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Abstract 

This paper presents an analysis of the stability of equilibrium positions of two artificial 

satellites system connected by light, flexible and elastic long tether under the combined effect 

of several classical perturbative forces in elliptical orbit. The tether may be either conducting 

or non-conducting. In this study, it is assumed to be non-conducting in nature. We have treated 

the problem with taking five perturbative forces acting simultaneously on the system. Among 

these perturbations, three perturbations exist due to the Earth’s influences: the geomagnetic 

field, shadows and oblateness. The other two perturbations are due to the elasticity of the 

cable and solar light pressure. The effect of air resistance is neglected considering the satellites 

as high-altitude satellites. To determine the stability of the satellites, the Lyapunov method 

has been used. The dynamical behaviours of the satellites are represented by differential 

equations. As anticipated, the Lyapunov method indicates that the equilibrium position is 

unstable. At last we have neglected the perturbative forces and treated the problem only under 

the effect of central gravitational field. The stability analysis is then carried graphically, and 

final conclusions are drawn.  
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1.   Introduction 

Space tethers are long cables which connect the end bodies, satellites, space stations to each 

other in space. The cable may range from a few hundred meters to several kilometers in 

length and typically possesses properties such as high tensile strength, low-density and a 

small diameter. The cable may be either conductive or non-conductive. When the core of 

the cable is conductive, it is called electrodynamic tether. The conductive tether interacts 

with the geomagnetic field and can generate electricity by electromagnetic induction. If the 
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core of the cable is non-conductive, it is called non-electrodynamic tether and also has many 

potential applications in space technology. The other category of tethers is momentum 

exchange tethers. It may be rotating or non-rotating. When multiple space vehicles are 

connected by non-conductive tethers it is technically termed as tether formation flying. The 

main difference of tether satellites with the conventional space satellites are of its long 

length, variable in configuration and geomagnetic interaction.  It is also to be noted that 

depending upon the configuration of tether it can be divided into two systems namely static 

system and dynamic system. In a static system, the length of the tether, the relative position 

of the objects and their orientation do not change over time. In dynamic systems, the 

configuration and structure of the system change significantly.  

     Although the idea of space tether is more than a century old, with credit going to 

Tsiolkovsky [1], many of its applications are still in the theoretical domain, with only a  few 

tested experimentally. The main technical difficulties are still in tether materials for very 

long cables and its controls. The satellites system is exposed by several perturbative forces 

during the motion other than earth’s gravitational field. The conservative perturbative forces 

are earth’s oblateness, lunar attraction, solar attraction, planetary attraction, tidal effect, 

relativistic effects and so on. The non-conservative perturbative forces are atmospheric 

friction, solar radiation pressure, albedo effect, earth’s magnetic field and so on. The 

elasticity of the cable also acts as a perturbation on the system. These several perturbative 

forces act as a damping force on the system and make the system unstable. In this paper, 

we will discuss about the stability of the system by taking five perturbative forces 

simultaneously on the system and finally without the perturbative forces.  

With the help of the tether satellites system, a wide range of problems can be solved 

that are not possible by conventional satellites. Some of the most interesting applications 

are given here. It can be used to create artificial gravity on board a space station and exactly 

for this reason the use of tether satellite system was first proposed. This was tested in 

Gemini -11 mission in 1966 by NASA. In this mission the spacecraft was connected via a 

30 m space tether. By rotating this system around the common centre of mass with an 

angular velocity of 1.6 ×10-4 s-1, an artificial gravity of 10-4 g was generated. Such a low 

value of gravity may be useful for transmission of fuel from one spacecraft to another [2]. 

The other applications are lifting of spacecraft to higher orbit with a rotating space tether, 

use as a space escalator, space elevator, studying the upper atmosphere, generation of 

electrical energy by conductive tether, space debris collection and many more. In 

astronautics, it is a common practice of space flight between various orbits. To do this the 

jet engine is used for providing impulse to the system. By using a rotating space tether, a 

payload can be transferred to higher orbit without any fuel or jet engine. A large amount of 

theoretical work has been devoted to the study of the space elevator [3,4], although it 

requires immense effort and poses manufacturing challenges. By connecting a tethered 

probe from a base spacecraft is a solution to study the atmosphere at an altitude 100-200 

km as conventional satellites cannot work effectively at this height [5]. By moving a 

conductive tether in geomagnetic field, a voltage can be developed according to the laws of 

electromagnetic induction. Its value is proportional to the conductor length, magnetic field 
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induction and speed of the conductor. In 1996, the TSS-1R experiment was carried out. A 

voltage of 3500 V was generated using a 19.7 km electrodynamic tether. However, an 

electrical arc caused a break in the tether due to an isolation fault. The generated power 

exceeded the expected value many times over [6]. 

       The study of the stability of  satellite system is very important to make operate space 

tether normally in orbit. Unstable systems can lead to failure due to the tether breaks or 

wind with the main satellites. For many applications, stationary movement of the tether is 

most suitable. In many studies of tether satellites, researchers have assumed that the satellite 

system moves in a circular orbit and have obtained valuable insights. The detailed 

investigation for searching stationary motion of tether and their stability was investigated 

by Beletsky and Levin [5]. They showed that in a circular orbit, the motion of the systems 

and its elastic vibrations are unstable. Kurpa et al. [7] studied the modelling, dynamics and 

control of tethered satellite systems. Khan and Goel [8] worked on the chaotic motion 

related to the dumbbell satellite problem. Kumar and Prasad [9] studied about the nonlinear 

planer oscillation of cable-connected satellite system and non-resonance. Kumar et al. [10] 

worked on the equilibrium positions of a cable-connected satellite systems under several 

influences. Kumar [11] worked on the liberation points of a cable-connected satellites 

system under the effect of solar radiation pressure, the earth’s magnetic field, the shadow 

of the earth and air resistance in a circular orbit.  

       In most of the studies, stability problems are carried out in the absence of other 

generalized perturbing forces. The relative equilibriums and stability conditions for the 

tether satellites system were studied by Burov and Troger [12]. The method for solving the 

absolute stability of dynamical systems was studied by Liberzon [13]. Yu et al. [14] 

reviewed the dynamics, modelling and stability of tethered satellite systems. Yu et al. [15] 

also studied the chaotic motion of tethered satellite systems under the effect of air drag and 

earth’s oblateness. The numerical investigation of the tether deployment process was 

analyzed by Mckenzie [16]. Malashin et al. [17] analyzed the stability of tether deployment 

for a particular trajectory based on the Lyapunov function. Jung et al. [18] studied the 

dynamics of a three-body tether satellite system. Pelaez and Andres [19] studied the stability 

problem for electrodynamic tethers in elliptical orbit. They showed that the motion is 

unstable due to the energy inflow caused by the geomagnetic field. 

 

2. Mathematical Models of Space Tether 

 

In the literature, significant attention has been  given to the space tether dynamical model. 

The existing models can be categorized into three groups based on the nature of the tether. 

The models are heavy flexible thread model, discrete model and the massless thin tether 

model. Generally, the dynamical equations for these three models are constructed using 

Lagrange’s equations [20], Hamilton’s principle [21] and Newton’s laws [22]. The degrees 

of freedom of the system are generally fixed in the popular models available for cable-

connected satellites systems. Constraints are imposed on the system to reduce the degrees 

of freedom. A time varying number of degrees of freedom dynamical model was 
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constructed by Yu et al. [23]. These multiple degrees of freedom make the system very 

much complicated. The equations obtained under different perturbative forces of the tether 

satellites are generally nonlinear and non-autonomous. In this study, the rod model of 

tethered satellites system has been taken for analytical analysis. 

      The large number of models available is not only due to the various nature of the tether 

but also due to the presence of various perturbative forces. It is important to note that not 

all perturbative forces need to be considered in a single space tether model. Out of the 

several perturbations, the effect of earth’s oblateness is the most significant one. The effect 

of atmospheric friction in low earth orbit is 10-3 times the effect of earth’s gravity and totally 

negligible above 500 km of altitude. Although the effects of solar pressure and earth’s 

magnetic field are small, they are considered because the system is exposed to these forces 

for extended periords during station-keeping phase. For rigid tether models, the effect of 

elasticity is negligible. 

     The satellite system is modeled as two mass points connected by a long elastic tether, 

which is light and non-conducting in nature. The system is treated as a high-altitude satellite 

system, and the effect of atmospheric drag is not taken into account. The system is analyzed 

under the combined influences of the shadow of the earth, solar radiation pressure, 

oblateness of the earth and earth’s magnetic field. The shadow of the earth is taken as 

cylindrical in nature. 

 

3. Equations of Motion 

 

The differential equations of motion for the satellites system under the above-mentioned 

perturbative forces in rotating co-ordinate system (Fig. 1) in Keplerian elliptical orbit are 

written as [24] 
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 The equations look like very much complicated. To simplify them, Nechvile’s co-ordinate 

system is introduced. In this co-ordinate system, dilation is applied to the rotating co-

ordinate system. The dilation is expressed as 

                                                   ,X Y   = =                                             (2) 

Where X, Y are the co-ordinates in Nechvile’s system. 

Here,                                      

                                             1

1 cos

R

p e v
 = =

+                                                            

(3) 
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Fig. 1. Rotating co-ordinate configuration of space tether.  

 

Putting equations (2) in equations (1) and doing some simplification, the equations (1) 

becomes 

( )
3

1 2 2

2

1 2

12
" 2 ' 3 cos cos cos

B B kA R
X Y X i v X

m m R
   

 

 
− − = − − −  − + 

   

                                                  
( )

3
1/2

2 2

0

R
l X Y X 



− − − +
  

 
( )

3

1 2 2

2 2

1 2

3
" 2 ' cos cos sin

B B kA R
Y X i v Y

m m R


  

 

 
+ = − + −  − − 

   

                                         
( )

3
1/2

2 2

0

R
l X Y Y 



− − − +
  

                                     (4)              

 

Where,              
1 2

1 2 0

m m

m m l





 +
=  
 

       
1 1 2

1 2 1 2

Em Q Q
A

m m m m p





  
= −  

+    

 Also,                 2 2

e e
2

R R
, ,

3 2
R

e

m
k m

g


 


= = − =

       

The following nomenclature for the above equations has been used: 

 

Nomenclature: m1 and m2 are the masses of the two satellites, R is the magnitude of the 

radius vector 𝑅̄.  µ is a gravitation parameter and is the product of universal gravitational 

constant and earth’s mass, λ is the elastic parameter of the cable. Q1 and Q2 are charges on 

m1 and m2 respectively,  is a shadow function, it is zero when the satellites are affected by 

the earth’s shadow otherwise its value is one. B1 and B2 are the absolute values of the forces 

due to the direct solar pressure,  𝑙0 denote the original length of the cable, µ𝐸 is the value of 

magnetic moment of the earth’s dipole. ξ is the rotating co-ordinate and is along the 

direction of radius vector 𝑅̄ and η is towards the transversal direction. ν is the true anomaly 

of the centre of mass of the system, i is the inclination of the orbit with the equatorial plane. 

ϵ is the inclination of the oscillatory plane of the masses m1 and m2 with the orbital plane of 

the centre of mass of the system. α is the inclination of the ray,  e is the eccentricity of the 
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elliptical orbit, 𝛼𝑅   is the earth's oblateness, Ω is the angular velocity of the earth's rotation, 

𝑅𝑒 is the equatorial radius of the earth and 𝑔𝑒 is the acceleration due to gravity. The dot 

represents differentiation with respect to time and the prime represents the differentiation 

with respect to the true anomaly. 

 

4. Equilibrium Positions of the System 

 

During the motion, the entire system travels through earth’s cylindrical shadow beam. Let, 

θ
 
be the angle subtended by the axis of the shadow beam and the line connecting the centre 

of the earth and the end point of the orbit of the centre of mass. The system is under the 

impact of solar light pressure when it forms an angle θ
 
with the axis of the shadow beam 

and remains under the impact of solar pressure until it forms an angle of (2π- θ) with the 

axis of the cylindrical shadow beam. The satellites will now enter within the shadow beam 

and the yield of radiation stops. In equations (4), the average of periodic terms is calculated 

with respect to   from θ
 
to (2π- θ), where the system is under the yield of the sun rays 

directly i.e.  = 1  and from - θ to + θ, where the system moves through the shadow  beam 

i.e.  = 0. Averaging the effect of earth’s shadow, the equations (4) becomes 
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The solution of equations (5) is difficult. By considering the maximum effect of earth’s 

shadow, these equations can be simplified. For this purpose,  specific values 0=  and 

0 = are applied in equations(5). 

Hence, the equations (5) becomes
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To determine the equilibrium positions of the system, we will restrict the system’s position 

by fixing constant co-ordinates. Let the constant co-ordinates be denoted as 

       X = X0, Y = Y0                                                                                                             (7) 

Putting these values in equations (6) and doing some simple calculations, the equilibrium 

positions are obtained as  



J. Ghosh et al., J. Sci. Res. 17 (1), 9-19 (2025) 15 

 

       (8)                                                                                                                                                                                                                                                                                                                                                

5. Stability of the Equilibrium Positions 

 

To test the stability of the equilibrium positions of the tether satellite system under the 

mentioned perturbative forces, the equations (5) are rewritten in the case of maximum effect 

of earth’s shadow and thus putting ∈= 0 and 𝛼 = 0 to these equations, the equations 

becomes 
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Now, small variations about the co-ordinates of the equilibrium positions are taken and 

applied to equations (9). Let the variations be represented by 
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Applying these variations to equations (9), the set of equations becomes 
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Equations (9) admit a Jacobean integral, so their variational equations (11) also constitute 

a Jacobean integral. The form of the Jacobean integral in the variational parameters is given 

by 
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where, h is the Jacobean constant. To test the stability, Lyapunov’s method is now applied 

to the Jacobean integral equation. This integral equation is considered as Lyapunov’s 

function
1 2 1 2( ', ', , )L     . Thus  
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The Lyapunov function 1 2 1 2( ', ', , )L      is the integral of the variational equations 

(11), and its differentiation taken along the trajectory of the system must vanish identically.  

The only condition for this is that the Lyapunov function must be positive definite. To make 

equation (13) positive definite, the first order variable terms should be zero. In fact, these 

conditions imply the position of the equilibrium position. The second order terms must 

satisfy Sylvester’s conditions for positive definiteness. So, the sufficient condition 

becomes, 

 

(i) 

( ) ( ) ( ) ( )

3 3 32 2 6 sin 2420 01 2 22 cos 00 01/2 1/2 1/ 2 2 1/ 21 22 2 2 21 1 1 1

R R X XB B kR
l X A i

m m R
e e e e

   
 

 

 
− + − + − + = 

 
− − − −

 

(ii)  

( ) ( ) ( )

3
123 2 0

1/ 2 1/ 2 1/2
2 2 2 21 1 1

RK

e R e e





− + 

− − −

 

(iii) 

( ) ( )

3
3 2 0

1/ 2 1/2
2 2 21 1

Rk

R e e





+ 

− −

 

The equilibrium condition shows that the Y centroid orbit coordinate is zero. This 

indicates the tether coincides with the orbital plane, with the centre of mass and mass point 

of m1 and m2 are collinear with the centre of mass of the earth. However, this equilibrium 

position is not stable because the sufficient conditions for the stability are not satisfied 

simultaneously. To stabilize the orbit, a different control method is required, which is part 

of the further tether satellite research. In literature [25], the authors studied the stability of 

tethered satellites system and calculated the equilibrium positions in which they concluded 

that the tether is perpendicular to the orbital plane or coincided with the orbital plane in the 

central gravitational field of earth ignoring the elasticity of the cable. The authors also 

calculated the necessary and sufficient condition of the maximum extent for the system 

equilibrium can reach, which occurs in a circular orbit. In references [26,27], the authors 

determined the equilibrium positions of the system, taking the effect of air drag. Under such 

conditions, the Y co-ordinate of the system has definite value. The non-availability of the 

generalized perturbative forces experimental data restricts us the stability analysis using 

graphical method. For a short period of time, other perturbative forces may be neglected, 

and the problem can be considered only under the effect of central gravitational field of 

earth. Then the graphs drawn with true anomaly (ν) vs. rotating co-ordinate (ξ) taking the 

tether length unity are shown in Figs. 2 and 3.  
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With reference to ξ equal to one, the graph is divided into two regions. In some phases, 

the system is in a region where ξ is greater than one, and in other phases, the system is in a 

region where ξ  is less than one. The value ξ greater than one represents an unstable 

equilibrium positions, as the condition of constraint is not satisfied at the equilibrium 

positions. The region where ξ is less than one represents the stability region of the system, 

where the condition of constraint is satisfied,  and the dynamics to control the system is 

easier compared to the previous case. 

 

 
Fig. 2.  Plots of ν vs. ξ for different eccentricities.  
 

 
Fig. 3.  Plots of ν vs. ξ for different eccentricities.  
 

4. Conclusion 

 

In this study, the dynamical behavior of tethered satellites has been analyzed under the 

influences of several perturbative forces. By differentiating the X-coordinate of the 

equilibrium positions with respect to the eccentricity of the orbit, it is easy to show that the 
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extension of the equilibrium position is maximum for a zero eccentric orbit (circular) 

compared to any other orbits. The equilibrium condition also shows that the Y centroid orbit 

coordinate is zero. This indicates that the tether coincides with the plane of the orbit, with 

the centre of mass and mass point m1, m2 are collinear with the centre of mass of earth. It is 

concluded that the equilibrium positions of the non-linear motion of a tether connected 

satellites system is unstable in the sense of Lyapunov, taking into account the elasticity and 

the influence of other general perturbative forces, such as earth’s magnetic field, solar 

radiation pressure, shadow of the earth and earth’s oblateness. By neglecting other 

perturbative forces in the graphical analysis, it is concluded that during certain phases of 

motion, the system resides in a stable region, where controlling the system is easier 

compared to the unstable regions. The system’s motion, including its elastic vibration, is 

generally unstable in circular orbits. Instability is caused by an energy inflow into the 

pendulous motion from the earth’s magnetic field at the expense of action of a non-

conservative force. 
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