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Abstract 

In this paper, we have discussed the exact solution of Einstein's field equations for anisotropic 

Bianchi type 𝑉𝐼0 cosmological model in the framework of the scalar-tensor theory of 

gravitation given by Sáez–Ballester for barotropic fluid distribution. To obtain an exact 

solution, we have assumed that expansion (𝜃) is proportional to shear (𝜎), which leads to 

𝐴 = 𝐵𝑘, where 𝑘 is a constant and 𝐴,  𝐵 are metric potentials and also assumed barotropic 

condition 𝑝 = 𝛾𝜌; (0 ≤ 𝛾 ≤ 1) where 𝑝 being isotropic pressure and 𝜌 is matter density. 

Some physical and geometrical properties of the model are also discussed. 
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1.   Introduction 

Numerous scholars have shown keen interest in investigating cosmological models 

proposed by Sáez and Ballester's [1] theory due to its efficacy in elucidating the universe's 

early stages. Various alternative theories have been postulated to Einstein's model in an 

effort to illuminate the fundamental nature of the cosmos during its initial evolution. The 

proposition by Sáez and Ballester delineates the behavior of weak fields as well as the 

coupling of a dimensionless scalar field, offering insights into the problem of missing matter 

in a non-flat FRW universe. Piementel [2] explained the significance of scalar-tensor 

theories through the presentation of novel vacuum solutions within the Brans-Dicke theory. 

Under the paradigm of the Sáez and Ballester framework, different researchers, such as 

Mohanty et al. [3], Reddy et al. [4], Adhav et al. [5], Katore et al. [6], Pradhan et al. [7], 

Rao et al. [8], Hasmani et al. [9], Mishra and Chand [10], Vinutha and Venkatavasavi [11] 

have studied many cosmological models. 

 By utilizing homogeneous and isotropic models offered by FRW (Friedmann-

Robertson-Walker) line elements, the universe's current state can be effectively depicted. 

Bianchi models I to IX, characterized by spatial homogeneity and anisotropy, are presently 
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under examination to enhance the comprehension of the universe's early history. Given that 

Bianchi type 𝑉𝐼0 Space-times are an easy generalization of Bianchi type-I space-time 

models, which are anisotropic extensions of FRW models featuring zero curvature and hold 

particular significance. Baro et al. [12] have conducted a study on anisotropic models within 

Lyra geometry. Barrow [13] proposed that Bianchi type 𝑉𝐼0 models could undergo 

isotropization in specific instances, providing improved explanations for certain 

cosmological issues. The exploration of Bianchi type 𝑉𝐼0cosmological models have been 

pursued by Ellis and MacCallum [14], Collins [15], Dunn and Tupper [16], Roy and Singh 

[17], Roy et al. [18], Ribeiro and Sanyal [19], Ram [20], Tikekar and Patel [21], Bali et al. 

[22-24]. 

 In a recent study, Tyagi et al. [25] have discussed 𝑉𝐼0 model incorporating a magnetic 

field. Bali and Poonia [26], Bali and Kumari [27], and Goyal [28] have investigated the 

inflationary scenario of Bianchi type 𝑉𝐼0 cosmological models. Investigations by Ram et 

al. [29] and Lambat et al. [30] have centered on Bianchi type 𝑉𝐼0 models within Lyra 

geometry. Ugale and Deshmukh [31] have investigated 𝑉𝐼0 model within modified f(R, T) 

gravity, while Basumatay and Dewri [32] have explored 𝑉𝐼0 models within the Sen-Dunn 

theory of gravitation. 

 In this paper, investigation of a Bianchi type 𝑉𝐼0 model with barotropic fluid 

distribution is conducted within the framework of the Sáez and Ballester theory. Various 

physical and geometrical characteristics of the model are discussed in terms of cosmic time. 

 

2. The Metric and Field Equations 

 

Bianchi Type 𝑉𝐼0 metric in the form 

 𝑑𝑠2 = −𝑑𝑡2 + 𝐴2𝑑𝑥2 + 𝐵2𝑒−2𝑚𝑥𝑑𝑦2 + 𝐶2𝑒2𝑚𝑥𝑑𝑧2 (1) 

where 𝐴, 𝐵,  𝐶are functions of cosmic time 't'. 

The field equations by Sáez-Ballester for combined scalar and tensor fields are  

𝐺𝑖𝑗 − 𝜔𝜙𝑛 (𝜙,𝑖𝜙,𝑗 −
1

2
𝑔𝑖𝑗𝜙,𝑎𝜙,𝑎) = −𝑇𝑖𝑗                          (2) 

where the scalar field 𝜙 satisfies the following conditions 

2𝜙𝑛𝜙,𝑖
,𝑖 + 𝑛𝜙𝑛−1𝜙,𝑎𝜙,𝑎 = 0                   

and  

𝐺𝑖𝑗 = 𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗                                                                                                   (2) 

The energy momentum tensor for a perfect fluid distribution is given by  

𝑇𝑖𝑗 = (𝜌 + 𝑝)𝑢𝑖𝑢𝑗 + 𝑝𝑔𝑖𝑗                                                                                        (3) 

and  

𝑔𝑖𝑗𝑢𝑖𝑢𝑗 = −1                                                                                                          (4) 

where 𝜌 is the energy density of the cosmic matter, 𝑝 is the isotropic pressure, and 𝑢𝑖 is the 

four-velocity vector. 
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The field equations can be written as   

𝐵44

𝐵
+

𝐶44

𝐶
+

𝐵4𝐶4

𝐵𝐶
+

𝑚2

𝐴2 −
𝜔

2
𝜙𝑛𝜙4

2 = −𝑝                                                               (5) 

𝐴44

𝐴
+

𝐶44

𝐶
+

𝐴4𝐶4

𝐴𝐶
−

𝑚2

𝐴2 −
𝜔

2
𝜙𝑛𝜙4

2 = −𝑝                                                               (6) 

𝐴44

𝐴
+

𝐵44

𝐵
+

𝐴4𝐵4

𝐴𝐵
−

𝑚2

𝐴2 −
𝜔

2
𝜙𝑛𝜙4

2 = −𝑝                                                                (7)

 
𝐴4𝐵4

𝐴𝐵
+

𝐴4𝐶4

𝐴𝐶
+

𝐵4𝐶4

𝐵𝐶
−

𝑚2

𝐴2 +
𝜔

2
𝜙𝑛𝜙4

2 = 𝜌                                                          (8) 

𝐵4

𝐵
−

𝐶4

𝐶
= 0                                                                                                        (9) 

𝜙44 + (
𝐴4

𝐴
+

𝐵4

𝐵
+

𝐶4

𝐶
) 𝜙4 +

𝑛

2

𝜙4
2

𝜙
= 0                                                                    (10) 

(
𝐴4

𝐴
+

𝐵4

𝐵
+

𝐶4

𝐶
) = −

𝜌4

𝜌+𝑝
                                                                   (11) 

where the subscript '4' denotes the ordinary differentiation with respect to 't'. 

On integrating the equation (9), we have  

𝐵 = 𝐿𝐶,   𝐿 is the constant of integration.  

Taking 𝐿 = 1 , we get  

𝐵 = 𝐶                                                                                                                 (12) 

Using (12), equations (5)-(11) lead to  

2
𝐵44

𝐵
+

𝐵4
2

𝐵2 +
𝑚2

𝐴2 −
𝜔

2
𝜙𝑛𝜙4

2 = −𝑝                                                                         (13) 

𝐴44

𝐴
+

𝐵44

𝐵
+

𝐴4𝐵4

𝐴𝐵
−

𝑚2

𝐴2 −
𝜔

2
𝜙𝑛𝜙4

2 = −𝑝                                                             (14) 

2
𝐴4𝐵4

𝐴𝐵
+

𝐵4
2

𝐵2 −
𝑚2

𝐴2 +
𝜔

2
𝜙𝑛𝜙4

2 = 𝜌                                                                       (15) 

𝜙44 + (
𝐴4

𝐴
+ 2

𝐵4

𝐵
) 𝜙4 +

𝑛

2

𝜙4
2

𝜙
= 0                                                                         (16) 

(
𝐴4

𝐴
+ 2

𝐵4

𝐵
) = −

𝜌4

𝜌+𝑝
                                                                                      (17) 

 

3. Solution of Field Equations 

 

We have assumed that expansion 𝜃 is proportional to shear 𝜎  (𝜃 ∝ 𝜎), which leads to  

𝐴 = 𝐵𝐾                                                                                                               (18) 

where 𝐾 is a constant and 𝐴,  𝐵 are functions of 𝑡.  

Also, we assume barotropic condition as 

𝑝 = 𝛾𝜌                                                                                                                (19) 

where 0 ≤ 𝛾 ≤ 1 , 𝑝 is isotropic pressure and 𝜌 is matter density. 

From equations (16) and (18), we have  
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𝜙4
2𝜙𝑛 =

𝑘1

𝐵4+2𝑘 (20) 

Where, 𝑘1 is constant of integration. 

By using (17), (18) and (19), we have  

𝜌 = 𝐵−(𝐾+2)(1+𝛾) (21) 

From equations (13), (15), (18) and (21), we get  

2𝐵44 + 2(𝐾 + 1)
𝐵4

2

𝐵
=

(1−𝛾)

𝐵{(𝐾+2)(1+𝛾)−1}         (22) 

Let 𝐵4 = 𝑓(𝐵)  (23) 

Equation (22) leads to  

𝑑𝑓2

𝑑𝐵
+ 2

(𝐾+1)

𝐵
𝑓2 =

(1−𝛾)

𝐵{(𝐾+2)(1+𝛾)−1} (24) 

On solving (24), we have 

𝐵4
2 =

1

(𝐾+2)𝐵{𝐾(1+𝛾)+2𝛾} +
𝑘2

𝐵2(𝐾+1) (25) 

Take 𝑘2 = 0 (constant of integration) 

Equation (25) leads to  

𝐵 = {
(𝐾+2)(1+𝛾)

2
(

𝑡

√𝐾+2
+ 𝑘3)}

2
(𝐾+2)(1+𝛾)

         (26) 

where  𝑘3 is constant of integration. 

The line element (1) is given by  

𝑑𝑠2 = −𝑑𝑡2 + {
(𝐾 + 2)(1 + 𝛾)

2
(

𝑡

√𝐾 + 2
+ 𝑘3)}

4𝐾
(𝐾+2)(1+𝛾)

𝑑𝑥2 

+ {
(𝐾+2)(1+𝛾)

2
(

𝑡

√𝐾+2
+ 𝑘3)}

4
(𝐾+2)(1+𝛾)

(𝑒−2𝑚𝑥𝑑𝑦2 + 𝑒2𝑚𝑥𝑑𝑧2)             (27) 

 

4. Physical and Geometrical Aspects 

 

Some physical and geometrical properties of metric (27) are given as  

Matter density 𝜌 =
4

{(𝐾+2)(1+𝛾)(
𝑡

√𝐾+2
+𝑘3)}

2         (28) 

Isotropic pressure 𝑝 =
4𝛾

{(𝐾+2)(1+𝛾)(
𝑡

√𝐾+2
+𝑘3)}

2 (29) 

From equation (20), the scalar function 𝜙 is obtained as  

𝜙 = [(
𝑛+2

2
) 𝑘1√𝐾 + 2

(𝛾+1)

(𝛾−1)
{

(𝐾+2)(1+𝛾)

2
}

−2
(1+𝛾)

(
𝑡

√𝐾+2
+ 𝑘3)

(𝛾−1)

(𝛾+1)
+ (

𝑛+2

2
) 𝑘4]

2
(𝑛+2)

 (30) 
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Where 𝑘4 is a constant of integration. 

Expansion 𝜃 is given by 

𝜃 =
𝐴4

𝐴
+

𝐵4

𝐵
+

𝐶4

𝐶
  

𝜃 =
2

√𝐾+2(1+𝛾)(
𝑡

√𝐾+2
+𝑘3)

          (31) 

Hubble parameter 𝐻 =
1

3
(

𝐴4

𝐴
+

𝐵4

𝐵
+

𝐶4

𝐶
)  

𝐻 =
2

3√𝐾+2(1+𝛾)(
𝑡

√𝐾+2
+𝑘3)

         (32) 

Spatial volume 𝑉 = 𝐴𝐵𝐶  

𝑉 = [
(𝐾+2)(1+𝛾)

2
{

𝑡

√𝐾+2
+ 𝑘3}]

2
(1+𝛾)

         (33) 

Deceleration parameter 𝑞 = −1 +
𝑑

𝑑𝑡
[

1

3
(

𝐴4

𝐴
+

𝐵4

𝐵
+

𝐶4

𝐶
)]  

𝑞 = −1 −
2

3(𝐾+2)(1+𝛾)(
𝑡

√𝐾+2
+𝑘3)

2         (34) 

Shear scalar 𝜎2 =
1

2
(

𝐴4
2

𝐴2 +
𝐵4

2

𝐵2 +
𝐶4

2

𝐶2) −
𝜃2

6
  

𝜎 =
(𝐾−1)

√3
[

2

(𝐾+2)√(𝐾+2)(1+𝛾)(
𝑡

√𝐾+2
+𝑘3)

] (35) 

𝜎 =
(𝐾−1)

√3(𝐾+2)
𝜃  

 or 𝜎 ∝ 𝜃  

 

5. Graphical Representations 

 

 
Fig. 1. Graph between metter density () and 

cosmic time (t) for K=1 and k3=0. 

 
Fig. 2. Graph between isotropic pressure (P) 

and cosmic time (t) for K=1 and k3=0. 
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Fig. 3. Graph between Hubble parameter (H) 

and cosmic time (t) for K=1 and k3=0. 

 
Fig. 4. Graph between expansion () and 

cosmic time (t) for K=1 and k3=0. 

 
Fig. 5. Graph between deceleration parameter 

(q) and cosmic time (t) for K=1 and k3=0. 

 
Fig. 6. Graph between shear scalar (2) and 

cosmic time (t) for K=2 and k3=0. 

 

6. Special Cases 

 

Case I: When 𝛾 = 0 (Dust Universe) 

From equation (24) 

 
𝑑𝑓2

𝑑𝐵
+ 2

(𝐾+1)

𝐵
𝑓2 =

(1−𝛾)

𝐵𝐾+1  

𝐵4
2 =

1

(𝐾+2)𝐵𝐾 +
𝑘5

𝐵2(𝐾+1) (36) 

where 𝑘5  is constant of integration. 

or 

𝐵 = [(𝐾 + 2) {(
𝑡

2
+ 𝑘6)

2

− 𝑘5}]

1
(𝐾+2)

  (37) 

where 𝑘6  is constant of integration. 

The line element (1) is given by  
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𝑑𝑠2 = −𝑑𝑡2 + [(𝐾 + 2) {(
𝑡

2
+ 𝑘6)

2

− 𝑘5}]

2𝐾
(𝐾+2)

𝑑𝑥2 

+ [(𝐾 + 2) {(
𝑡

2
+ 𝑘6)

2

− 𝑘5}]

2
(𝐾+2)

(𝑒−2𝑚𝑥𝑑𝑦2 + 𝑒2𝑚𝑥𝑑𝑧2)  (38) 

Matter density 𝜌 =
1

(𝐾+2){(
𝑡

2
+𝑘6)

2
−𝑘5}

  (39) 

Scalar function 𝜙 is obtained as  

𝜙 = [(
𝑛+2

2
) √

𝑘1

𝑘5

1

(𝑘+2)
𝑙𝑛 {

(
𝑡

2
+𝑘6)−√𝑘5

(
𝑡

2
+𝑘6)+√𝑘5

} + (
𝑛+2

2
) 𝑘9]

2
(𝑛+2)

 (40) 

Where 𝑘9 is a constant of integration. 

Expansion 𝜃 =
(

𝑡

2
+𝑘6)

{(
𝑡

2
+𝑘6)

2
−𝑘5}

  (41) 

Hubble parameter 𝐻 =
(

𝑡

2
+𝑘6)

3{(
𝑡

2
+𝑘6)

2
−𝑘5}

 (42) 

Spatial volume 𝑉 = (𝐾 + 2) {(
𝑡

2
+ 𝑘6)

2

− 𝑘5}  (43) 

Deceleration parameter 𝑞 = −1 −
{(

𝑡

2
+𝑘6)

2
+𝑘5}

6{(
𝑡

2
+𝑘6)

2
−𝑘5}

2  (44) 

Shear scalar 𝜎 =
(𝐾−1)

√3(𝐾+2)
𝜃 

Case II: When 𝛾 = 1 (Stiff or 'Zel' Devich Universe) 

From equation (24) 

 
𝑑𝑓2

𝑑𝐵
+ 2

(𝐾+1)

𝐵
𝑓2 = 0 

 𝐵4 =
𝑘7

𝐵(𝐾+1) 

where 𝑘7  is constant of integration. 

or 

𝐵 = [(𝐾 + 2){𝑘7𝑡 + 𝑘8}]
1

(𝐾+2)          (45) 

where 𝑘8  is constant of integration. 

The line element (1) is given by  

𝑑𝑠2 = −𝑑𝑡2 + [(𝐾 + 2){𝑘7𝑡 + 𝑘8}]
2𝐾

(𝐾+2)𝑑𝑥2 + [(𝐾 + 2){𝑘7𝑡 +

𝑘8}]
2

(𝐾+2)(𝑒−2𝑚𝑥𝑑𝑦2 + 𝑒2𝑚𝑥𝑑𝑧2)           (46) 
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Matter density 𝜌 =
1

[(𝐾+2){𝑘7𝑡+𝑘8}]2        (47) 

scalar function  𝜙 = [(
𝑛+2

2
)

√𝑘1

𝑘7(𝑘+2)
𝑙𝑛{𝑘7𝑡 + 𝑘8} + (

𝑛+2

2
) 𝑘10]

2
(𝑛+2)

 (48) 

where 𝑘10 is a constant of integration. 

Expansion 𝜃 =
𝑘7

(𝑘7𝑡+𝑘8)
          (49) 

Hubble parameter 𝐻 =
𝑘7

3(𝑘7𝑡+𝑘8)
 (50) 

Spatial volume 𝑉 = (𝐾 + 2)(𝑘7𝑡 + 𝑘8)  (51) 

Deceleration parameter 𝑞 = −1 −
𝑘7

2

3(𝑘7𝑡+𝑘8)2  (52) 

Shear scalar 𝜎 ∝ 𝜃 

 

7. Conclusion 

 

Here, we have explored anisotropic and spatially homogeneous Bianchi type 𝑉𝐼0 

cosmological model with barotropic fluid distribution in Sáez – Ballester theory. The model 

(28) has a singularity at 𝑡 = −𝑘3√(𝑘 + 2) and has no initial singularity. Similarly, matter 

density and scalar field 𝜙 do not possess initial singularities. These singularities vanish as 

𝑡 increases. The special volume increases with cosmic time 𝑡 and it will become infinite for 

large values of 𝑡, which shows the anisotropic expansion of the universe. For the model (28) 

expansion (𝜃), shear scalar (𝜎), matter density (𝜌), isotropic pressure (𝑝) are 

monotonically decreasing functions of cosmic time 𝑡.Ultimately 𝜃 → 0, 𝜎 → 0, 𝜌 → 0, 𝑝 →

0 as 𝑡 → ∞, which shows that the universe is expanding as time increases. Since in general 

𝜎 ≠ 0  so, the anisotropy in the model is maintained over time, and the model does not lead 

to the FRW model in general. But for a specific value of, at 𝑘 = 1 𝜎 → 0 , this shows that 

the model isotropizes at a late time for 𝑘 = 1, which leads to the FRW model because shear 

is zero in the FRW model, which is isotropic and homogeneous. The deceleration parameter 

𝑞 < 0 indicates an accelerating universe, and 𝑞 > 0 indicates a decelerating universe, here 

𝑞 < 0. Thus, the model (28) represents an accelerating universe. Since spatial volume V 

increases as time increases, the universe expands. Sáez–Ballester scalar field 𝜙 

monotonically increases with cosmic time 𝑡. Thus, the model is an anisotropic, continuously 

expanding, and rotating universe. 
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