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An analysis has been done on the existing models for the prediction of the elastic modulus 
of fiber-reinforced polymer composites (FRPC). The experimental data reported in different 
specialized research journals have been fitted to the models. It is found the theoretical 
models such as the Parallel, Series and Halpin-Tsai model, by no means, predict the 
modulus within an acceptable deviation factor of 0.1. The semi-empirical models such as 
modified Halpin-Tsai and Bowyer-Bader model, which have one adjustable parameter, and 
are expressed in terms of volume fraction describe the modulus satisfactorily. In this paper, 
a mass fraction based model with one adjustable parameter is proposed, which also describe 
the modulus successfully. The proposed model, being mass fraction-based, is more 
convenient to work with than any volume-fraction based model, and unlike all other models 
(theoretical and semi-empirical), it has the potentials to have practical applications in 
structural material design. 
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1. Introduction   
 
Fibers are introduced in polymer compositions in order to improve their mechanical 
properties. Both synthetic and natural fibers are used for the purpose; although in recent 
years, polymer-matrix composites with natural fibers have received considerable attention 
both in the literature and in industrial applications due to their improved mechanical 
properties, significant processing advantages, low cost and low density [1]. 

Literature data on fiber-reinforced polymer composites (FRPC) have been 
accumulating, but reports on theoretical modeling of composition/property relation of 
these composites are scarce [2-5]. The modulus of elasticity can be considered as one of 
the most significant mechanical properties of materials for engineering design of structure. 
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This mechanical property of fiber-filled composites are affected by a number of 
parameters such as fiber type, matrix type, fiber orientation, fiber geometry, volume 
fraction of the fibers and the degree of interfacial adhesion between the fiber and the 
polymer matrix [6-10]. The properties of plant fibers, from their part, depend on a number 
of factors such as the nature of the plant, locality in which they are grown, age of the 
plant, part of the plant from which they are extracted, extraction methods and so on. Also 
the mechanical properties of the fibers from a single batch have somewhat statistical 
distribution. It is very difficult, if not impossible, to take into account all the factors 
affecting the properties of the fibers and then to propose a model for the estimation of 
elastic modulus of the FRPC. 

Facca et al. [2] applied six micromechanical composite models (theoretical and semi-
empirical) to predict the properties of the glass, wood, hemp and rice hull fibers reinforced 
polymer composites. Among all the models tested, the semi-empirical ‘Modified Halpin-
Tsai’ (MHT) model was found to predict the experimental data satisfactorily. 

Kalaprasad et al. [3] also selected a number of micromechanical composite models to 
predict the properties of the composites with longitudinally as well as randomly oriented 
fibers. The Hirsch and the Bowyer-Bader (BB) model were found to predict the Young’s 
modulus of the composites with both types of fiber distributions most satisfactorily, 
whereas both the Rule of Mixture (ROM) or Parallel model and the Inverse Rule of 
Mixture (IROM) or series model failed to predict it.   

Among all the theoretical models, the ROM and the IROM have got the simplest 
mathematical relations. To apply these models, the modulus of elasticity of the polymer, 
Ep, and of the fiber, Ef, should be known and then the modulus of elasticity of the 
composite, Ec, can be calculated for any volume fraction of the fiber in the composition. 
But those experienced in the field shall admit that these two models, in most cases, do not 
predict the modulus of elasticity of the composites satisfactorily. The experimental 
observations and analysis of Facca et al. [2] and Kalaprasad et al. [3] also confirm that. 
The experimentally observed value of the modulus of elasticity of the composites always 
lies in between those predicted by the Parallel and Series models.  

The Halpin-Tsai (HT) model is also a theoretical model. This model, besides the 
modulus of elasticity of the polymer, Ep, and of the fiber, Ef, includes a geometrical 
parameter (aspect ratio) of the fiber as well. The model has a complicated mathematical 
structure, but still failed to predict the observations made by Facca et al. [2] and 
Kalaprasad [3]. The semi-empirical MHT model, however, predicted the experimental 
results of Facca et al. [2] satisfactorily. On the other hand, the experimental results of 
Kalaprasad et al. [3] were described satisfactorily by another semi-empirical model 
namely Bowyer-Bader (BB) model. 

The modulus of elasticity of FRPC in all the models tested by Facca et al. [2] and 
Kalaprasad [3] is expressed as a function of the volume fraction of the fiber, vf. Virtually, 
the experiments are usually designed in terms of mass fraction, and the volume fraction is 
calculated based on the density data (available in the Literature) of the polymer and the 
fiber. Facca et al. [2] have shown that the density of the polymer-fiber composite is not an 
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additive quantity with the contribution of the components proportional to their volume 
fraction. This will mean that although the mass fraction is known, the volume fraction 
remains unknown. For prediction purposes, however, one has to know the volume 
fraction. Then one has to conduct experiments and collect the density data of the 
composites for different mass fractions and find the volume fraction versus mass fraction 
relationship.  

From the literature data [2-4], it has become evident that the theoretical models (which 
do not contain any adjustable parameter) fail to predict the modulus of elasticity of 
FRPCs, and to predict the modulus satisfactorily, one has to apply a relation with at least 
one adjustable parameter, which provide the model with semi-empirical nature. As there is 
no escape from empirical relation, it is easier to use some predictive model expressed in 
terms of mass fraction instead of volume fraction.  

Recently Mirbagheri et al. [11] conducted intensive research on hybrid composites 
consisting of ternary mixture of wood flour, kenaf fiber and polypropylene, and found that 
the ROM could successfully describe the modulus of elasticity of the polymer composites. 
Fu et al. [12], on the other hand, applied two approaches, namely ROM and LAA 
(Laminate Analogy Approach) to describe the elastic modulus of a ternary mixture of 
particle-fiber-polymer. The authors observed that the experimentally observed value of 
the elastic modulus is, to some extent, described by the LAA approach, but is much higher 
than that predicted by ROM. Conversely, in binary mixture of polymer and fiber, the 
elastic modulus of the composite is found to be much lower than that predicted by the 
ROM [2, 3]. 

The present work deals basically with two-component systems consisting of polymer 
and fibers, and the probable variation of the modulus of elasticity of a given component in 
the composite structure from that in the pure state has been ignored in the analysis. The 
purpose of the present work is (1) to make a discussion on the applicability of the ROM 
and IROM, HT, MHT and BB model as the most discussed ones among the mentioned 
models in predicting the Young’s modulus of some FRPCs, (2) To test whether the 
theoretical models (without any adjustable parameter) namely, ROM, IROM and HT 
model could predict the modulus within a tolerance range of deviation, (3) to propose a 
simple model in terms of mass fraction with one adjustable parameter to describe some 
experimental data of different fiber-reinforced polyethylene and polypropylene 
composites available in the literature[1, 2, 5, 13], and to compare its predictability with 
that of MHT and BB models, which also contain one adjustable parameter, and (4) finally 
to discuss in brief the perspective of the proposed model in serving the real purpose of 
prediction i.e. whether one could rely on the fitted value of the adjusted parameter to be 
equally valid for untested composition of the same material. 

It has been found that none of the models without adjustable parameters can predict 
the modulus of elasticity satisfactorily. Using small number of literature data, it has been 
observed that the models with an adjustable parameter, expressed in terms of volume or 
mass composition could describe the experimental data successfully. It is recommended, 
however, that more data is necessary to validate the models and the fitted value of the 
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adjustable parameter would then be used to predict the modulus of elasticity of untested 
compositions. 
 
2. Most Discussed Models and a Newly Proposed One 
 
A number of models are available in the literature [2, 3, 14-16] for the prediction of the 
Young’s modulus of the FRPCs. Among them, the following have comparatively simpler 
mathematical structure and are the most frequently discussed ones: (1) ROM or parallel 
model (2), IROM or series model, (3) HT model, (4) MHT model and (5) BB model. In 
the following sections, the applicability of the models will be discussed. Also a new 
model with empirical structure similar to that of the BB model, but expressed in terms of 
mass fraction, will be proposed.  
 
2.1. Rule of mixture (ROM) or parallel model  
 
The simplest available model to predict the elastic modulus of a composite material is the 
rule of mixtures (ROM) [14]. The ROM equation for the Young's modulus is: 
 

1        with               =++= pfppffc vvvEvEE      (1) 

 
where the subscripts c, f and p stand for composite, fiber and polymer matrix respectively, 
Ec, Ef  and Ep, are the elastic moduli, and vf, and vp, are the volume fractions.  

Eq. (1) can be theoretically derived for a system, in which the fibers are aligned along 
z-axis and propagate through the whole length of the body as shown in Fig. 1. A force 
(equivalent to stress σz) is acting along the z-axis. Then the modulus of elasticity along z-
axis is given by Eq. (1) [17]. This equation is very attractive with superficially interesting 
features: a) This equation is apparently valid for vf ∈(0, 1) and b) for vf = 0, Ec = Ep, and 
for vf  =1, Ec = Ef.  

Eq. (1) is derived for long fibers (The fiber length is equal to the height of the object), 
but in most cases, attempts are made to apply it for composites with short-fibers 
distributed randomly. It is also ignored that beyond certain value of vf (far below unity), 
the composite loses its integrity and Eq. (1) cannot be applied for high value of vf.  

There is a popular perception that Eq. (1) is a theoretical model as it can be derived for 
the distribution of fibers along the axis of elongation. For short-fiber reinforced 
composites, however, the equation is not valid at all. The polymer-fiber composite is a 
heterogeneous mixture with well-distinguished interface, and the property of the fiber is 
imparted to the matrix through this interface. The composite is not a homogeneous 
solution that an additive law will be expected to hold true for the property of the polymer 
matrix and the fiber equation.  Therefore, it is not unusual that the experimental data of 
the modulus of elasticity versus volume fraction is not described by the model represented 
by Eq. (1) as reported in the literature [2, 3]. 
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2.2. Inverse rule of mixture (IROM) or series model  
 
The series model [15] is represented by the following relation: 
 

pfff
c EvEv

E
/)1(/

1
−+

=  
 
     (2) 

 
One could expect that Eq. (2) would be derived if the load (equivalent to the stress σx 

or σy) is applied to the object in Fig. 1 along x or y axis. This is, however, not the case. For 
the derivation of Eq. (2), the fiber and polymer material are arranged in a manner as 
shown in Fig. 2, and a load is applied along y- direction and then the Eq. (2) is derived 
[17]. If the load is applied along x- or z- axis to the object shown in Fig. 2, the ROM or 
Eq. (1) will be obtained.  Such an arrangement, however, is not realistic for a composite, 
as this does not ensure adhesion between the polymer and the fiber. This is not a 
composite; rather separate elements arranged in series.  Thus, Eq. (2) is not a theoretical 
model for short-fiber reinforced polymer composites. The IROM model (Eq. 2) also fails 
to describe the experimental data on the modulus of elasticity of FRPC versus volume 
fraction of the fibers [2, 3]. 

 
 
 

 
                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2.3. Halpin-Tsai (HT) and modified Halpin-Tsai (MHT) model [2, 16] 
 
The HT model (Eq. 3) has a more complicated mathematical structure than that of the 
ROM or IROM. In this model, in predicting the elastic modulus of the composites, 
besides the modulus of elasticity and volume fraction of the components, the aspect ratio 
(ratio of the geometric dimensions) of the fiber is also taken into consideration (Eq. (3)).  

Fig. 1. Distribution of the fibers 
oriented along z-axis and 
propagating through the whole 
length of the cube. 
 

Fig. 2. Tri-dimensional view of a 
‘hypothetical’/model arrangement of fibers 
and polymer matrix: parallel arrangement 
as viewed along z- and x-axis, and   series 
arrangement as viewed along y-axis. 
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where L refers to the length of the fiber, and T or D is the thickness or diameter of the 
fiber. The Eq. (3) does not have any adjustable parameter and knowing the properties of 
the components, the modulus of elasticity of the composite could be calculated. For ξ →0, 
Eq. (3) is reduced to Eq. (2) representing the IROM or Series Model and for ξ → ∞, Eq. 
(3) is reduced to Eq. (1) representing the ROM or Parallel Model. Thus, the HT model is a 
more general model. In spite of the complicated mathematical structure, the HT also fails 
to predict the elastic modulus of polymer-fiber composites satisfactorily. If the term ξ is 
replaced by an adjustable parameterξad, then the HT model is reduced to Eq. (4). 
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Eq. (4) is known as modified Halpin-Tsai (MHT) model and in this form it predicts 
satisfactorily the elastic modulus of fiber-reinforced polymer composites [2-4]. The 
parameter ξ in HT model accounts for the packing arrangement and the geometry of the 
fibers. The adjustable parameter ξad in MHT model, however, does not have any physical 
significance. The value of the parameter ξad is adjusted in such a way that the 
experimental Ec, vs. vf, data fit to Eq. (4) and hence, the MHT model does not have 
credibility more than an empirical relation.  
 
2.4. Bowyer-Bader (BB) model  
 
The Bowyer-Bader (BB) model [3]  is represented by the following relation: 
 

      with                 21.kkvEvEE vffvmmc =+= αα  
 

(5) 
 
where k1 and k2 are the fiber orientation and the fiber length factor respectively, and the 
parameter αv is the overall reinforcing factor. In fitting the experimental Ec vs. vf data to 
Eq. (5), one has to adjust the value of the product k1.k2.  It is difficult to determine the 
value of k1 and k2 separately.  In literature [3], some formula is used to calculate the 
individual value of k1, but such formula merely has much solid theoretical ground.  Thus, 
the BB model is with one adjustable parameter, αv, and has got much simpler 
mathematical structure than that of MHT model. For αv = 1, Eq. (5) is converted into Eq. 
(1) representing the parallel model. The parameter αv expresses to what extent the 
modulus of elasticity of the fiber contribute to the modulus of elasticity of the composite. 
The BB model satisfactorily describes the elastic modulus of a FRPC [3]. 
 
2.5. A Mass fraction-based simple (MFS) model  
 
A simple empirical model could be formulated in terms of mass fraction in order to 
predict the modulus of elasticity of FRPC. The MFS model may be represented by Eq. (6) 
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 1     with                 =++= fpffmppc xxxExEE α  (6) 
 
where x is the mass fraction of the components and αm is the reinforcing factor in mass 
fraction based empirical relation. This model has got mathematical structure similar to 
that of BB model (Eq. 5), but unlike all other mentioned models, in this model the 
modulus of elasticity of FRPC is expressed in terms of mass fraction. If the Eq. (6) could 
describe the elastic modulus of the composites, it would serve the practical purposes of 
structural material design much better than other models, avoiding difficulties in the 
conversion of mass fraction to volume fraction. 
 
3. Illustration of the Model Prediction 
 
Before going for validation of the models, one has to be very cautious about the quality of 
data being used. For the validation of the models, the first two parameters that are 
essential to be known are the modulus of elasticity of the polymer and the fibers. It is a 
well-known fact that the polymer properties vary in a wide range depending on the 
chemical composition, chain-branching, molecular mass distribution and the processing 
parameters. Therefore, any value of Ep found in literature could, by no means, be 
considered an acceptable one without reservations. The properties of natural fibers also 
vary in a wide range. The variation is caused by the fluctuation in environmental 
conditions (moisture, soil, temperature etc) in the regions, in which the fibers grow and 
also on the processing methods. Even in the same batch, the properties of fibers have 
statistical distribution. For this reason, it must be defined first in what range the prediction 
would satisfy the requirements to the design of structural material.  
 
Tolerable deviation from the values predicted by the models 
 
Let us assume that the coefficient of deviation in the value of the parameters Ep and Ef are 
respectively γp and γf; i.e. γ p= ∆Ep/Ep and γf = ∆Ef/Ef. The deviation in the value of the 
parameters Ep and Ef will definitely reflect in the deviation of the estimated value of Ec. 
 
Equation for error calculation in ROM or parallel model [18]: 
 
Following Eq. (1), we have  
 

           ppffc dEvdEvdE +=  (7) 
 

Then the deviation in the elastic modulus of the composite, ∆Ec, is given by 
 

           ppffc EvEvE ∆+∆=∆  (8) 
 

Substituting ∆Ef  and ∆Ep with their equivalents, the Eq. (8) is reduced to Eq. (9).  
 

           pppfffc EvEvE γγ +=∆                                                                                       (9) 
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For every volume fraction vf, the error ∆Ec in the estimation of Ec will be determined 
from Eq. (9).  
 
Equation for error calculation in IROM or Series model [18]: 
 
Following Eq. (2), we have 
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Then the deviation in the elastic modulus of the composite, ∆Ec, is given by 
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Substituting ∆Ep and ∆Ef with their equivalents, Eq. (11) is reduced to Eq. (12):  
 












+=

∆

p

p
p

f

f
fc

c

c

E
v

E
v

E
E
E

γγ  (12) 

For every volume fraction vf, the error in the estimation of Ec will be determined from 
Eq. (12).  

For simplicity, let us assume that γp= γf  = 0.1. Then for both Eq. (9) and Eq. (12) 
(corresponding to parallel and series model), ∆Ec = 0.1Ec. This would mean that if the 
experimentally obtained value of the modulus of elasticity of the composite, Eexp, with a 
given composition lies within the range of (1.0±0.1) Ec, the prediction may be considered 
satisfactory. In the similar manner, the formula for acceptable deviation of the predicted 
value can be estimated for the HT model. 
 
4. Validation of ROM, IROM and HT Model 
 
These three models do not have any adjustable parameter. If the experimental modulus of 
elasticity Eexp vs. fiber volume fraction vf data is plotted and the curve lies in the area 
surrounded by the prediction curves 0.9Ec and 1.1Ec, then the prediction might be 
considered satisfactory. This procedure of validation is applied to some polymer fiber 
composites such as High density polyethylene (HDPE)-E-glass, HDPE-Hardwood A, 
HDPE-Hardwood B, HDPE–Hemp, HDPE-Rice hulls, Low density polyethylene (LDPE)-
Sisal and Polypropylene (PP)-Flax system. The data were collected from the literature [2-
4, 13]. The figures were drawn (only two of these are shown) and it was found that in all 
cases (except HDPE-E-glass system), the experimental curve, Eexp, lay far apart from the 
area surrounded by the curves 0.9Ec and 1.1Ec as predicted by the ROM, IROM and HT 
model. Fig. 3 represents the experimental data (collected from literature) and also the 
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curves representing the modulus of elasticity of HDPE-Hardwood A fiber composites as 
predicted by the HT (Eq. 3) and the IROM model (Eq. 2). The indices 0.9 and 1.1 denote 
the multiple factor to the estimated Ec. It is evident from the Fig. 3 that neither IROM nor 
HT could predict the Young’s modulus Ec.  Such was the picture with the prediction by 
the ROM, IROM and HT model on all mentioned systems excluding the HDPE-E-glass 
fiber composite.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.    Young’s modulus Ec vs. volume fraction of the fiber, vf, in HDPE-Hardwood A composite. 
The symbol * represents the experimental data [2]. The interpretation of the symbols is given in the 
text. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.   Young’s modulus Ec vs. volume fraction of the fiber, vf, in HDPE-E-Glass fiber composite. 
The symbol * represents experimental data [2]. The interpretation of the symbols is given in the 
text. 
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Fig. 4 presents the experimental data of HDPE-E-glass fiber composites (collected 
from Literature) and the prediction of HT model. In this case also the modulus of 
elasticity predicted by the ROM and IROM lies far apart from the experimentally 
observed modulus of elasticity (not shown in the figure). The HT0.9 and HT1.1 curves, 
however, partially cover the experimental data, and this is the ‘best’ prediction among the 
seven systems studied. Thus, it is hard to rely on the ROM, IROM or HT model to predict 
the modulus of elasticity of a polymer-fiber composite. Facca et al. [2] have also 
excellently demonstrated these failures. 
 
5. Validation of the MHT, BB and MFS Model                  

 
Each of these three models contains an adjustable parameter. Assigning some constant 
value to Ep and Ef, the value of the parameter (ξad, αv or αm) is to be adjusted in such a 
manner that the Ec- Ep vs. volume fraction, vf, data fits to the MHT (Eq. 4) and BB (Eq. 5) 
model, and the Ec - Ep vs. mass fraction, xf, data to the MFS (Eq. 6) model. The result of 
the validation of the models is presented in Figs. 5, 6 and 7, and the value of the adjusted 
parameter is presented in Table 1.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  (Ec-Ep) vs vf  data for HDPE-Hemp, HDPE-Hardwood B,  HDPE-Rice hulls, LDPE-Sisal 
and PP-Flax fiber composites fitted to BB model. The data were collected from ref. [2-4]. 
 

Table 1 represents the assigned value to Ep and Ef of different polymer-fiber system 
and the value of the corresponding fitted parameter of the MHT, BB and PM models. The 
value of ξad found in this treatment differs a bit from that reported by Facca et al. [2]. The 
reason for such difference lies probably in the error in the collection of secondary data 
from the figures in Facca et al. [2].  The volume fraction and the corresponding mass 
fraction of only some of the compositions in Table 1 were available in the literature. For 
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this reason, the data of only few of the compositions were treated with all the three 
models. Some data have been treated only with MHT and BB model (which are volume 
fraction based) and some data- only with MFS model (which is mass-fraction based). For 
this reason, some of the cases in Table 1 remained empty. In spite of the deficiency of 
data, from a glance on the curves in Figs. 5, 6 and 7 and the data in Table 1, it may be 
concluded that all the three models could successfully describe the modulus of elasticity 
Ec of FRPCs. Facca et al. [2] successfully fitted their experimental data to MHT model. 
Kalaprasad et al. [3] and Joseph et al. [13]  fitted their data to BB model. It is worth  
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Fig. 6. (Ec-Ep) vs vf  data for HDPE-Hemp, HDPE-Hardwood B,  HDPE-Rice hulls, LDPE-Sisal and 
PP-Flax fiber fitted to MHT model. The data are collected from ref. [2-4]. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.  (Ec-Ep) vs mass fraction, xf  data for PP-Aspen, PP-Sisal, HDPE-Hemp and HDPE-Rice hull 
fibers fitted to MFS model. The data are collected from ref. [1, 2, 5]. 
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mentioning that the experimental Ec vs. vf data of none of the polymer-fiber system 
described in Table 1 fit to the theoretical models (ROM, IROM and HT). The illustration 
in Figs. 5, 6 and 7 and the data in Table 1 categorically show that the data of all the 
polymer-fiber composites under discussion in this paper could be described by any one of 
three models, namely MHT, BB and MFF models. The MFS model being the only mass 
fraction based model among the three will serve the practical purposes of composite 
design.  

 
Table 1. Modulus of elasticity and the value of fitted parameters of the MHT (Eq. 4), BB (Eq. 5) and 
the MFS model (Eq. 6). 
 
Composition Ep 

(GPa) 
Ef 

(GPa) 
ξad  
(Eq. 4) 

αv  

(Eq. 5) 
αm  
(Eq.6)  

Data 
source 

HDPE-E-glass 1.07 72.0 42±4.0 0.48±0.02 0.24±0.02 [2] 

HDPE -Hardwood A 1.07 32.7 5.5±0.2 0.30±0.01 0.19±0.02 [2] 

HDPE -Hardwood B 1.07 32.7 6.2±0.1 0.29±0.01 0.21±0.01 [2] 

HDPE –Hemp 1.07 69.0 8.9±0.4 0.19±0.01 0.15±0.01 [2] 

HDPE -Rice hulls 1.07 22.0 2.0±0.1 0.25±0.01 0.17±0.01 [2] 

LDPE-Sisal 0.14 10.75 69±4.0 0.53±0.01 0.93±0.05 [3, 13] 

Polypropylene-Aspen 2.08 10.9 - - 0.87±0.02 [5] 

Polypropylene-Sisal 0.498 10.75 - - 0.23±0.01 [13] 

Polystyrene-Sisal                         0.39 10.75 - - 0.25±0.02             [13] 

Polypropylene-Flax 0.49 35 1.8±0.1 0.072±0.001 - [4] 

 
6. Scope of the MFS Model 
 
It is highly inspiring that a simple first order relation in terms of mass fraction, xf, can 
describe the Ec vs. xf relationship for FRPCs. The model has been validated, however, 
with small number of data. With the accumulation of data in the literature, it may so 
happen that the linear equation fails to describe the Ec vs. xf relationship for many FRPCs. 
There will be no harm then to introduce a higher order relation in terms of mass fraction. 
There should be an end, however, to proposing empirical relation with increasing number 
of adjustable parameters and subsequent validation. The success of a model virtually lies 
in the prediction of properties of untested composition, process or phenomenon. Then 
arises the very question, in what confidence range could the MFS model predict the elastic 
modulus of FRPCs, which are prepared based on some other brands of polymers and 
fibers. Could it predict within the range of (1.0±0.1)Ec accepting the value of the αm equal 
to that described in Table 1? If one can not use the value of αm as a characteristic 
parameter for a given polymer-fiber system to estimate the elastic modulus, such 
empirical relation will remain only in papers and will not serve any real purpose.  
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The value of αm in this paper has been determined by fitting the (Ec-Ep) vs. xf data for a 
given polymer-fiber system with definite value of the modulus of elasticity Ep and Ef for 
the polymer and the fiber respectively. The modulus of elasticity of a polymer may vary in 
a wide range depending on the molecular mass, branching, preparation and processing 
condition and so on. The modulus of elasticity of natural fiber also varies in a wide range. 
Through extensive experimental work, the dependence of αm on varying polymer and 
fiber properties should be found, and only then the parameter αm will appear to be 
characteristic of a given polymer-fiber system, and the model will assume the status of 
prediction equation. Until then the model with the parameter-value equal to that 
mentioned in Table 1 will serve only the purpose of orientation about the ranges of the 
modulus of elasticity of a given composite system. 
  
7. Conclusions 

 
a. Theoretical models such as ROM (Parallel), IROM (Series) and Halpin Tsai 

models totally fail to predict the Young’s modulus of fiber-reinforced polymer 
composites. 

b. Semi-empirical models such as Modified Halpin-Tsai (MHT) and Bowyer-Bader 
(BB) model (which are expressed in terms of volume fraction and with one 
adjustable parameter) successfully describe the Young’s modulus of a number of 
fiber-reinforced polymer composites. The adjustable parameter in the MHT model 
is an empirical parameter to fit the experimental data to the model and thus, it does 
not have any physical significance. The adjustable parameter in the BB model is 
also an empirical parameter, but has got its physical significance as the degree of 
contribution of the fiber to the composite. 

c. The proposed MFS model with one adjustable parameter and expressed in terms of 
mass fraction also successfully describes the Young’s modulus of a number of 
fiber-reinforced polymer composites. The adjustable parameter in this model has 
got its physical significance as the degree of contribution of the fiber to the 
composite. 

d. The proposed model being mass fraction based is more convenient to work with 
than a volume fraction based model, and unlike all other models (theoretical and 
semi-empirical), it has the potentials to have practical applications in structural 
material design. 

e. The fitted value of the adjustable parameter of the MHT, BB and the proposed one, 
MFS, still can not be the characteristic parameter of the polymer-fiber systems 
under investigation. More experimentation is required with varying polymer and 
fiber properties in order to find a representative value of the adjusted parameter, 
and the value so obtained only can represent the corresponding polymer-fiber 
system.  
 

 

Appendix:  List of abbreviations 
 
BB (Bowyer-Bader);  FRPC (Fiber reinforced polymer composite); HDPE (high density 
polyethylene); HT (Halpin-Tsai); IROM (Inverse Rule of Mixture); LAA (Laminate Analogy 
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Approach); LDPE (low density polyethylene); MFS (Mass fraction-based simple); MHT (Modified 
Halpin-Tsai); ROM (Rule of Mixture); Ec (Young’s modulus of the composite); Eexp ( Experimental 
Young’s modulus of the composite);  Ef (Young’s modulus of the fiber); Ep (Young’s modulus of 
the polymer); vf (volume fraction of the fiber); vp (volume fraction of the polymer); αm (adjustable 
parameter for mass fraction based model); αv (adjustable parameter for Bowyer-Bader model); ξad  
(adjustable parameter for Halpin-Tsai equation); σ ( stress applied to the composite). 
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