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Abstract 

Three-phase induction motors are extremely popular and almost ubiquitous in industrial 

applications. Issues related to starting and speed control of these motors are of great 

importance in performance determination. This paper presents the speed control of a 3-phase 

induction motor using a Support Vector Machine (SVM) based classifier. A thyristorised 

voltage controller regulates the motor speed by utilizing the speed-voltage proportionality. 

Input to the controller is a multiclass SVM classifier that has been trained to estimate the 

appropriate firing angle '‘'’ for the desired torque-speed combination. A soft starter is also 

included in the model and, as demonstrated, gives a proper time variation to '‘'’. The 

simulation findings show that the soft starter's progressive increase in the motor supply 

voltage significantly reduces the amplitude and the pulsating nature of the starting current and 

Torque of the motor. The performance of the SVM controller and the soft starter at various 

torque speed combinations are evaluated on the model and found to be satisfactory. 
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1.   Introduction 

Industrial and domestic applications both frequently use induction motors. One of the issues 

concerning these motors is the large current and Torque, often pulsating in nature, witnessed 

during the time of starting [1]. The high pulsating starting torque can harm mechanical 

linkages and bearings, damage load couplings, or result in belt slippage. Similarly, the high 

starting current causes voltage dips that interfere with the operation of electric and 

electronic devices attached to the load busbar [2]. Hence, a soft starter is preferred for 

starting an induction motor whose main purpose is to reduce the voltage at the time of 

starting in a graded manner so that the current and Torque, which have a direct 

proportionality with the applied voltage, reduce as a consequence. 
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A soft starter can be used to conserve energy when the load is low and assist in lowering 

the initial current/torque by giving a lower voltage during start-up [3]. In comparison to 

traditional starting techniques employed for induction motors, soft starters are 

thyristor/IGBT-based devices that are less expensive and offer a better modulation of the 

input voltage [4], and several novel algorithms aimed at implementing an efficient soft start 

have appeared in the literature of late [5-7]. This technique can also be used to regulate the 

motor's speed by applying voltage control. The thyristors' firing delay can be modified for 

a specific voltage matching to a specific desired speed [8,9]. Several have proven the soft 

starting efficiency.  

A soft start technique supported by an SVM classifier for the speed control of a 3- 

asynchronous motor is provided in this research. SVMs, although relatively new, have 

attracted a lot of attention and have become quite popular for classification problems 

[10,11]. They have also been applied to numerous induction motor applications, such as 

failure diagnosis [12-15], classification of the status of voltage supply [16], and estimation 

of rotor resistance [17]. Very little evidence of SVM being investigated for motor speed 

control can be found in the literature, although the use of ANN or Fuzzy logic is well 

documented [18-20]. In the work presented here, the firing angle '‘'’ required to meet a 

given torque-speed combination is optimally generated by the SVM and then given to the 

soft starter, which limits the starting current Torque and reduces the Torque's pulsations. In 

the sections that follow, the specifics of the circuit implemented in MATLAB / SIMULINK 

are covered.  

 

2. Speed Control using SVM Classifier 

 

2.1. Training and test data 

 

An SVM classifier network is used in the initial section of the study to implement the 

induction motor's speed regulation. Initially, a MATLAB model, as illustrated in Fig. 1(a), 

is used to gather the data necessary for training the network. The squirrel cage induction 

motor used has the following parameters: Rated power = 3 hp, Rated voltage = 220V, No 

of poles = 4, Supply frequency = 50 Hz, Resistance of stator winding = 0.435  / phase, 

Resistance of Rotor winding = 0.816  / phase, Rotor inertia J = 0.089 Kg-m2.  A thyristor 

voltage regulator is coupled to a three-phase, 220V voltage supply, and the motor is excited 

using the controlled voltage. As shown in Fig. 1(b), the voltage regulator comprises six 

thyristors stacked in an anti-parallel configuration for each phase. The built-in MATLAB 

synchronized 6-pulse generator produces the firing pulses for the thyristors. The firing 

sequence for the various phases is maintained, as illustrated in Fig. 1(d), to ensure the 

correct operation of the three-phase voltage regulator. The firing pulses given to the 

corresponding thyristors of the 3 phases differ in phase by 120°, and those used for the 

thyristors of a particular phase differ by 180° in phase. 
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Fig. 1. (a) MATLAB model used for obtaining training data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (b) MATLAB model of the voltage regulator. 
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Fig. 1. (c) MATLAB model for firing pulses. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (d) Firing delay sequence. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Torque vs. speed and Torque vs. firing angle '‘'’. 
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The firing delay given to the pulse generator is varied to control the induction motor's 

speed. An increase in the firing angle '‘'’ reduces the regulator output voltage or the motor 

input voltage. Consequently, the motor speed (being proportional to the input voltage 

squared) reduces. The data required for training the A. I. model is obtained by changing the 

Torque for a given firing angle '‘'’ and documenting the various speeds obtained. This 

information, shown in Fig. 2, depicts the typical induction motor speed torque characteristic 

for a specific firing angle (in its stable working range). A support vector machine-based 

classifier is used to implement automatic speed control of the induction motor. The 

classifier is trained by taking the different values of motor torque and speed as inputs and 

the required firing angle () as the output (label). Although determining the firing angle 

required to generate a specified voltage for the desired speed is a regression problem, multi-

level classification has been attempted to achieve the objective.  

 

2.2. SVM classifier 

 

SVM, introduced by Vapnik [21], is a machine learning algorithm based on statistical 

learning and can be used for classification, regression, and ranking [22]. In its basic form, 

which solves the problem of binary classification, SVM classifies data by locating a 

hyperplane that maximizes the margin between data points of different classes. If the given 

input data is not linearly separable, i.e., a linear hyperplane cannot be found, then the data 

can be mapped from the input space to some feature space by means of a mapping function 

 and a suitable hyperplane can then be obtained [23]. However, mapping back the 

separation to input space makes the decision boundary non-linear. In practice, this process 

of transforming data to a higher dimensional space is simplified by using a kernel function 

that computes the dot product of input vectors. Some commonly used kernel functions are: 

(i)   Linear Kernel Function  

𝐾(𝑥, 𝑦) =  𝑥𝑇𝑦 + 𝑐 

(ii)  Polynomial Kernel Function  

𝐾(𝑥, 𝑦) =  (𝛼𝑥𝑇𝑦 + 𝑐)𝑑 

(iii) Gaussian Kernel Function  

𝐾(𝑥, 𝑦) =  𝑒
−(

||𝑥−𝑦||2

2𝜎2 )
 

(iv) RBF (Radial Basis Function) Kernel Function  

𝐾(𝑥, 𝑦) =  𝑒−(𝛾||𝑥−𝑦||2) 

When SVMs are intended for multiclass classification, two approaches can be used. These 

are called the One vs One approach and the One vs All approach. In the One vs One method, 

for a n-class system, n(n–1)/2 number of classifiers are constructed. Each input instance is 

separately tested for two classes taken at a time, probabilities are added for each case, and 

a final classification decision is taken based on the maximum vote (or probability) obtained. 

In the One vs. All method, for an in-class system, n number of classifiers are required, and 
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the training algorithm checks for the proximity of the input instance to a particular class as 

opposed to an in-class system, n number of classifiers are required and the training 

algorithm checks for the proximity of the input instance to a particular class as against all 

other classes. This method is reported to have performed poorly in cases where some of the 

classes were sparse [24].  

 

 

 

 

 

 

 

 

 

 

Fig. 3. Binary vs multiclass classification of SVM. 

 

For the present study of the automatic speed control of an induction motor, SVM was 

implemented in its classification mode using the MATLAB toolbox, and the "One vs All" 

strategy was adopted. A sample size of 4,850 was used, which included some redundancy 

for better training. The input vector was of size (4850 x 2), indicating the two inputs (applied 

Torque and the desired speed), while the target vector (labels) was 8 in number, 

corresponding to eight different values of the firing angle, namely 5, 10, 20, 30, 40, 

50, 60 and 70. 20 % of the data was reserved for testing, while 80% was utilized for 

training. Different kernel functions were used for testing: linear, polynomial, gaussian, and 

rbf. A confusion chart was plotted for each of the kernel functions utilizing the results on 

the test samples (970). The results are shown in Fig. 4. The accuracy computed by dividing 

the trace of the matrix by total test samples is 0.2113 for linear, 0.553 for polynomial, 0.612 

for Gaussian, and 0.6206 for rbf kernel functions. As the '‘rbf'’ kernel function has shown 

the best accuracy, it is selected for the final training and implementation in the speed control 

block.    
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Fig. 4. Confusion Charts for different Kernel Functions studied: a) linear, b) polynomial, c) gaussian, 

and d) rbf. 

 

3. Soft Starting 

 

A soft starter is created in the work's second section to lessen the starting torque and current 

pulsations. Depending on the required speed and the load torque, the soft starter calculates 

and smoothly varies the firing delay. The value of  is changed from an initial high value 

(which is best picked to be 70°) to the necessary number. The high starting '‘'’ results in a 

small starting voltage and reduced starting Torque. This high value of ' '‘'’ is gradually 

decreased to the needed value. Through simulations, it was found that a value of '‘'’ greater 

than 700 produces a voltage too small to start the motor or increase its speed (resulting in 

unstable operation). Equation (1) can be used to calculate the variance in '‘'’ with regard 

to time. In this Equation, '‘A'’ is the pre-decided initial value of '‘'’, tR is the time given 

for '‘'’ to reach its final value from the pre-decided high initial value, and '‘p'’ stands for 

the rate of change of alpha with respect to time during its transition. The MATLAB 

implementation of Equation (1) in the form of a block diagram is shown in Fig. (5). The 

time-varying , or (t), is the output of this soft starting block. The block also includes a 

selector switch for retaining the value of '‘'’ after time tR. 

𝛼(𝑡) = 𝐴 +
𝛼𝑓(𝑡𝑝)

𝑡𝑅
𝑝 −

𝐴(𝑡𝑝)

𝑡𝑅
𝑝    ;   𝑡 < 𝑡𝑅              𝛼(𝑡) = 𝛼𝑓          ;   𝑡 > 𝑡𝑅       (1) 
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Fig. 5. Soft starting logic implemented in SIMULINK. 

 

4. Simulation Results and Discussion 

 

The complete model implementing the induction motor's soft starting and speed control is 

depicted in Fig. 6. A 3- thyristor-based voltage regulator feeds the induction motor. For a 

given speed-torque combination, the optimally trained SVM classifier block determines the 

appropriate firing delay "" (final value) that is supplied to the soft starting block. The soft 

start block then generates the time varied '‘'’ used in generating the firing pulses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Simulink Model for SVM-based induction motor starting. 

 

The voltage regulator adjusts the motor input voltage in accordance with the variation 

in , thereby regulating the variations in Torque, speed, and current. A number of 
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measurement blocks are inserted to plot the speed, voltage, Torque, and current. The results 

of simulating the model for various torque-speed combinations are found to be satisfactory. 

The findings for the torque-speed pair (T = 10 Nm, N = 1456 RPM) are shown in Fig. 7, 

Figs. 8, and 9 as a sample case. In these Figs., a comparison is made between the 

performance obtained with soft starting and the performance obtained without its use. In 

the latter case, the voltage regulator receives the value of '‘'’ determined by the SVM block 

without any modulation. In the former case, the time variation in '‘'’ introduced by a soft 

starter is shown in Fig. 7a. For the given scenario, the value of '‘'’ estimated by SVM is 

40. By setting p = 0.5 in the block, a quadratic variation of  with time is selected. Fig. 7(b) 

illustrates the difference in the motor input (regulator output) voltage.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. (a) Firing delay profile – Soft Start. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. (b) Motor input voltage profile – DOL start and soft start comparison. 

 

From the voltage profile, it can be observed that when a DOL starter is used, the supply 

voltage is initially close to 220V, falls, and then gradually rises to 225V (equivalent to  = 

40) over the course of around 0.6 seconds. When soft starting is used, the voltage increases 
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over the course of roughly 2 seconds from a starting value of about 140V to the ultimate 

value of 225V. Once more, a slight decrease is visible at about 1.6 seconds. Next, in Fig. 8, 

variations in motor speed are shown. According to the speed characteristics, soft starting 

causes a time delay of around 1.2 seconds when compared to DOL starting before the final 

speed value (1456 RPM) is reached. In the majority of real-world applications, this delay 

may be acceptable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Motor speed – DOL start and soft start comparison. 

 

The torque and stator current changes displayed in Fig. 9 are the easiest to show the 

positive impacts of soft starting. Fig. 9(a) shows variations of the average Torque. In DOL 

start, the average Torque oscillates near 40 Nm during the first 0.25 seconds of the starting 

period before falling down. When soft starting is used, this high average torque drops to 

about 10 Nm during the same period. As shown in Fig. 9 (b), variations in instantaneous 

Torque make it simple to see how early torque pulsations have diminished in size. After a 

brief period of time, peaking at roughly 20 Nm in the case of soft starting, the motor torque 

eventually stabilizes at the predetermined level of 10 Nm. In soft starting, however, some 

additional time lag is seen before the Torque settles down (about 1.2 seconds). A 

comparison of starting current is made for the two cases in Fig. 9c. It illustrates the benefit 

of soft starting in decreasing starting current pulsations. When starting on a DOL, the stator 

current is close to 50A, but when starting softly, it is closer to 25A. In soft start, some 

increase in the current is observed at a later stage, but the amplitude (33A) is still less than 

that obtained with DOL. In Fig. 9 (d), the instantaneous currents are displayed. Thus, it is 

noticed that by using soft starting, current and starting torque pulsations can be minimized. 
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Fig. 9. (a) Average Torque – DOL start and soft start comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 9. (b) Instantaneous Torque – DOL start and soft start. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. (c) RMS stator current – DOL start and soft start.  
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Fig. 9. (d) Instantaneous stator current – DOL start and soft start.  

 

5. Conclusion 

 

This work presents a soft starting method and uses an SVM classifier to control the speed 

of an induction motor. The SVM controller generates a firing angle appropriate for a given 

combination of Torque and speed and is initially trained using a variety of speed, Torque, 

and firing angle combinations. A modulated firing delay is inputted to the thyristorized 

voltage controller for soft start purposes to feed the motor. The initial Torque and current 

pulsations are decreased by progressively raising the motor supply voltage. The simulation 

results are determined to be adequate, and the circuits are implemented using 

MATLAB/SIMULINK. 
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