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Abstract 

Cloud Computing is an internet-based network technology that provides various services 
and requirements to customers through online computing resources. In the cloud, Load 
balancing is the most significant issue that includes both hardware and software platforms 
for the execution of demand of the user request. Furthermore, for handling multiple user 
requests, load balancing is necessary. Therefore, an efficient load-balancing technique is 
required to optimize and ensure user satisfaction by utilizing the virtual machine's resources 
efficiently. A novel Orthogonal Projected Regressive MapReduce Lottery Load Balancing 
(PORLOB) technique is introduced for resource-efficient task scheduling with minimal 
Makespan and complexity. In the PORLOB technique, many cloud user requests are 
transmitted to the cloud server from different locations. The load balancer uses the index 
table for maintaining the virtual machines. The MapReduce function includes two steps, 
namely, map and reduce. Based on the resource estimation, the map function performs the 
regression analysis and provides three resource statuses of the virtual machine: overloaded, 
less loaded, and balanced. In the reduction phase, the load balancer uses the lottery 
scheduling technique to balance the workload by migrating the task from an overloaded 
Virtual Machine to a less-loaded VM.  

Keywords: Cloud computing; Virtual machine; Task scheduling; Makespan; MapReduce 

function; Lottery load balancing; Minkowski orthogonal projected regression. 
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1.   Introduction 

Cloud computing has numerous advantages, including high speed, cost reduction, data 

security, and scalability. But the cloud environment's main challenge is balancing the 

workloads among the available resources to achieve maximum performance. Load 

balancing allocates the user's on-demand requests between different machines through task 

scheduling. The objective of the load balancing technique is to decrease makespan time 

while handling many requests. Load balancing across multiple virtual machines in cloud 

deployment is the major issue, and it causes the under-utilization of resources. But cloud 

environments suffer from challenges due to inefficient resource utilization. Different load-
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balancing methods are introduced to schedule the tasks in the virtual machine to address 

these problems.    

Multi-objective Task Scheduling Decision Tree (TS-DT) algorithm was developed  [1] 

to distribute and execute an application's task for reducing the Makespan, enhancing load 

balance with better resource utilization. However, energy-aware task execution was a 

major problem in achieving better performance. Deep Reinforcement Learning with 

Parallel Particle Swarm Optimization (DRLPPSO) was developed [2] to solve the load-

balancing problem with better accuracy and high speed. However, it failed to improve the 

dynamic cloud network's resource allocation and management concepts. 

A Content-aware Machine Learning based Load Balancing Scheduling was proposed  

[3] to improve the throughput and minimize the response time. But the energy 

consumption, overhead time, and migration time were not considered. An integrated 

concept of high-performance computing with artificial intelligence machine learning 

techniques was introduced [4] for improving the load balancing capacity. But, the model 

failed to include more cloud components to handle the large volume of tasks in a multi-

cloud environment. 

A Mantaray-modified multi-objective Harris hawk optimization method was 

introduced [5] for minimizing response time and resource utilization. But the efficiency of 

the proposed algorithm was not improved by involving parameters like dependent task and 

bandwidth. The load Balanced Service Scheduling Approach (LBSSA) was introduced in 

[6] for load balancing among resources. However, the performance of throughput was not 

analyzed to improve the performance of load balancing.  

An adaptive Pbest discrete PSO (APDPSO) was introduced [7] for static load 

balancing. But the algorithm increases the computational complexity. An integration of 

modified Particle swarm optimization (MPSO) and an improved Q-learning algorithm was 

developed [8] for balancing the workload between virtual machines. But the load 

balancing was performed. 

Two different distributed load balancing algorithms were designed [9] for handling the 

load of storage servers. But the efficiency of the load balancing was not improved. An 

adaptive cat swarm optimization (ACSO) algorithm was designed [10] for a load-

balancing system. However, the higher throughput was not achieved by using the ACSO 

algorithm. 

The outline of the paper is arranged into different sections as follows. Section 2 focuses 

on related studies that investigate load balancing and resource allocation. Section 3 

describes the architecture of the proposed PORLOB. Section 4 focuses on experimental 

settings and the dataset description. Section 5 provides the results and discussion of the 

proposed PORLOB compared to the existing load-balancing algorithms. Finally, 

concluding remarks are presented in Section 6.  
An improved Particle Swarm Optimization algorithm was designed [11] for the 

balanced workload of virtual machines. However, the higher efficiency of workload 

balancing was a challenging task. As a result, a receiver-initiated deadline-aware load-
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balancing strategy was introduced [12] to migrate incoming cloudlets to appropriate 

virtual machines. But the response time was not minimized.  

A Grey wolf optimization (GWO) algorithm was introduced [13] for resource 

reliability capability to maintain proper load balancing. However, the algorithm failed to 

dynamically perform the load balancing among the dependent tasks. The Load balancing 

algorithm provided high-quality service regarding workload scheduling and balancing 

[14]. However, it failed to optimize the cloud resources and enhance cloud-based 

application performance based on the number of migrations. 

Energy-efficient load balancing algorithm was designed [15] for workflow scheduling 

using queuing and thresholds model. However, the issues of virtual machine migration and 

adaptive thresholds failed to improve the solution workflow scheduling and achieve better 

results. A Markov process model was developed [16] for dynamic load-balanced task 

distribution. However, it failed to guarantee to load balancing under different distribution 

scenarios, thus causing a larger Makespan and degrading the overall performance. 

Multi-objective task scheduling optimization was introduced [17] for load balancing 

using a hybrid artificial bee colony algorithm with reinforcement learning. But it assumes 

more time consumption for balancing the load. Two genetic-based methods were 

developed [18] for load balancing mechanisms. But, measurements of the detailed 

resource consumption of virtual machines may take much more computational resources 

and thus degrade the performance of load-balancing efficiency.  

A resource-aware dynamic task scheduling approach was developed [19]. But it failed 

to propose a task and resource-aware scheduling approach for efficiently mapping tasks on 

VMs in the cloud data centres. A non-cooperative game theoretic approach was introduced 

[20] for load balancing among multiple servers. However, it has higher request migration 

across clouds, with a large communication cost.  

 

2. Major Contributions of the Paper 

 
A novel PORLOB technique is developed to overcome the existing issues with the 

following contribution. 

1. To improve the load balancing efficiency in the cloud computing environment, the 

PORLOB technique is introduced by applying a Minkowski orthogonal projected 

regression and lottery load balancing,  

2. To enhance the throughput and minimize the Makespan, the PORLOB technique finds 

the resource capacity of the virtual machine based on the Minkowski orthogonal 

projected regression analysis. The regression function analyzes the different resource 

availability by setting the threshold based on the Minkowski distance measure. Based 

on the analysis, the virtual machine's less loaded, overloaded, and balanced load is 

identified. 

2. To enhance the throughput and minimize the Makespan, the PORLOB technique finds 

the resource capacity of the virtual machine based on the Minkowski orthogonal 

projected regression analysis. The regression function analyzes the different resource 
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availability by setting the threshold based on the Minkowski distance measure. Based 

on the analysis, the virtual machine's less loaded, overloaded, and balanced load is 

identified.  

3. Then, the load balancer applies the lottery scheduling technique to balance the 

workload among the virtual machine in the cloud server. This process minimizes the 

response time and improves load balancing efficiency.  

4. An extensive and comparative simulation assessment is conducted to evaluate an in-

depth analysis of the proposed PORLOB technique with existing methods through 

different metrics. 

 

3. Proposed Methodology 

 
Cloud computing is a promising technology. It provides scalable, on-demand, cost-

effective, device-independent, and consistent services to its clients on-demand basis. Due 

to the arrival of thousands of user service requests at the cloud server from the clients, the 

server performs load balancing to minimize the response time. Load balancing is 

distributing the workload among the servers within the cloud environment. It helps speed 

up restricted parameters like response time, execution time, system stability, etc. The load 

balancing also achieves high user satisfaction and resource utilization by ensuring 

efficient workload distribution across the server. Although several loads balancing 

schemes have been presented, no scheme provides the higher throughput and minimum 

response time in cloud computing.   

Based on this motivation, a novel PORLOB technique is introduced in this paper for 

efficient load balancing in cloud computing. The main aim of the proposed PORLOB 

technique is to minimize the workload and response time.   The architecture diagram of 

the PORLOB technique is shown in Fig. 1.  

Fig. 1 portrays the architecture diagram of the proposed PORLOB technique consisting 

of four entities: cloud user, user-requested tasks, server, load balancer, and virtual 

machine for balancing the workload in a cloud computing environment. The cloud 

architecture comprises cloud users 'who dynamically generate multiple requests or tasks. 

The architecture also contains the cloud server, a powerful physical or virtual 

infrastructure that performs application and information storage. Finally, a cloud virtual 

machine is the digital version of a physical computer that runs on a cloud server. It is a 

physical machine that stores data connects to networks, and performs other computing 

functions. 

A load balancer is located in front of cloud servers and distributes the incoming user 

requests across the entire servers and capacity utilization and makes sure that no one 

server is heavily loaded. First, the cloud user sends the number of user requests or tasks to 

a cloud server. Next, the cloud server collects the number of requested tasks. After that, 

the server's load balancer analyses the virtual machine's resource status, such as under 

load, overload, and a balanced load. The load balancer uses the MapReduce model to find 
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the resource status of the virtual machine. A MapReduce is a data processing model used 

to process a large volume of data (i.e. user requested tasks) in a parallel manner.   

 
 
Fig. 1. Architecture diagram of the proposed PORLOB technique. 

 

A MapReduce function consists of two steps: the map phase and the reduces phase. 

The Map phase performs the Minkowski Orthogonal Projected Regression analysis to find 

the resource status of the virtual machine. The Orthogonal Projected Regression analysis 

is a machine learning technique to analyze the virtual machine with the resource status 

such as energy, bandwidth, and memory. The load balancer identified virtual machine 

resource statuses such as less loaded, overloaded, and balanced load. After finding the 

virtual machine's status, the load balancer uses the lottery scheduling technique in Reduce 

phase to balance the workload among the virtual machine. This way, the load balancer 

assigns the incoming tasks to an underloaded virtual machine. This process minimizes the 

workload across the data cloud server and minimizes the response time. The different 

process of the proposed PORLOB technique is explained in the following sections. 
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3.1. Minkowski orthogonal projected regression-based resource status analysis 

 

After collecting the numerous tasks from the user, the load balancer starts to find the 

current resource status of the virtual machine in the cloud server. In the proposed 

PORLOB technique, the load balancer uses the MapReduce technique for balancing the 

load across several virtual machines. 

 
Fig. 2. Block diagram of Minkowski Orthogonal Projected Regression-based resource status 

analysis. 

 
Fig. 2 depicts the block diagram of a Minkowski Orthogonal Projected Regression-

based resource status analysis. First, the number of user requests or tasks is initially sent 

to the cloud server. Then the server transmits the requests to the load balancer. Finally, the 

load balancer performs the MapReduce technique for analyzing huge volumes of complex 

data or tasks in a parallel manner with the help of three phases: the map phase, shuffle 

phase, and reduce phase. 
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Fig. 3. Flow process of MapReduce function. 

 

Fig. 3 illustrates a flow process of the MapReduce function for balancing the workload 

across the server. First, consider the number of tasks or user requests given as input to the 

map phase. Next, the map phase transforms the input into a structured or unstructured 

key-value pair. A key-value pair consists of two related data elements. A key represents 

the virtual machine, and a value represents a variable representing that virtual machine's 

data (resource). 

The key value pair is mathematically represented as, 

   ( )   (     )                                                                         (1) 

( )  (    )                                                                                      (2) 

(   )  (    )                                                            (3) 

By using equations (1) and, (2), (3), the map phase takes the key ( )  value (   )  

pair. In this phase, (     )  are processed for identifying the resource capacity '  ' of the 

virtual machine '  ' by using Minkowski orthogonal projected regression analysis. 

The load balancer starts to find the current resource status of the virtual machine by 

searching the index table using Minkowski orthogonal projected regression analysis. 

Regression is a machine learning technique to analyze the virtual machine's status based 

on its resources, such as memory, bandwidth, and energy.  

 The load balancer calculates the current memory capacity based on the total and 

consumed memory capacity difference.   

                                                                               (4) 

 From (4),      represents the memory capacity of the virtual machine and  

        denotes the total memory capacity of the virtual machine and         denotes a 

consumed memory capacity. The difference between the total and consumed memory 

capacity measure is used to identify the virtual machine's current memory capacity.     
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Likewise, the major resource is bandwidth, which refers to the capacity at which a 

virtual node handles the maximum amount of data measured as Mbps.  Therefore, the 

current status of the bandwidth is mathematically calculated as follows, 

          (     )
      (   )                                                          (5) 

Where,       indicates the bandwidth capacity of the virtual machine,     (     )
 

represents the total bandwidth of the virtual machine, and      (   )  denotes a consumed 

bandwidth. Based on the above-said parameters, the current status of bandwidth capacity 

is identified.  

Saving energy is an important issue for cloud computing to reduce energy costs in load 

balancing. The total energy consumption is computed by considering the total energy 

consumption made by a virtual machine. The unit for energy consumption is kilowatt per 

hour (kWh). 

The energy of the virtual machine is calculated as given below, 

                                                                       (6) 

Where ' ' denotes the total energy consumed by a virtual machine to execute on an 

allocated system, ' ' is the processor power of the current system and 't' is the burst time 

of a task. Therefore, the energy capacity of the virtual machine is evaluated as follows, 

 

                                                                                          (7) 

From (7),     indicates the energy capacity of the virtual machine      symbolizes 

total energy,       refers to the consumed energy.  

Based on the above-estimated resources, the Orthogonal Projected Regression is 

applied to find the virtual machine's current resource status.  

By applying the regression, finds the closest distance between the two points is a linear 

line. That linear transformation is called an orthogonal projection. Regression is a 

machine learning technique that measures the relationship between the dependent and 

predicted variables. The orthogonal projection is a linear transformation that maps the 

vector of response values (dependent variable, i.e. virtual machine) to the vector of fitted 

values (i.e. resource status of the load). 

Let us consider the vector of response values is denoted by      and the vector of 

fitted values represented by '  '. Therefore, the projection ' ' is performed as given 

below,     

                                                                                          (8) 

This projection is performed through the distance measure. The Minkowski distance is 

applied for projection.  

  (|       |
 )

 
 ⁄                                                                             (9) 

Where    denotes a Minkowski distance,   denotes an estimated resource capacity of 

the virtual machine,        denotes a threshold value set to the resource capacity of the 

virtual machine,    denotes an order (   ). Based on the distance measure, the resource 

status of the virtual machine is estimated as given below,  

  {
                         
                               
                         

                                                             (10) 
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 Where   denotes the output of the regression analysis, based on the regression 

coefficient result, the load balancer identifies the heavily loaded virtual machine among 

the number of virtual machines in the index table with the help of the map function. 

 

3.2. Stochastic lottery scheduling based load balancing in cloud 

 

After identifying the virtual machine's status, the load balancer uses the Lottery 

Scheduling technique to balance the workload among the virtual machine. Lottery 

Scheduling is a probabilistic technique used for balancing the workload among the virtual 

machine in cloud computing. Lottery scheduling is implemented and takes into 

consideration of the several tickets               that are distributed to a virtual machine 

uniformly.   

                                                                                                                    (11) 

Where    represents a load balancer distributes several lottery tickets (   ) to all virtual 

machines. The load balancer assigns the minimum and maximum number of tickets based 

on the current status of the load capacity. In other words, the balancer assigns a minimum 

number of tickets to the less loaded virtual machine and the maximum number to a 

heavily loaded virtual machine.  

         (       )                   (12) 

From (12), the load balancer    assigns         denotes a minimum number of 

tickets. Similarly, the load balancer assigns the maximum number of tickets to the heavily 

loaded virtual machine  

          (        )                              (13) 

From (13), the load balancer    assigns         denotes a maximum number of 

tickets. The load balancer assigns a maximum number of tickets to a heavily loaded 

virtual machine. As a result, a heavily loaded virtual has more lottery tickets than another 

virtual machine. The virtual machine with a maximum number of tickets has a higher 

chance of selecting and performing the migration process. Finally, the load balancer 

migrates the workload from the heavily loaded virtual machine to the less-loaded 

machine. As a result, minimizes the workload across the cloud servers. As a result, the 

reduce function effectively performs the load balancing, which minimizes the user 

response time and increases the throughput. The algorithm of the proposed PORLOB 

technique is described as given below,   

 

Algorithm 1:  Orthogonal projected regressive MapReduce lottery load balancing technique 

Input: Number of users requested tasks               , number of virtual machines 

             , cloud server, loads balancer 

Output:    Improves load balancing efficiency  

Begin  

Step 1: Users send requests or tasks                to server 

Step 2:    maintains the index table to find the status of the virtual machine  

Step 3: Apply Minkowski Orthogonal Projected Regression 

Step 4: For each machine in the index table 

Step 5:   Compute current resource capacity     ,      ,      using (4) (5) (6) 
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Step 6:       uses the map function to project the virtual machine based on the  

                Minkowski distance measure using (9) 

Step 7:    If (    ) then 

Step 8:      The status of the virtual machine is less load 

Step 9:    else if (   ) then 

Step 10:    The status of the virtual machine is a balanced load 

Step 11:  else if (     ) then 

Step 12:    The status of the virtual machine is overload  

Step 13:  End if 

Step 14: End for  

Step 15:  Apply lottery scheduling to balance the workload  

Step 16:      assigns a minimum number of lottery tickets to less loaded    

Step 17:      assigns a maximum number of lottery tickets to overload     

Step 18:   Virtual machine with more tickets has a higher probability of selection 

Step 19:      migrates user requests from overloaded virtual machine to less loaded    

Step 20:   Balance the workload among the virtual machine  

End 

Algorithm 1 above illustrates the different processing steps using orthogonal projected 

regressive MapReduce lottery load balancing technique to minimize the Makespan and 

higher throughput. For each incoming request, the load balancer calculates the resource 

status of the virtual machine using Minkowski Orthogonal Projected Regression analysis 

in the map phase. The regression function is used to determine the less loaded, 

overloaded, and balanced load of the virtual machine based on the resource capacity of the 

virtual machine. Then the load balancer executes the reduced task to decide the migration 

of the user requests from an overloaded VM to a less loaded VM at a run time. Based on 

the decision of the load balancer, the load balancer migrates the workload to the less 

loaded virtual machine from the overloaded virtual machine with minimum time. As a 

result, minimizes the workload across the cloud servers. As a result, the MapReduce 

function effectively handles a large number of incoming tasks, which results minimize the 

workload and also decreases the response time of user request 

 

4. Experimental Settings 

 
Experimental evaluation of the proposed PORLOB technique and existing methods 

DRLPPSO [1] and TS-DT [2] are implemented using Java language with CloudSim 

network simulator. The Personal Cloud Datasets (http://cloudspaces.eu/results/datasets) 

are taken for the experimental evaluation. The main aim of the dataset is to transfer the 

workload. The dataset comprises 17 attributes and 66245 instances. The 17 attributes are 

row id, account id, file size (i.e. task size), operation_time_start, operation_time_end, time 

zone, operation_id, operation type, bandwidth trace, node_ip, node_name, quoto_start, 

quoto_end, quoto_total (storage capacity), capped, failed and failure info. Among the 17 

attributes, two columns, such as time zone and capped, are not used. The above columns 

are considered for efficient load balancing among the multiple virtual machines using big 

data in the cloud. 
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5. Performance Metrics and Results Analysis 

 

This section discusses the experimental evaluation of the proposed PORLOB technique 

and two existing methods, namely DRLPPSO [1] and TS-DT [2], with various 

performance metrics such as load balancing efficiency, throughput, Makespan, and 

response time.  

 

6.1. Impact of load balancing efficiency 

 

It is defined as the ratio of user-requested tasks correctly balanced to the resource-optimal 

virtual machines. The formula for calculating the load balancing efficiency is given 

below,  

    [
                                  

 
]                                                                     (14) 

 

Where     indicates a load balancing efficiency, ' ' represents the number of user-

requested tasks. The load balancing efficiency is measured in percentage (%). 

 
Table 1 Comparison of load balancing efficiency. 
 

Number of 

user-requests 

Load balancing efficiency (%) 

DRLPPSO TS-DT PORLOB 

5000 91.3 93.7 97.12 

10000 91.1 93.15 97.01 

15000 91.0 93.01 97.0 

20000 90.5 92.82 96.92 

25000 89.4 92.22 96.8 

30000 89.13 91.51 96.61 

35000 88.91 90.97 96.35 

40000 88.56 90.3 96.14 

45000 87.67 89.16 95.9 

50000 86.51 88.25 95.3 

 

Table 1 provides the load balancing efficiency performance results for several user 

requests. The tabulated results show that user requests range from 5000 to 50000. 

Different results are observed for the various inputs. The observed results indicate that the 

proposed PORLOB technique increases load balancing efficiency more than the 

conventional methods. This is proved through the sample calculation with 5000 user 

requests. By applying the PORLOB technique, 4856 user requests are correctly scheduled 

to the virtual machine, and the efficiency is       %. 

Moreover, '4685' requests and 4565 requests are correctly balanced to the resource 

optimal virtual machines, and the efficiency was observed to be 91.3 % and 93.7 % using 

DRLPPSO [1] and TS-DT [2], respectively. From this result, it is inferred that the load 

balancing efficiency is comparatively higher using PORLOB compared to [1] and [2]. 

Similarly, different performance results are observed for each method. Totally ten 

different results are observed for each method. The observed results of PORLOB are 
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compared to the results of the existing methods. Finally, the average is taken for ten 

comparison results. The overall result confirms that the load balancing efficiency of the 

IoT- PORLOB technique increased by 8 % compared to Multi-DRLPPSO [1] and 5 % 

compared to TS-DT [2].  

Fig. 4 depicts the load balancing efficiency performance results based on the number 

of user requests using DRLPPSO [1], TS-DT [2], and PORLOB. The number of user 

requests is taken as input in ' ' direction, and the corresponding load balancing efficiency 

results are obtained in '   direction. The above figure clearly shows that the PORLOB 

technique increases load balancing efficiency. This is due to applying the Minkowski 

Orthogonal Projected Regression and lottery scheduling technique. The map function 

performs the regression analysis and provides three resource statuses of the virtual 

machine: overloaded, less loaded, and balanced load. Then the reduce phase executes 

after the map phase. In this phase, the load balancer uses lottery scheduling to balance the 

workload across the virtual machine. This process helps to improve the performance of 

load balancing efficiency.  

 
Fig. 4. Graphical illustration of load balancing efficiency. 

 

6.2. Impact of throughput  

Throughput refers to the ratio of user requests executed and processed successfully per 

unit of time in the VM. The throughput is mathematically calculated as given below,  

   [
                             

  (       )
]                                                                (15) 
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Where '  ' indicates a throughput,   denotes a time in seconds. The throughput is 

measured in terms of requests per second (requests/sec). A higher value of the throughput 

metric is desired for better-performing load balancing.  

Table 2. Comparison of throughput. 
 

Number of 

user-requests 

Throughput (requests/sec) 

DRLPPSO TS-DT PORLOB 

5000 410 512 633 

10000 510 585 780 

15000 698 822 925 

20000 725 865 1022 

25000 836 980 1132 

30000 910 1120 1223 

35000 1050 1280 1452 

40000 1240 1365 1575 

45000 1365 1455 1655 

50000 1820 1595 1485 

 

 
Fig. 5. Graphical illustration of throughput. 

 

Table 2 and Fig. 5 depict the experimental results of throughput versus the number of 

user requests between 5000 and 50000. To conduct the experimental results in terms of 

throughput, the performance of the PORLOB technique is compared to existing 

DRLPPSO [1] and TS-DT [2], respectively. Based on the experimental analysis, the 

performance of throughput increases using the PORLOB technique more than the existing 

methods. For each method, different results are observed. The final results of throughput 

results are compared to existing methods. The comparison result shows that the proposed 

PORLOB technique increases throughput performance by 36 % and 17 % compared to the 

existing DRLPPSO [1] and TS-DT [2]. The reason for this improvement is to select the 
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resource-efficient virtual machines using Minkowski Orthogonal Projected Regression. 

The load balancer finds the resource capacity of the virtual machine. If the virtual 

machine is overloaded, the load balancer migrates the tasks to the less load virtual 

machine. As a result, the incoming requests are successfully executed and processed. This 

helps to increase the number of tasks executed per unit of time. 

 

6.3. Impact of Makespan   

 

It is defined as a total completion time and measures the time a virtual machine takes to 

process user requests. A minimum Makespan is required in a good load-balancing 

algorithm. The Makespan is computed as the time difference between the starting and 

finishing the user requested.  

                                                                                 (16) 

In (10),    represents the Makespan,           denotes request completion time  

          request starting time. The Makespan is measured in the unit of milliseconds (ms).  

 
Table 3. Comparison of makespan. 
 

Number of 

user-requests 

Makespan (ms) 

DRLPPSO TS-DT PORLOB 

5000 48 42 35 

10000 57 50 42 

15000 64 55 48 

20000 77 66 53 

25000 86 76 66 

30000 92 83 72 

35000 106 92 84 

40000 113 105 93 

45000 125 116 107 

50000 136 128 120 

 

Table 3 portrays the performance analysis of Makespan according to the number of 

user requests taken from the dataset from 5000 to 50000. The observed performance 

results indicate that the PORLOB technique outperforms well in terms of minimizing the 

Makespan than the other two existing methods. For example, let us consider 5000 requests 

in the first run,        of Makespan using the PORLOB technique. Similarly, the 

performance of Makespan was observed to be         and       using DRLPPSO [1] 

and TS-DT [2]. For each method, ten different results are observed. Then the observed ten 

results of the PORLOB technique are compared to existing methods. The average of ten 

comparison results indicates that the performance of Makespan using the PORLOB 

technique is significantly reduced by 13 % and 22 % compared to existing methods. The 

performance result of the Makespan is shown in Fig. 6. 
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Fig. 6. Graphical illustration of Makespan. 

Fig. 6 depicts the graphical illustration of Makespan for a different number of user 

requests. The number of user requests is taken on the horizontal axis, and different 

performance results of Makespan are taken on the vertical axis. The performance of 

Makespan using three methods, DRLPPSO [1], TS-DT [2], and PORLOB, increases with 

increasing requests. However, the performance of Makespan gets reduced using the 

PORLOB than the other two existing methods. This is because of applying the lottery 

scheduling technique. The load balancer migrates the tasks to the less loaded virtual 

machine for completing the user-requested tasks. This helps minimize the time a virtual 

machine takes to process user requests.  

 

6.4. Impact of response time    

 

It is the total time needed to respond to a user request through load balancing. Low 

response time for a good performance of load balancing algorithm. 

       (                                 )                                           (17) 

Where     indicates a response time,   denotes the number of user requests,   denotes 

the time taken for transmission, waiting, and processing the user requests. The response 

time is measured in milliseconds (ms). 
 

Table 4. Comparison of response time. 
 

Number of user-

requests 

Response time (ms) 

DRLPPSO TS-DT PORLOB 

5000 90 72 64 

10000 100 90 80 

15000 120 105 97.5 

20000 140 120 110 

25000 155 145 132.5 

30000 195 177 156 
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35000 217 192.5 175 

40000 248 220 196 

45000 279 243 225 

50000 325 300 275 

 
Fig. 7. Graphical illustration of response time. 

The performance analysis of the response time using three different methods, 

DRLPPSO [1], TS-DT [2], and PORLOB, are shown in Table 4 and Fig. 7. The observed 

results indicate that the performance of the response time of the PORLOB is relatively less 

than the existing methods. With the consideration of 5000 requests in the first iteration, 

the performance of response time was found to be      . However, the response time of 

existing [1,2] was found to be       and      . The observed results indicate that the 

PORLOB reduces response time compared to the existing load-balancing technique. After 

obtaining ten results, the overall results of response time are compared to the existing 

results. The comparison results decrease the response time by 8 % and 9 % compared to 

the literature [1,2]. This is because of applying the orthogonal projected regression and 

lottery scheduling. First, the regression function finds the resource capacity of the virtual 

machine. After that, the load balancing technique balances the workload among the virtual 

machine, minimizing the response time of the user requests. 

 

6. Conclusion 

 

Load balancing of user-requested tasks in the cloud computing environment significantly 

improves the workload distribution among virtual machines. However, workload 

balancing in cloud computing is still a challenging issue. Therefore, this paper presents a 

PORLOB technique to improve the load balancing efficiency and minimize the Makespan. 

First, the PORLOB technique uses the Minkowski Orthogonal Projected Regression to 

identify the virtual machine's resource capacity based on energy, memory, and bandwidth. 

After that, the load balancer balances the workload from the heavily loaded virtual 

machine into the less loaded virtual machine to execute the tasks with minimum time with 
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the help of the lottery scheduling technique. This way, the PORLOB technique balances 

the workloads uniformly across all the virtual machines. Finally, an experimental 

assessment of the PORLOB technique and existing methods is performed in a cloudsim 

simulator. The performance results analysis proved that the proposed results effectively 

achieve better load balancing efficiency with higher throughput and lesser Makespan and 

response time than the conventional load balancing techniques. 
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