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Abstract 

We prove common fixed point theorems for a pair of weakly compatible mappings 
satisfying a generalized contraction principle by using a control function and implicit 
relation. We also establish invariant approximation result as an application of the result. 
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1.   Introduction.    
 
Sessa [1] introduced weakly commuted mappings which was generalized as compatible 
mappings by Jungck [2]. The notion of R-weakly commuting mappings was coined by 
Pant [3].  The term called weakly compatible mappings was defined by Jungck and 
Rhoades [4]. 

Generalization for weakly contractive mapping in Hilbert space was proved by several 
authors [5- 9].  Generalization for weakly contractive mapping in complete metric space 
was proved by Rhoades [7].  

Fixed point theorems for a self mapping by altering distances between the points and 
using a control function were proved by Park [10] and Khan et al. [11]. Sastry [8] 
extended the concept for weakly commuting pairs of self mappings and proved common 
fixed point theorem in a complete metric space by using the control function. 

Dutta and Choudhury [6] obtained a fixed point result by generalizing the concept of 
control function and the weakly contractive mapping. Jungck [12] proved a common fixed 
point theorem for commuting mappings generalizing the Banach’s contraction principle.  

                                            
* Corresponding author: jgm_hri@yahoo.in 

Available Online 

Publications 
 

J. Sci. Res. 3 (3), 539-545 (2011) 

JOURNAL OF  
SCIENTIFIC RESEARCH 

www.banglajol.info/index.php/JSR  



540 Fixed Point for Weakly Compatible Maps 
 

[16] relaxed the linearity of the mapping and the convexity of the set of best 
approximants. Also the existence of invariant approximation using fixed point theorem 
was generalized by several authors [17-21]. 

The main purpose of this paper is to obtain common fixed point for weakly compatible 
mappings satisfying a more general weak contractive condition using implicit relation.  
As an application we have established best approximation result. 
 
2   Preliminaries 
 
We recall the definitions and results that will be needed in the sequel. 
Definition 2.1    A sequence { }nx  in a metric space ( , )X d  is said to be convergent to a 
point x X∈ , denoted by lim nn

x x
→∞

= , if  lim ( , ) 0nn
d x x

→∞
= . 

Definition 2.2    A sequence { }nx  in a metric space (X,d) is said to be Cauchy sequence 
if lim ( , ) 0n mt

d x x
→∞

= for all ,n m t> . 

Definition 2.3   A metric space ( , )X d  is said to be complete if every Cauchy sequence in 
X  is convergent. 
Definition 2.4   Let  f and T  be two self-maps on a set X. Maps f and T are said to be 
commuting if  fTx Tfx=  for all x  ∈  X . 

Definition 2.5   Let f  and T  be self-maps on a set X. If fx Tx= , for some x  in X then 
x  is called coincidence point of  f and T.  
Definition 2.6   Let f and T be two self-maps defined on a set X. Then f and T are said to 
be weakly compatible if they commute at coincidence points. That is, if fu Tu= for some 

u X∈ , then fTu Tfu= . 
Proposition 2.1    Let f and T  be weakly compatible self mappings of a set X. If f and T have a unique point of coincidence, that is, w fx Tx= = , then w  is the unique common 
fixed point of f and T. 
 
Definition 2.7   Let f and T  be self mappings of a nonempty subset M of a metric space X. 
The mapping T is called f -contraction mapping, if there exists a real number 0 1k≤ <  
such that ( , ) ( , )d Tx Ty kd fx fy≤  for all ,x y M∈ . 

Definition 2.8 [11]  A control function ϕ  is defined as : R Rϕ + +→  which is continuous 
at zero, monotonically increasing and ( ) 0tϕ = if and only if t = 0. 
Definition 2.9 [5] A self mapping T of a metric space (X, d) is said to be weakly 
contractive with respect to a self mapping :f X X→ , if for each  

,x y X∈ , ( , ) ( , ) ( ( , ))d Tx Ty d fx fy d fx fyϕ≤ − ,  where : [0, ) [0, )ϕ ∞ → ∞  is a continuous and 
non decreasing function such that φ is positive on (0, )∞ , (0) 0ϕ = and lim ( )

t
tϕ

→∞
= ∞  

Proposition 2.2 [6]  Let (X, d) be a complete metric space and :T X X→  be a self 
mapping satisfying 
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( ( , )) ( ( , )) ( ( , ))d Tx Ty d fx fy d fx fyϕ ϕ φ≤ −  
 
where , : [0, ) [0, )ϕ φ ∞ → ∞  are both continuous and monotonic increasing function with 

( ) 0 ( )x xϕ φ= = if and only if 0x = . 
Then T  has a unique fixed point.  
 
Implicit relations 
 
Let F* be the set of continuous functions 4

1 2 3 4( , , , ) : [0, ) [0, )F t t t t ∞ → ∞  
satisfying the 

following conditions: 
(F1) F is non decreasing in variables  t1. 
(F2) For 0u ≥ , 0v ≥  ( ,0, , )F u v u v u+ ≤    
(F3) ( , ,0,0)F u u u≤  and (0, ,0, )F u u u≤ , 0u∀ > .  

 
3.   Main Result 
 
In this section we prove a common fixed point theorem for a pair of weakly compatible  
mappings in complete metric spaces by using a control function and implicit relation. 
 
Theorem 3.1   Let ( , )X d be a complete metric space. Suppose that the mappings T  and f 
are two self-maps of X satisfying the following conditions: 

(i) ( ) ( )T X f X⊆ . 
(ii) ( )T X  is complete subspace of X . 
(iii) ( ( , )) ( ( , )) ( ( , ))d Tx Ty M x y M x yϕ ϕ φ≤ −  
where ( , ) { ( , ), ( , ), ( , ), ( , )}M x y F d Tx fy d Ty fx d Tx fx d Ty fy=    

and : [0, ) [0, )ϕ ∞ → ∞ is continuous and  monotonic increasing function and 
: [0, ) [0, )φ ∞ → ∞  is continuous and  monotonic decreasing function with 

( ) 0 ( )x xϕ φ= =  if and only if x = 0 and  F F∗∈ .     
(iv) The pair ( , )T f is weakly compatible.  
Then f  and g have a unique common fixed point. 

Proof : let  0x  be an arbitrary point of X. 

Since ( ) ( )T X f X⊆ , we can choose nx  and  1nx +  in  X such that,  

1n nTx fx +=  0,1,2...n =  
By using (iii) we have, 
 

1( ( , ))n nd Tx Txϕ +
≤  

1 1( ( , )) ( ( , ))n n n nM x x M x xϕ φ+ +−                             (1) 
where  1 1 1 1 1( , ) { ( , ), ( , ), ( , ), ( , )}n n n n n n n n n nM x x F d Tx fx d Tx fx d Tx fx d Tx fx+ + + + +=  

                             1 1 1 1{ ( , ), ( , ), ( , ), ( , )}n n n n n n n nF d Tx Tx d Tx Tx d Tx Tx d Tx Tx+ − + −=  
                             1 1 1 1{( ( , ) ( , )),0, ( , ), ( , )}n n n n n n n nF d Tx Tx d Tx Tx d Tx Tx d Tx Tx+ − + −≤ +  
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Thus form  (F2) we have, 1 1( , ) ( , )n n n nM x x d Tx Tx+ −≤  
Thus from (1) 

1 1 1( ( , )) ( ( , )) ( ( , ))n n n n n nd Tx Tx d Tx Tx d Tx Txϕ ϕ φ+ − −≤ −   (2) 

1 1( ( , )) ( ( , ))n n n nd Tx Tx d Tx Txϕ ϕ+ −≤  
Now φ is monotonic increasing function. This implies that, the sequence 

1{ ( , )}n nd Tx Tx+ is monotonic decreasing.  
Hence there exists a real number, say 0r ≥ such that 

1lim ( , )n nn
d Tx Tx r+→∞

= . 

Therefore as n→∞ , equation (2) implies that  
 

( ) ( ) ( )r r rϕ ϕ φ≤ −  
 
So that  ( ) 0rφ ≤ ,  which is possible only if  r = 0. 
Thus  

1lim ( , ) 0n nn
d Tx Tx+→∞

=  

Now we show that  { }nTx  is a Cauchy sequence. 

Let if possible we assume that { }nTx  is not a Cauchy sequence 

Then there exists an 0ε > and subsequences { }in and { }im such that  

1i i im n m +< < and  

( , )
i im nd Tx Tx ε≥

 
and 

1( , )
i im nd Tx Tx ε− <                                        (3)  

So that 
1 1 1( , ) ( , ) ( , ) ( , )

i i i i i i i im n m n n n n nd Tx Tx d Tx Tx d Tx Tx d Tx Txε ε− − −≤ ≤ + < +  

Therefore lim ( , )
i im ni

d Tx Tx ε
→∞

=  

Now 1 1 1 1( , ) ( , ) ( , ) ( , )
i i i i i i i im n m m m n n nd Tx Tx d Tx Tx d Tx Tx d Tx Tx− − − −≤ + +  

1 1 1 1( , ) ( , ) ( , ) ( , )
i i i i i i i im n m m m n n nd Tx Tx d Tx Tx d Tx Tx d Tx Tx− − − −≤ + +  

By taking limit as i →∞ , we get 
1 1lim ( , )

i im ni
d Tx Tx ε− −→∞

=  

Now by (iii) and (3) 
( ) ( ( , )) ( ( , )) ( ( , ))

i i i i i im n m n m nd Tx Tx M x x M x xϕ ε ϕ ϕ φ≤ ≤ −  

where ( , ) { ( , ), ( , ), ( , ), ( , )}
i i i i i i i i i im n m n n m m m n nM x x F d Tx fx d Tx fx d Tx fx d Tx fx=  

1 1 1 1{ ( , ), ( , ), ( , ), ( , )}
i i i i i i i im n n m m m n nF d Tx Tx d Tx Tx d Tx Tx d Tx Tx− − − −=  

By taking limit as i →∞ , we get lim ( , ) ( , ,0,0)
i im ni

M x x F ε ε
→∞

=  

Thus form  (F3) we have, lim ( , )
i im ni

M x x ε
→∞

≤  

Therefore ( ) ( ) ( )ϕ ε ϕ ε φ ε≤ −  and hence ( ) 0φ ε ≤  
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This is a contradiction because as : [0, ) [0, )φ ∞ → ∞ , we must have ( ) 0φ ε ≥  and ( ) 0φ ε =  
if and only if 0ε = but 0ε > . 
Hence our supposition is false. 
Thus { }nTx  is a Cauchy sequence in T(X).

 
But by (ii),  ( )T X  is a complete subset of X, there exists a point q  in X such that  
 lim nn

Tx q
→∞

=  

Since ( ) ( )T X f X⊆ , there exists a point p X∈  such that  q fp= .  

Now from (iii), ( ( , )) ( ( , )) ( ( , ))n n nd Tx Tp M x p M x pϕ ϕ φ≤ −  

where ( , ) { ( , ), ( , ), ( , ), ( , )}n n n n nM x p F d Tx fp d Tp fx d Tx fx d Tp fp=   

1 1{ ( , ), ( , ), ( , ), ( , )}n n n nF d Tx fp d Tp Tx d Tx Tx d Tp fp− −=  

{ ( , ), ( , ), ( , ), ( , )}F d q q d Tp q d q q d Tp q=  (By taking limit as n →∞ ) 

{0, ( , ),0, ( , )}F d Tp q d Tp q=           

Thus form (F3) we have, ( , ) ( , )nM x p d Tp q≤  

Therefore ( ( , )) ( ( , )) ( ( , ))d q Tp d Tp q d Tp qϕ ϕ φ≤ −   

Which implies that ( ( , )) 0d Tp qφ ≤ and this is possible only if  Tp = q. 

Thus Tp q fp= =  and hence p  is the coincidence point of T and f. 
Since  T and f are weakly compatible, they commute at their coincidence point. 
i.e.,  Tfp = fTp which implies that Tq fq= . 

Again from (iii), ( ( , )) ( ( , )) ( ( , ))d Tq Tp M q p M q pϕ ϕ φ≤ −  

Where    ( , ) { ( , ), ( , ), ( , ), ( , )}M q p F d Tq fp d Tp fq d Tq fq d Tp fp

   { ( , ), ( , ), ( , ), ( , )}F d Tq q d q Tq d Tq Tq d q q=  
   { ( , ), ( , ),0,0}F d Tq q d q Tq=           

Thus form (F3) we have, ( , ) ( , )M q p d Tq q≤  

Therefore ( ( , )) ( ( , )) ( ( , ))d q Tq d Tq q d Tq qϕ ϕ φ≤ −  

Which implies that ( ( , )) 0d Tq qφ ≤ and this is possible only if  Tq = q.  
Thus  Tq = q = fq and hence  q is the common fixed point of T and f. 
 
Uniqueness:  For uniqueness of  q  let if possible, we assume that q and t,( q≠ t) are 
common fixed points of f and T 
from (iii), ( ( , )) ( ( , )) ( ( , ))d Tq Tt M q t M q tϕ ϕ φ≤ −  

where ( , ) { ( , ), ( , ), ( , ), ( , )}M q t F d Tq ft d Tt fq d Tq fq d Tt ft=   

{ ( , ), ( , ),0,0}F d q t d q t=           

Thus form (F3) we have, ( , ) ( , )M q t d q t≤  

Therefore ( ( , )) ( ( , )) ( ( , ))d q t d q t d q tϕ ϕ φ≤ −  
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Which implies that ( ( , )) 0d q tφ ≤ and this is possible only if  q = t.  
Hence the theorem.         
 
Application as best approximation 
Definition  3.1  Let  M  be a nonempty subset of a metric space (X,d). The set of best M-
approximants to u X∈ , denoted as  ( )MP u is defined by 

( ) { : ( , ) ( , )}MP u y M d y u d ist u M= ∈ =  

where ( , ) inf{ ( , ) : }d ist u M d x u x M= ∈ . 

Theorem  3.2  Let  T and f be self mappings of a metric space ( , )X d . Suppose that 

u X∈ , T and f satisfy following condition 
( ( , )) ( ( , )) ( ( , ))d Tx Ty M x y M x yϕ ϕ φ≤ −  

where ( , ) { ( , ), ( , ), ( , ), ( , )}M x y F d Tx fy d Ty fx d Tx fx d Ty fy= and 

, : [0, ) [0, )ϕ φ ∞ → ∞  are both monotonic increasing function with ( ) 0 ( )x xϕ φ= = if 

and only if 0x = . 
T  leaves f -invariant compact subset M of closed subspace f(X) as invariant. For each  

( )Mb P u∈ , let ( , ) ( , )d x Tb f x fb<  and ( )Mfb P u∈ .  If T and f are weakly compatible, 

then u  has a best approximation in  M which is also a common fixed point of T and f. 
Proof:  Let ( ) ( )u F T F f∈ ∩   

Since M is a compact subset of ( )f X , ( )MP u ≠ φ .  

We claim that ( ( )) ( ( ))M MT P u f P u⊆ , 

Let if possible we assume that, there exists ( )Mb P u∈  such that ( ( ))MTb f P u∉ . 

Now ( , ) ( , ) ( , ) ( , )d u fb dist u M d u Tb d u fb= ≤ <  which is a contradiction.  

Hence ( ( )) ( ( ))M MT P u f P u⊆ .  

Now  ( ( ))Mf P u  being a closed subset of a complete space is complete.  

Hence ( ) ( ) ( )MP u F T F f∩ ∩  is singleton.      
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