revised form 23 October 2023

Abstract

Cloud Computing is an internet-based network technology that provides various services
and requirements to customers through online computing resources. In the cloud, Load
balancing is the most significant issue that includes both hardware and software platforms
for the execution of demand of the user request. Furthermore, for handling multiple user
requests, load balancing is necessary. Therefore, an efficient load-balancing technique is
required to optimize and ensure user satisfaction by utilizing the virtual machine's resources
efficiently. A novel Orthogonal Projected Regressive MapReduce Lottery Load Balancing
(PORLOB) technique is introduced for resource-efficient task scheduling with minimal
Makespan and complexity. In the PORLOB technique, many cloud user requests are
transmitted to the cloud server from different locations. The load balancer uses the index
table for maintaining the virtual machines. The MapReduce function includes two steps,
namely, map and reduce. Based on the resource estimation, the map function performs the
regression analysis and provides three resource statuses of the virtual machine: overloaded,
less loaded, and balanced. In the reduction phase, the load balancer uses the lottery
scheduling technique to balance the workload by migrating the task from an overloaded
Virtual Machine to a less-loaded VM.

Keywords: Cloud computing; Virtual machine; Task scheduling; Makespan; MapReduce

function; Lottery load balancing; Minkowski orthogonal projected regression.

© 2024 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.

doi: http://dx.doi.org/10.3329/jsr.v16i1.64683 J. Sci. Res. 16 (1), 53-69 (2024)

1. Introduction

Cloud computing has numerous advantages, including high speed, cost reduction, data

security, and scalability. But the cloud environment's main challenge is balancing the

workloads among the available resources to achieve maximum performance. Load

balancing allocates the user's on-demand requests between different machines through task

scheduling. The objective of the load balancing technique is to decrease makespan time

while handling many requests. Load balancing across multiple virtual machines in cloud

deployment is the major issue, and it causes the under-utilization of resources. But cloud

environments suffer from challenges due to inefficient resource utilization. Different load-

* Corresponding author: ellakkiya.researchscholar@gmail.com

Available Online

J. Sci. Res. 16 (1), 53-69 (2024)

JOURNAL OF

SCIENTIFIC RESEARCH

www.banglajol.info/index.php/JSR

Publications

http://dx.doi.org/10.3329/jsr.v16i1.64683
mailto:ellakkiya.researchscholar@gmail.com

54 Orthogonal Projected Regressive MapReduce Lottery Load

balancing methods are introduced to schedule the tasks in the virtual machine to address

these problems.

Multi-objective Task Scheduling Decision Tree (TS-DT) algorithm was developed [1]

to distribute and execute an application's task for reducing the Makespan, enhancing load

balance with better resource utilization. However, energy-aware task execution was a

major problem in achieving better performance. Deep Reinforcement Learning with

Parallel Particle Swarm Optimization (DRLPPSO) was developed [2] to solve the load-

balancing problem with better accuracy and high speed. However, it failed to improve the

dynamic cloud network's resource allocation and management concepts.

A Content-aware Machine Learning based Load Balancing Scheduling was proposed

[3] to improve the throughput and minimize the response time. But the energy

consumption, overhead time, and migration time were not considered. An integrated

concept of high-performance computing with artificial intelligence machine learning

techniques was introduced [4] for improving the load balancing capacity. But, the model

failed to include more cloud components to handle the large volume of tasks in a multi-

cloud environment.

A Mantaray-modified multi-objective Harris hawk optimization method was

introduced [5] for minimizing response time and resource utilization. But the efficiency of

the proposed algorithm was not improved by involving parameters like dependent task and

bandwidth. The load Balanced Service Scheduling Approach (LBSSA) was introduced in

[6] for load balancing among resources. However, the performance of throughput was not

analyzed to improve the performance of load balancing.

An adaptive Pbest discrete PSO (APDPSO) was introduced [7] for static load

balancing. But the algorithm increases the computational complexity. An integration of

modified Particle swarm optimization (MPSO) and an improved Q-learning algorithm was

developed [8] for balancing the workload between virtual machines. But the load

balancing was performed.

Two different distributed load balancing algorithms were designed [9] for handling the

load of storage servers. But the efficiency of the load balancing was not improved. An

adaptive cat swarm optimization (ACSO) algorithm was designed [10] for a load-

balancing system. However, the higher throughput was not achieved by using the ACSO

algorithm.

The outline of the paper is arranged into different sections as follows. Section 2 focuses

on related studies that investigate load balancing and resource allocation. Section 3

describes the architecture of the proposed PORLOB. Section 4 focuses on experimental

settings and the dataset description. Section 5 provides the results and discussion of the

proposed PORLOB compared to the existing load-balancing algorithms. Finally,

concluding remarks are presented in Section 6.
An improved Particle Swarm Optimization algorithm was designed [11] for the

balanced workload of virtual machines. However, the higher efficiency of workload

balancing was a challenging task. As a result, a receiver-initiated deadline-aware load-

M. Ellakkiya et al., J. Sci. Res. 16 (1), 53-69 (2024) 55

balancing strategy was introduced [12] to migrate incoming cloudlets to appropriate

virtual machines. But the response time was not minimized.

A Grey wolf optimization (GWO) algorithm was introduced [13] for resource

reliability capability to maintain proper load balancing. However, the algorithm failed to

dynamically perform the load balancing among the dependent tasks. The Load balancing

algorithm provided high-quality service regarding workload scheduling and balancing

[14]. However, it failed to optimize the cloud resources and enhance cloud-based

application performance based on the number of migrations.

Energy-efficient load balancing algorithm was designed [15] for workflow scheduling

using queuing and thresholds model. However, the issues of virtual machine migration and

adaptive thresholds failed to improve the solution workflow scheduling and achieve better

results. A Markov process model was developed [16] for dynamic load-balanced task

distribution. However, it failed to guarantee to load balancing under different distribution

scenarios, thus causing a larger Makespan and degrading the overall performance.

Multi-objective task scheduling optimization was introduced [17] for load balancing

using a hybrid artificial bee colony algorithm with reinforcement learning. But it assumes

more time consumption for balancing the load. Two genetic-based methods were

developed [18] for load balancing mechanisms. But, measurements of the detailed

resource consumption of virtual machines may take much more computational resources

and thus degrade the performance of load-balancing efficiency.

A resource-aware dynamic task scheduling approach was developed [19]. But it failed

to propose a task and resource-aware scheduling approach for efficiently mapping tasks on

VMs in the cloud data centres. A non-cooperative game theoretic approach was introduced

[20] for load balancing among multiple servers. However, it has higher request migration

across clouds, with a large communication cost.

2. Major Contributions of the Paper

A novel PORLOB technique is developed to overcome the existing issues with the

following contribution.

1. To improve the load balancing efficiency in the cloud computing environment, the

PORLOB technique is introduced by applying a Minkowski orthogonal projected

regression and lottery load balancing,

2. To enhance the throughput and minimize the Makespan, the PORLOB technique finds

the resource capacity of the virtual machine based on the Minkowski orthogonal

projected regression analysis. The regression function analyzes the different resource

availability by setting the threshold based on the Minkowski distance measure. Based

on the analysis, the virtual machine's less loaded, overloaded, and balanced load is

identified.

2. To enhance the throughput and minimize the Makespan, the PORLOB technique finds

the resource capacity of the virtual machine based on the Minkowski orthogonal

projected regression analysis. The regression function analyzes the different resource

56 Orthogonal Projected Regressive MapReduce Lottery Load

availability by setting the threshold based on the Minkowski distance measure. Based

on the analysis, the virtual machine's less loaded, overloaded, and balanced load is

identified.

3. Then, the load balancer applies the lottery scheduling technique to balance the

workload among the virtual machine in the cloud server. This process minimizes the

response time and improves load balancing efficiency.

4. An extensive and comparative simulation assessment is conducted to evaluate an in-

depth analysis of the proposed PORLOB technique with existing methods through

different metrics.

3. Proposed Methodology

Cloud computing is a promising technology. It provides scalable, on-demand, cost-

effective, device-independent, and consistent services to its clients on-demand basis. Due

to the arrival of thousands of user service requests at the cloud server from the clients, the

server performs load balancing to minimize the response time. Load balancing is

distributing the workload among the servers within the cloud environment. It helps speed

up restricted parameters like response time, execution time, system stability, etc. The load

balancing also achieves high user satisfaction and resource utilization by ensuring

efficient workload distribution across the server. Although several loads balancing

schemes have been presented, no scheme provides the higher throughput and minimum

response time in cloud computing.

Based on this motivation, a novel PORLOB technique is introduced in this paper for

efficient load balancing in cloud computing. The main aim of the proposed PORLOB

technique is to minimize the workload and response time. The architecture diagram of

the PORLOB technique is shown in Fig. 1.

Fig. 1 portrays the architecture diagram of the proposed PORLOB technique consisting

of four entities: cloud user, user-requested tasks, server, load balancer, and virtual

machine for balancing the workload in a cloud computing environment. The cloud

architecture comprises cloud users 'who dynamically generate multiple requests or tasks.

The architecture also contains the cloud server, a powerful physical or virtual

infrastructure that performs application and information storage. Finally, a cloud virtual

machine is the digital version of a physical computer that runs on a cloud server. It is a

physical machine that stores data connects to networks, and performs other computing

functions.

A load balancer is located in front of cloud servers and distributes the incoming user

requests across the entire servers and capacity utilization and makes sure that no one

server is heavily loaded. First, the cloud user sends the number of user requests or tasks to

a cloud server. Next, the cloud server collects the number of requested tasks. After that,

the server's load balancer analyses the virtual machine's resource status, such as under

load, overload, and a balanced load. The load balancer uses the MapReduce model to find

M. Ellakkiya et al., J. Sci. Res. 16 (1), 53-69 (2024) 57

the resource status of the virtual machine. A MapReduce is a data processing model used

to process a large volume of data (i.e. user requested tasks) in a parallel manner.

Fig. 1. Architecture diagram of the proposed PORLOB technique.

A MapReduce function consists of two steps: the map phase and the reduces phase.

The Map phase performs the Minkowski Orthogonal Projected Regression analysis to find

the resource status of the virtual machine. The Orthogonal Projected Regression analysis

is a machine learning technique to analyze the virtual machine with the resource status

such as energy, bandwidth, and memory. The load balancer identified virtual machine

resource statuses such as less loaded, overloaded, and balanced load. After finding the

virtual machine's status, the load balancer uses the lottery scheduling technique in Reduce

phase to balance the workload among the virtual machine. This way, the load balancer

assigns the incoming tasks to an underloaded virtual machine. This process minimizes the

workload across the data cloud server and minimizes the response time. The different

process of the proposed PORLOB technique is explained in the following sections.

58 Orthogonal Projected Regressive MapReduce Lottery Load

3.1. Minkowski orthogonal projected regression-based resource status analysis

After collecting the numerous tasks from the user, the load balancer starts to find the

current resource status of the virtual machine in the cloud server. In the proposed

PORLOB technique, the load balancer uses the MapReduce technique for balancing the

load across several virtual machines.

Fig. 2. Block diagram of Minkowski Orthogonal Projected Regression-based resource status

analysis.

Fig. 2 depicts the block diagram of a Minkowski Orthogonal Projected Regression-

based resource status analysis. First, the number of user requests or tasks is initially sent

to the cloud server. Then the server transmits the requests to the load balancer. Finally, the

load balancer performs the MapReduce technique for analyzing huge volumes of complex

data or tasks in a parallel manner with the help of three phases: the map phase, shuffle

phase, and reduce phase.

M. Ellakkiya et al., J. Sci. Res. 16 (1), 53-69 (2024) 59

Fig. 3. Flow process of MapReduce function.

Fig. 3 illustrates a flow process of the MapReduce function for balancing the workload

across the server. First, consider the number of tasks or user requests given as input to the

map phase. Next, the map phase transforms the input into a structured or unstructured

key-value pair. A key-value pair consists of two related data elements. A key represents

the virtual machine, and a value represents a variable representing that virtual machine's

data (resource).

The key value pair is mathematically represented as,

 () () (1)

() () (2)

() () (3)

By using equations (1) and, (2), (3), the map phase takes the key () value ()

pair. In this phase, () are processed for identifying the resource capacity ' ' of the

virtual machine ' ' by using Minkowski orthogonal projected regression analysis.

The load balancer starts to find the current resource status of the virtual machine by

searching the index table using Minkowski orthogonal projected regression analysis.

Regression is a machine learning technique to analyze the virtual machine's status based

on its resources, such as memory, bandwidth, and energy.

 The load balancer calculates the current memory capacity based on the total and

consumed memory capacity difference.

 (4)

 From (4), represents the memory capacity of the virtual machine and

 denotes the total memory capacity of the virtual machine and denotes a

consumed memory capacity. The difference between the total and consumed memory

capacity measure is used to identify the virtual machine's current memory capacity.

60 Orthogonal Projected Regressive MapReduce Lottery Load

Likewise, the major resource is bandwidth, which refers to the capacity at which a

virtual node handles the maximum amount of data measured as Mbps. Therefore, the

current status of the bandwidth is mathematically calculated as follows,

 ()
 () (5)

Where, indicates the bandwidth capacity of the virtual machine, ()

represents the total bandwidth of the virtual machine, and () denotes a consumed

bandwidth. Based on the above-said parameters, the current status of bandwidth capacity

is identified.

Saving energy is an important issue for cloud computing to reduce energy costs in load

balancing. The total energy consumption is computed by considering the total energy

consumption made by a virtual machine. The unit for energy consumption is kilowatt per

hour (kWh).

The energy of the virtual machine is calculated as given below,

 (6)

Where ' ' denotes the total energy consumed by a virtual machine to execute on an

allocated system, ' ' is the processor power of the current system and 't' is the burst time

of a task. Therefore, the energy capacity of the virtual machine is evaluated as follows,

 (7)

From (7), indicates the energy capacity of the virtual machine symbolizes

total energy, refers to the consumed energy.

Based on the above-estimated resources, the Orthogonal Projected Regression is

applied to find the virtual machine's current resource status.

By applying the regression, finds the closest distance between the two points is a linear

line. That linear transformation is called an orthogonal projection. Regression is a

machine learning technique that measures the relationship between the dependent and

predicted variables. The orthogonal projection is a linear transformation that maps the

vector of response values (dependent variable, i.e. virtual machine) to the vector of fitted

values (i.e. resource status of the load).

Let us consider the vector of response values is denoted by and the vector of

fitted values represented by ' '. Therefore, the projection ' ' is performed as given

below,

 (8)

This projection is performed through the distance measure. The Minkowski distance is

applied for projection.

 (| |
)

 ⁄ (9)

Where denotes a Minkowski distance, denotes an estimated resource capacity of

the virtual machine, denotes a threshold value set to the resource capacity of the

virtual machine, denotes an order (). Based on the distance measure, the resource

status of the virtual machine is estimated as given below,

 {

 (10)

M. Ellakkiya et al., J. Sci. Res. 16 (1), 53-69 (2024) 61

 Where denotes the output of the regression analysis, based on the regression

coefficient result, the load balancer identifies the heavily loaded virtual machine among

the number of virtual machines in the index table with the help of the map function.

3.2. Stochastic lottery scheduling based load balancing in cloud

After identifying the virtual machine's status, the load balancer uses the Lottery

Scheduling technique to balance the workload among the virtual machine. Lottery

Scheduling is a probabilistic technique used for balancing the workload among the virtual

machine in cloud computing. Lottery scheduling is implemented and takes into

consideration of the several tickets that are distributed to a virtual machine

uniformly.

 (11)

Where represents a load balancer distributes several lottery tickets () to all virtual

machines. The load balancer assigns the minimum and maximum number of tickets based

on the current status of the load capacity. In other words, the balancer assigns a minimum

number of tickets to the less loaded virtual machine and the maximum number to a

heavily loaded virtual machine.

 () (12)

From (12), the load balancer assigns denotes a minimum number of

tickets. Similarly, the load balancer assigns the maximum number of tickets to the heavily

loaded virtual machine

 () (13)

From (13), the load balancer assigns denotes a maximum number of

tickets. The load balancer assigns a maximum number of tickets to a heavily loaded

virtual machine. As a result, a heavily loaded virtual has more lottery tickets than another

virtual machine. The virtual machine with a maximum number of tickets has a higher

chance of selecting and performing the migration process. Finally, the load balancer

migrates the workload from the heavily loaded virtual machine to the less-loaded

machine. As a result, minimizes the workload across the cloud servers. As a result, the

reduce function effectively performs the load balancing, which minimizes the user

response time and increases the throughput. The algorithm of the proposed PORLOB

technique is described as given below,

Algorithm 1: Orthogonal projected regressive MapReduce lottery load balancing technique

Input: Number of users requested tasks , number of virtual machines

 , cloud server, loads balancer

Output: Improves load balancing efficiency

Begin

Step 1: Users send requests or tasks to server

Step 2: maintains the index table to find the status of the virtual machine

Step 3: Apply Minkowski Orthogonal Projected Regression

Step 4: For each machine in the index table

Step 5: Compute current resource capacity , , using (4) (5) (6)

62 Orthogonal Projected Regressive MapReduce Lottery Load

Step 6: uses the map function to project the virtual machine based on the

 Minkowski distance measure using (9)

Step 7: If () then

Step 8: The status of the virtual machine is less load

Step 9: else if () then

Step 10: The status of the virtual machine is a balanced load

Step 11: else if () then

Step 12: The status of the virtual machine is overload

Step 13: End if

Step 14: End for

Step 15: Apply lottery scheduling to balance the workload

Step 16: assigns a minimum number of lottery tickets to less loaded

Step 17: assigns a maximum number of lottery tickets to overload

Step 18: Virtual machine with more tickets has a higher probability of selection

Step 19: migrates user requests from overloaded virtual machine to less loaded

Step 20: Balance the workload among the virtual machine

End

Algorithm 1 above illustrates the different processing steps using orthogonal projected

regressive MapReduce lottery load balancing technique to minimize the Makespan and

higher throughput. For each incoming request, the load balancer calculates the resource

status of the virtual machine using Minkowski Orthogonal Projected Regression analysis

in the map phase. The regression function is used to determine the less loaded,

overloaded, and balanced load of the virtual machine based on the resource capacity of the

virtual machine. Then the load balancer executes the reduced task to decide the migration

of the user requests from an overloaded VM to a less loaded VM at a run time. Based on

the decision of the load balancer, the load balancer migrates the workload to the less

loaded virtual machine from the overloaded virtual machine with minimum time. As a

result, minimizes the workload across the cloud servers. As a result, the MapReduce

function effectively handles a large number of incoming tasks, which results minimize the

workload and also decreases the response time of user request

4. Experimental Settings

Experimental evaluation of the proposed PORLOB technique and existing methods

DRLPPSO [1] and TS-DT [2] are implemented using Java language with CloudSim

network simulator. The Personal Cloud Datasets (http://cloudspaces.eu/results/datasets)

are taken for the experimental evaluation. The main aim of the dataset is to transfer the

workload. The dataset comprises 17 attributes and 66245 instances. The 17 attributes are

row id, account id, file size (i.e. task size), operation_time_start, operation_time_end, time

zone, operation_id, operation type, bandwidth trace, node_ip, node_name, quoto_start,

quoto_end, quoto_total (storage capacity), capped, failed and failure info. Among the 17

attributes, two columns, such as time zone and capped, are not used. The above columns

are considered for efficient load balancing among the multiple virtual machines using big

data in the cloud.

M. Ellakkiya et al., J. Sci. Res. 16 (1), 53-69 (2024) 63

5. Performance Metrics and Results Analysis

This section discusses the experimental evaluation of the proposed PORLOB technique

and two existing methods, namely DRLPPSO [1] and TS-DT [2], with various

performance metrics such as load balancing efficiency, throughput, Makespan, and

response time.

6.1. Impact of load balancing efficiency

It is defined as the ratio of user-requested tasks correctly balanced to the resource-optimal

virtual machines. The formula for calculating the load balancing efficiency is given

below,

 [

] (14)

Where indicates a load balancing efficiency, ' ' represents the number of user-

requested tasks. The load balancing efficiency is measured in percentage (%).

Table 1 Comparison of load balancing efficiency.

Number of

user-requests

Load balancing efficiency (%)

DRLPPSO TS-DT PORLOB

5000 91.3 93.7 97.12

10000 91.1 93.15 97.01

15000 91.0 93.01 97.0

20000 90.5 92.82 96.92

25000 89.4 92.22 96.8

30000 89.13 91.51 96.61

35000 88.91 90.97 96.35

40000 88.56 90.3 96.14

45000 87.67 89.16 95.9

50000 86.51 88.25 95.3

Table 1 provides the load balancing efficiency performance results for several user

requests. The tabulated results show that user requests range from 5000 to 50000.

Different results are observed for the various inputs. The observed results indicate that the

proposed PORLOB technique increases load balancing efficiency more than the

conventional methods. This is proved through the sample calculation with 5000 user

requests. By applying the PORLOB technique, 4856 user requests are correctly scheduled

to the virtual machine, and the efficiency is %.

Moreover, '4685' requests and 4565 requests are correctly balanced to the resource

optimal virtual machines, and the efficiency was observed to be 91.3 % and 93.7 % using

DRLPPSO [1] and TS-DT [2], respectively. From this result, it is inferred that the load

balancing efficiency is comparatively higher using PORLOB compared to [1] and [2].

Similarly, different performance results are observed for each method. Totally ten

different results are observed for each method. The observed results of PORLOB are

64 Orthogonal Projected Regressive MapReduce Lottery Load

compared to the results of the existing methods. Finally, the average is taken for ten

comparison results. The overall result confirms that the load balancing efficiency of the

IoT- PORLOB technique increased by 8 % compared to Multi-DRLPPSO [1] and 5 %

compared to TS-DT [2].

Fig. 4 depicts the load balancing efficiency performance results based on the number

of user requests using DRLPPSO [1], TS-DT [2], and PORLOB. The number of user

requests is taken as input in ' ' direction, and the corresponding load balancing efficiency

results are obtained in ' direction. The above figure clearly shows that the PORLOB

technique increases load balancing efficiency. This is due to applying the Minkowski

Orthogonal Projected Regression and lottery scheduling technique. The map function

performs the regression analysis and provides three resource statuses of the virtual

machine: overloaded, less loaded, and balanced load. Then the reduce phase executes

after the map phase. In this phase, the load balancer uses lottery scheduling to balance the

workload across the virtual machine. This process helps to improve the performance of

load balancing efficiency.

Fig. 4. Graphical illustration of load balancing efficiency.

6.2. Impact of throughput

Throughput refers to the ratio of user requests executed and processed successfully per

unit of time in the VM. The throughput is mathematically calculated as given below,

 [

 ()
] (15)

80

82

84

86

88

90

92

94

96

98

L
o

a
d

 b
a

la
n

ci
n

g
 e

ff
ic

ie
n

cy

(%

)

Number of user requested tasks

PORLOB

TS-DT

DRLPPSO

M. Ellakkiya et al., J. Sci. Res. 16 (1), 53-69 (2024) 65

Where ' ' indicates a throughput, denotes a time in seconds. The throughput is

measured in terms of requests per second (requests/sec). A higher value of the throughput

metric is desired for better-performing load balancing.

Table 2. Comparison of throughput.

Number of

user-requests

Throughput (requests/sec)

DRLPPSO TS-DT PORLOB

5000 410 512 633

10000 510 585 780

15000 698 822 925

20000 725 865 1022

25000 836 980 1132

30000 910 1120 1223

35000 1050 1280 1452

40000 1240 1365 1575

45000 1365 1455 1655

50000 1820 1595 1485

Fig. 5. Graphical illustration of throughput.

Table 2 and Fig. 5 depict the experimental results of throughput versus the number of

user requests between 5000 and 50000. To conduct the experimental results in terms of

throughput, the performance of the PORLOB technique is compared to existing

DRLPPSO [1] and TS-DT [2], respectively. Based on the experimental analysis, the

performance of throughput increases using the PORLOB technique more than the existing

methods. For each method, different results are observed. The final results of throughput

results are compared to existing methods. The comparison result shows that the proposed

PORLOB technique increases throughput performance by 36 % and 17 % compared to the

existing DRLPPSO [1] and TS-DT [2]. The reason for this improvement is to select the

0

400

800

1200

1600

2000

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
h

ro
u

g
h

p
u

t
 (

R
eq

u
es

ts
/s

)

Number of user requests

PORLOB

TS-DT

DRLPPSO

66 Orthogonal Projected Regressive MapReduce Lottery Load

resource-efficient virtual machines using Minkowski Orthogonal Projected Regression.

The load balancer finds the resource capacity of the virtual machine. If the virtual

machine is overloaded, the load balancer migrates the tasks to the less load virtual

machine. As a result, the incoming requests are successfully executed and processed. This

helps to increase the number of tasks executed per unit of time.

6.3. Impact of Makespan

It is defined as a total completion time and measures the time a virtual machine takes to

process user requests. A minimum Makespan is required in a good load-balancing

algorithm. The Makespan is computed as the time difference between the starting and

finishing the user requested.

 (16)

In (10), represents the Makespan, denotes request completion time

 request starting time. The Makespan is measured in the unit of milliseconds (ms).

Table 3. Comparison of makespan.

Number of

user-requests

Makespan (ms)

DRLPPSO TS-DT PORLOB

5000 48 42 35

10000 57 50 42

15000 64 55 48

20000 77 66 53

25000 86 76 66

30000 92 83 72

35000 106 92 84

40000 113 105 93

45000 125 116 107

50000 136 128 120

Table 3 portrays the performance analysis of Makespan according to the number of

user requests taken from the dataset from 5000 to 50000. The observed performance

results indicate that the PORLOB technique outperforms well in terms of minimizing the

Makespan than the other two existing methods. For example, let us consider 5000 requests

in the first run, of Makespan using the PORLOB technique. Similarly, the

performance of Makespan was observed to be and using DRLPPSO [1]

and TS-DT [2]. For each method, ten different results are observed. Then the observed ten

results of the PORLOB technique are compared to existing methods. The average of ten

comparison results indicates that the performance of Makespan using the PORLOB

technique is significantly reduced by 13 % and 22 % compared to existing methods. The

performance result of the Makespan is shown in Fig. 6.

M. Ellakkiya et al., J. Sci. Res. 16 (1), 53-69 (2024) 67

Fig. 6. Graphical illustration of Makespan.

Fig. 6 depicts the graphical illustration of Makespan for a different number of user

requests. The number of user requests is taken on the horizontal axis, and different

performance results of Makespan are taken on the vertical axis. The performance of

Makespan using three methods, DRLPPSO [1], TS-DT [2], and PORLOB, increases with

increasing requests. However, the performance of Makespan gets reduced using the

PORLOB than the other two existing methods. This is because of applying the lottery

scheduling technique. The load balancer migrates the tasks to the less loaded virtual

machine for completing the user-requested tasks. This helps minimize the time a virtual

machine takes to process user requests.

6.4. Impact of response time

It is the total time needed to respond to a user request through load balancing. Low

response time for a good performance of load balancing algorithm.

 () (17)

Where indicates a response time, denotes the number of user requests, denotes

the time taken for transmission, waiting, and processing the user requests. The response

time is measured in milliseconds (ms).

Table 4. Comparison of response time.

Number of user-

requests

Response time (ms)

DRLPPSO TS-DT PORLOB

5000 90 72 64

10000 100 90 80

15000 120 105 97.5

20000 140 120 110

25000 155 145 132.5

30000 195 177 156

10

30

50

70

90

110

130

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
a

k
es

p
a

n
 (

m
s)

Number of user requested tasks

PORLOB

TS-DT

DRLPPSO

68 Orthogonal Projected Regressive MapReduce Lottery Load

35000 217 192.5 175

40000 248 220 196

45000 279 243 225

50000 325 300 275

Fig. 7. Graphical illustration of response time.

The performance analysis of the response time using three different methods,

DRLPPSO [1], TS-DT [2], and PORLOB, are shown in Table 4 and Fig. 7. The observed

results indicate that the performance of the response time of the PORLOB is relatively less

than the existing methods. With the consideration of 5000 requests in the first iteration,

the performance of response time was found to be . However, the response time of

existing [1,2] was found to be and . The observed results indicate that the

PORLOB reduces response time compared to the existing load-balancing technique. After

obtaining ten results, the overall results of response time are compared to the existing

results. The comparison results decrease the response time by 8 % and 9 % compared to

the literature [1,2]. This is because of applying the orthogonal projected regression and

lottery scheduling. First, the regression function finds the resource capacity of the virtual

machine. After that, the load balancing technique balances the workload among the virtual

machine, minimizing the response time of the user requests.

6. Conclusion

Load balancing of user-requested tasks in the cloud computing environment significantly

improves the workload distribution among virtual machines. However, workload

balancing in cloud computing is still a challenging issue. Therefore, this paper presents a

PORLOB technique to improve the load balancing efficiency and minimize the Makespan.

First, the PORLOB technique uses the Minkowski Orthogonal Projected Regression to

identify the virtual machine's resource capacity based on energy, memory, and bandwidth.

After that, the load balancer balances the workload from the heavily loaded virtual

machine into the less loaded virtual machine to execute the tasks with minimum time with

50

100

150

200

250

300

350

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

R
es

p
o

n
se

 t
im

e
(m

s)

Number of user requested tasks

PORLOB

TS-DT

DRLPPSO

M. Ellakkiya et al., J. Sci. Res. 16 (1), 53-69 (2024) 69

the help of the lottery scheduling technique. This way, the PORLOB technique balances

the workloads uniformly across all the virtual machines. Finally, an experimental

assessment of the PORLOB technique and existing methods is performed in a cloudsim

simulator. The performance results analysis proved that the proposed results effectively

achieve better load balancing efficiency with higher throughput and lesser Makespan and

response time than the conventional load balancing techniques.

References

1. H. Mahmoud, M. Thabet, M. H. Khafagy, and F. A. Omara, IEEE Acc.10, 36140 (2022).

https://doi.org/10.1109/ACCESS.2022.3163273

2. A. Pradhan, S. K. Bisoy, S. Kautish, M. B. Jasser, and A. W. Mohamed, IEEE Acc. 10, 76939

(2022). https://doi.org/10.1109/ACCESS.2022.3192628

3. M. Adil, S. Nabi, M. Aleem, V. G. Diaz, and J. C. –W. Lin, Exp. Sys. 40, ID e3150 (2023).

https://doi.org/10.1111/exsy.13150

4. N. K. Kamila, J. Frnda, S. K. Pani, R. Das, S. M. N. Islam, P. K. Bharti, and K. Muduli, J. King

Saud Univ. – Comp. Info. Sci. 34, 9991 (2022). https://doi.org/10.1016/j.jksuci.2022.10.001

5. M. Haris and S. Zubair, J. King Saud Univ. – Comp. Info. Sci. 34, 9696 (2022).

https://doi.org/10.1016/j.jksuci.2021.12.003

6. F. Alqahtani, M. Amoon, and A. A. Nasr, Peer-to-Peer Net. Applicat. 14, 1905 (2021).

https://doi.org/10.1007/s12083-021-01125-2
7. Z. Miao, P. Yong, Y. Mei, Y. Quanjun, and Xie Xu, Fut. Gene. Comp. Sys. 115, 497 (2021).

https://doi.org/10.1016/j.future.2020.09.016

8. U. K. Jena, P. K. Das, and M. R. Kabat, J. King Saud Univ. Comp. Info. Sci. 34, 6 (2022).

https://doi.org/10.1016/j.jksuci.2020.01.012

9. Yogesh Gupta, Exp. Sys. Applicat.186, ID 115713 (2021).

https://doi.org/10.1016/j.eswa.2021.115713

10. K. Balaji, P. Sai Kiran, and M. S. Kumar, Mater. Today Proc. (2021).

https://doi.org/10.1016/j.matpr.2020.11.106

11. A. Yousefipour, A. M. Rahmani, and M. Jahanshahi, Int. J. Eng. 34, 6 (2021).

https://doi.org/10.5829/ije.2021.34.06c.05

12. R. A. Haidri, M. Alam, M. Shahid, S. Prakash, and M. Sajid, Concurrency Comp. Pract. Exper.

34, ID e6496 (2022). https://doi.org/10.1002/cpe.6496

13. S. S. Sefati, M. Mousavinasab, and R. Z. Farkhady, The J. Supercomp. 78, 18 (2022).

https:/doi.org/10.1007/s11227-021-03810-8

14. D. A. Shafiq, N. Z. Jhanjhi, A. Abdullah, and M. A. Alzain, IEEE Acc. 9, 41731 (2021).

https://doi.org/10.1109/ACCESS.2021.3065308

15. N. Malik, M. Sardaraz, M. Tahir, B. Shah, G. Ali, and F. Moreira, Appl. Sci. 11, 5849 (2021).

https://doi.org/10.3390/app11135849

16. S. Souravlas, S. D. Anastasiadou, N. Tantalaki, and S. Katsavounis, IEEE Acc. 10, 26149

(2022). https://doi.org/10.1109/ACCESS.2022.3157435

17. B. Kruekaew and W. Kimpan, IEEE Acc. 10, 17803 (2022).

https://doi.org/10.1109/ACCESS.2022.3149955

18. L. –H. Hung, C. –H. Wu, C. –H. Tsai, and H. –C. Huang, IEEE Acc. 9, 49760 (2021),

https://doi.org/10.1109/ACCESS.2021.3065170

19. S. Nabi, M. Ibrahim, and J. M. Jimenez, IEEE Acc. 9, 61283 (2021).

https://doi.org/10.1109/ACCESS.2021.3074145

20. C. Liu, K. Li, and K. Li, IEEE Transact. Cloud Comput. 9, 1 (2021),

https://doi.org/10.1109/TCC.2018.2790404

https://doi.org/10.1109/ACCESS.2022.3163273
https://doi.org/10.1109/ACCESS.2022.3192628
https://doi.org/10.1111/exsy.13150
https://doi.org/10.1016/j.jksuci.2022.10.001
https://doi.org/10.1007/s12083-021-01125-2
https://doi.org/10.1016/j.jksuci.2020.01.012
https://doi.org/10.1016/j.eswa.2021.115713
https://doi.org/10.1016/j.matpr.2020.11.106
https://doi.org/10.1002/cpe.6496
https://doi.org/10.1007/s11227-021-03810-8
https://doi.org/10.1109/ACCESS.2022.3157435
https://doi.org/10.1109/ACCESS.2021.3074145

