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Abstract 

In this article, the solution of nonlinear fractional differential equations (FDEs) for disease 
transmission is discussed in a population believed to maintain a stable size during an epidemic 
by using a new approach called the fractional differential transform technique (FDTM) along 

with Adomian polynomials. Also, this method is compared with those that the homotopy 
perturbation approach produces. Several charts are presented to demonstrate the consistency 
and simplicity of this method. 
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1.   Introduction 

The study of disease transmission and its consequences is known as epidemiology. This 

spans a wide variety of disciplines, from biology to sociology and philosophy, all of which 

are used to get a better understanding and control of virus propagation. The SIR model for 

disease propagation, which consists of a set of three differential equations that represent 

changes in the number of susceptible, infected, and recovered persons in a given 

community, is a widely used epidemiological model. Various writers have examined and 

explored mathematical SIR models [1-7]. 

The differential equations with fractional order have recently proved to be valuable tools 

to the modeling of many real problems in different areas [8-11]. This is because of the fact 

that the realistic modeling of a physical phenomenon does not depend only on the instant 

time, but also on the history of the previous time which can also be successfully achieved 

by using fractional calculus. For example, half-order derivatives and integrals proved to be 

more useful for the formulation of certain electrochemical problems than the classical 

                                                
* Corresponding author: muneshwarrajesh10@gmail.com  

Available Online 

J. Sci. Res. 16 (3), 771-781 (2024) 

JOURNAL OF  

SCIENTIFIC RESEARCH 

www.banglajol.info/index.php/JSR  
Publications 

 

https://dx.doi.org/10.3329/jsr.v16i3.72571
mailto:muneshwarrajesh10@gmail.com


772 Modified Fractional Differential Transform Method 

 

models [12,13]. Lately, a large amount of studies developed concerning the application of 

fractional differential equations in various applications in fluid mechanics, viscoelasticity, 

biology, physics, and engineering. An excellent account in the study of fractional 

differential equations can be found in [14-17]. Now, in this work, we'll look at a SIR model 

of fractional order that goes like this: 

𝑇𝛼
𝜉
𝑦1 = −𝜌𝑦1(𝜉)𝑦2(𝜉)

𝑇𝛼
𝜉
𝑦2 = 𝜌𝑦1(𝜉)𝑦2(𝜉) − 𝜂𝑦2(𝜉)

𝑇𝛼
𝜉
𝑦3 = η𝑦2(𝜉)

                               (1.1)  

with given initial conditions, 𝑦1(0) = 20, 𝑦2(0) = 15 and 𝑦3(0) = 10, where 0 < 𝛼 ⩽ 1. 

Further the involve functions in the model obey 𝑁(𝜉) = 𝑦1(𝜉) + 𝑦2(𝜉) + 𝑦3(𝜉). 

Many researchers solved the linear and non-linear mathematical-biological fractional 

model on various disease by different methods like VIM, HAM, ADM, LADM and HPM 

[1,2,4,5,7]. The differential transform method (DTM) [12,16] has been successfully applied 

to a wide class of differential equations arising in many areas of science and engineering. 

Since many physical phenomena are more faithfully modeled by fractional differential 

equations (FDEs), Arikoglu and Ozkol developed the fractional differential transform 

method (FDTM) [19] for their efficient solution. Also, Odibat and Shawagfeh suggested 

the same technique as a generalized Taylor's formula for solving FDEs [20]. The FDTM 

provides an iterative procedure for obtaining the series solution of both linear and nonlinear 

FDEs. Unlike the traditional series method, which requires symbolic computation, the 

FDTM transforms the FDEs into algebraic equations, which can be solved by an iterative 

procedure. Fractional differential equations (FDEs) are used to simulate a wide range of 

physical events, and they may be solved using a variety of transform methods [27-29] and 

recently efficient approach for solving nonlinear FDEs by using the FDTM with Adomian 

polynomials [18]. In this work is to find approximate solution of nonlinear SIR model of 

fractional order differetial equations by using FDTM with Adomian polynomial. Teppawar 

et al. [28,29], developed CFDTM with Adomian polynomials have been used to solved 

nonlinear and singular Lane-Emden FDEs. Momani and Kharrat [8,30] have used ADM in 

order to resolve fractional Riccati differential equations. Recently Pawar et al. [31] 

examined the fractional order mathematical model of drug resistant TB using a two-line 

therapy. They used the Caputo fractional derivative and the generalized Euler method 

(GEM) to analyze and compare the results with prior findings in integer order. Shatanawi 

[32] formulated novel fractional tuberculosis (TB) model with a generalized Atangana–

Baleanu (GAB) fractional derivative, Sinan [33] discussed the Cutaneous Leishmaniasis 

disease model and numerically proposed model has used a nonstandard finite difference 

scheme. Siraj et al. [34] described a numerical scheme based on Laplace transform and 

numerical inverse Laplace transform for the approximate solution of fractal-fractional 

differential equations with order 𝛼, 𝛽 and Kamal et al. [35] investigated dynamical system 

for the existence and uniqueness of at least one solution and used to Schauder and Banach 

fixed point theorems. Devi and Jakhar [36] introduced Sumudu-Adomian Decomposition 

Method (SADM) for finding the exact and approximate solutions of fractional order 

telegraph equations. Tyagi and Chandel [37] have obtained a method for solving 
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inhomogeneous linear sequential fractional differential equations with constant coefficients 

(ILSFDE) involving Jumarie fractional derivatives in terms of Mittag-Leffler functions. 

 

2.  Basic Ideas of the Fractional Differential Transform Method (FDTM) 

 

In this part, fractional calculus and fractional differential transform method (FDTM) are 

reviewed. 

Definition 2.1. The Riemann-Liouville fractional integral of order 𝛾 ≥ 0, is defined by [23-

26] 

 

(2.1) 

Definition 2.2. The definition of the Caputo fractional derivative of 𝜑 is defined as [23,26] 

𝒟𝜇𝜑(𝜗) =

{
 
 

 
 1

Γ(𝑛 − 𝛼)
∫  
𝜗

0

  (𝜗 − 𝜏)𝑛−𝛼−1𝜑(𝑛)(𝜏)𝑑𝜏 𝑛 − 1 < 𝛾 < 𝑛

d𝑛𝜑(𝜗)

d𝜗𝑛
𝛾 = 𝑛

(2.2) 

where n is an integer. Caputo's integral operator has useful properties such as: 
𝒟𝛾ℐ𝛾𝜑 = 𝜑(𝜗)

ℐ𝛾𝒟𝛾𝜑(𝜗) = 𝜑(𝜗) −∑  

𝑛−1

𝑘=0

 𝜑(𝑘)(0+)
𝜗𝑘

𝑘!
,  𝑡 ≥ 0 𝑛 − 1 < 𝛾 ⩽ 𝑛

 

The fractional differentiation in Riemann-Liouville sense is defined by 

𝒫𝜗0
𝛾
𝜑(𝜗) =

1

Γ(𝑚 − 𝛾)

d𝑚

 d𝜗𝑚
[∫  

𝜗

𝜗0

 
𝜑(𝑡)

(𝜗 − 𝑡)1+𝛾−𝑚
 d𝑡] (2.3) 

for 𝑚− 1 ⩽ 𝛾 < 𝑚,𝑚 ∈ 𝑍+, 𝜗 > 𝜗0. Let us expand the analytical and continuous function 

𝜑(𝜗) in terms of a fractional power series as follows: 

𝜑(𝜗) =∑  

∞

𝑘=0

 Φ(𝑘)(𝜗 − 𝜗0)
𝑘/𝛼 (2.4) 

where 𝛼 is the order of fraction and Φ(𝑘) is the fractional differential transform of 𝜑(𝜗). 

In order to avoid fractional initial and boundary conditions, we define the fractional 

derivative in the Caputo sense. The relation between the Riemann-Liouville operator and 

Caputo operator is given by 

𝒟∗𝜗0
𝛾
𝜑(𝜗) = 𝒟𝜗0

𝛾 [𝜑(𝜗) − ∑  

𝑚−1

𝑘=0

 
1

𝑘!
(𝜗 − 𝜗0)

𝑘𝜑(𝑘)(𝜗0)] (2.5) 

Setting 𝜑(𝜗) = 𝜑(𝜗) − ∑𝑘=0
𝑚−1  

1

𝑘!
(𝜗 − 𝜗0)

𝑘𝜑(𝑘)(𝜗0) in Eq. (2.1) and using Eq. (2.3), 

fractional derivative is obtained in the Caputo sense [13] as follows: 

𝒟∗𝜗0
𝛾
𝜑(𝜗) =

1

Γ(𝑚− 𝛾)

d𝑚

 d𝜗𝑚
{∫  

𝜗

𝜗0

  [
𝜑(𝑡) − ∑  𝑚−1

𝑘=0   (1/𝑘!)(𝑡 − 𝜗0)
𝑘𝜑(𝑘)(𝜗0)

(𝜗 − 𝑡)1+𝛾−𝑚
] d𝑡} 

Since the initial conditions are implemented to the integer order derivatives, the 

transformation of the initial conditions are defined as follows: 
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Φ(𝑘) = {
 If 𝑘/𝛼 ∈ 𝑍+,

1

(𝑘/𝛼)!
[
d𝑘/𝛼𝜑(𝜗)

d𝜗𝑘/𝛼
]
𝜗=𝜗0

 for 𝑘 = 0,1,2,… , (𝛾𝛼 − 1)

 If 𝑘/𝛼 ∉ 𝑍+ 0

(2.6) 

where, 𝛾 is the order of fractional differential equation considered. The following theorems 

that can be deduced from Eqs. (2.3) and (2.4) are given below, proofs and details are 

reported [19]: 

 

Theorem 2.3. If 𝜑(𝜁) = 𝜓(𝜁) ± 𝑤(𝜁), then Φ(𝑘) = Ψ(𝑘) ± 𝜔(𝑘). 

Theorem 2.4. If 𝜑(𝜁) = 𝜓(𝜁)𝑤(𝜁), then Φ(𝑘) = ∑𝑙=0
𝑘  Ψ(𝑙)𝜔(𝑘 − 𝑙). 

Theorem 2.5. If 𝜑(𝜁) = 𝜓1(𝜁)𝜓2(𝜁) …𝜓𝑛−1(𝜁)𝜓𝑛(𝜁), then 

Φ(𝑘) = ∑  

𝑘

𝑘𝑛−1=0

∑  

𝑘𝑛−1

𝑘𝑛−2=0

⋯ ∑  

𝑘3

𝑘2=0

∑  

𝑘2

𝑘1=0

Ψ1(𝑘1)Ψ2(𝑘2 − 𝑘1)…Ψ𝑛−1(𝑘𝑛−1 − 𝑘𝑛−2)Ψ𝑛(𝑘

− 𝑘𝑛−1) 
Theorem 2.6. If 𝜑(𝜁) = (𝜁 − 𝜁0)

𝑟, then Φ(𝑘) = 𝛿(𝑘 − 𝛼𝑟) where, 

𝛿(𝑘) = {
1  if 𝑘 = 0
0  if 𝑘 ≠ 0

 

Theorem 2.7. If 𝜑(𝜁) = 𝐷𝜁0
𝑞
[𝜓(𝜁)], then Φ(𝑘) =

Γ(𝑞+1+𝑘/𝛼)

Γ(1+𝑘/𝛼)
Ψ(𝑘 + 𝛼𝑞). 

 
2.1.  Basic idea of FDTM with Adomian polynomials 

 

Consider the nonlinear FDE of the form 

𝒟𝛼𝑦 = 𝜑(𝑦, 𝑦(𝛼)) (2.1.1) 

where 𝜑(𝑦, 𝑦(𝛼)) denotes a nonlinear function. Then, for 𝜑(𝑦, 𝑦(𝛼)) that is analytic in the 

dependent variables and its Adomian polynomials are analytic with respect to the given [8] 

conditions differential transform, recurrence scheme takes the form [18] 

Γ (𝛼 + 1 +
𝑘
𝜃
)

Γ (1 +
𝑘
𝜃
)

𝑌(𝑘 + 𝛼𝜃) = 𝐴̃𝑘 (2.1.2) 

where 𝐴̃𝑘 is obtained from the Adomian polynomials of 𝜑(𝑦, 𝑦(𝛼)) by replacing each 𝑦𝑘 

and 𝒟𝛽𝑦𝑘 in the Adomian polynomial component 𝐴𝑘 by 𝑌(𝑘) and 
Γ(𝛽+1+

𝑘

𝜃
)

Γ(1+
𝑘

𝜃
)
𝑌(𝑘 + 𝛽𝜃), 

respectively. 
 

3.  Solving System by FDTM with Adomian Polynomials Sheme 

In this section, the system of fractional order differential equations will be solved using the 

Fractional Differential Transform Method (FDTM) with Adomian polynomials 

𝒟𝛼𝑖𝑦𝑖(𝜁) = 𝒩𝑖(𝑦1,… , 𝑦𝑛) 𝑖 = 1,2,… ,𝑚,  𝑛𝑖−1 ≤ 𝛼𝑖 ≤ 𝑛𝑖 (3.1)

𝑦𝑖
(𝑘)
(0) = 𝑐𝑘  𝑘 = 0,1,2,… ,𝑚 (3.2)
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where 𝒩𝑖 represent nonlinear operators, respectively. By employing FDTM with Adomian 

polynomials on system of equation 3.1 we get. 

Γ(𝛼𝑖+1+
𝑘

𝜃𝑖
)

Γ(1+
𝑘

𝜃𝑖
)
𝑌𝑖,𝑘+𝛼𝑖𝜃𝑖(𝑘 + 𝛼𝑖𝜃𝑖) = 𝑌𝑖,𝑘(𝑘) + 𝐴̃𝑖,𝑘  𝑘 = 0,1,2,… ,𝑚,  𝑖 = 1,2,… ,𝑚 (3.3)

where 𝐴̃𝑖,𝑘 is obtained from the Adomian polynomials of 𝒩𝑖(𝑦1, … , 𝑦𝑛) by replacing each 

𝑦𝑘 and 𝒟𝛽𝑖𝑦𝑖,𝑘 in the Adomian polynomial component 𝐴𝑖,𝑘 by 𝑌𝑖,𝑘(𝑘) and 
Γ(𝛽𝑖+1+

𝑘

𝜃𝑖
)

Γ(1+
𝑘

𝜃𝑖
)
𝑌𝑖,𝑘+𝛽𝑖𝜃𝑖(𝑘 + 𝛽𝑖𝜃𝑖), respectively. 

The initial conditions in equation 3.2 can be transformed by using equation 2.6 as follows 

𝑌𝑖𝑘(𝑘) = 𝐶𝑘,  𝑘 = 0,1,2,… , (𝛼𝑖𝜃𝑖 − 1),  𝑖 = 1,2,… ,𝑚 

Let 

𝑦𝑖 = ∑  

∞

𝑚=0

 𝑌𝑖𝑚 ,  𝑖 = 1,2,… , 𝑛 (3.4) 

and 

𝒩𝑖(𝑦1, … , 𝑦𝑛) = ∑  

∞

𝑚=0

𝐴𝑖𝑚 

with 𝐴𝑖𝑚 are defined as Adomian polynomials and they are determined by the following 

relations [10, 12] , 

𝐴𝑖𝑚 = [
1

𝑚!

d𝑚

 d𝜆𝑚
𝒩𝑖 (∑  

∞

𝑚=0

 𝑦1𝑚𝜆
𝑚, … , ∑  

∞

𝑚=0

 𝑦𝑛𝑚𝜆
𝑚)]

𝜆=0

 

Adomian polynomials can be written as, 𝐴̃𝑖𝑚 

𝐴̃𝑖𝑚 = [
1

𝑚!

d𝑚

 d𝜆𝑚
𝒩𝑖 (∑  

∞

𝑚=0

 𝑌1𝑚𝜆
𝑚, … , ∑  

∞

𝑚=0

 𝑌𝑛𝑚𝜆
𝑚)]

𝜆=0

 

The following recursive formula gives: 

𝑌𝑖𝑘(𝑘) = 𝐶𝑘 ,  𝑘 = 0,1,2,… , (𝛼𝑖𝜃𝑖 − 1),  𝑖 = 1,2,… , 𝑛 
Using inverse transformation rule in equation 2.4 becomes 

𝑦𝑖(𝜁) = ∑  

∞

𝑚=0

 𝑌𝑖𝑚𝜁
𝑘/𝛼𝑖 ,  𝑖 = 1,2,… ,𝑚 (3.6) 

 

3.1.  Analysis of convergence and error estimate 

 

Theorem 3.1. If ℬ be a Banach space, then the series solution of the system (3.1) converges 

to 𝑆𝑗 ∈ ℬ for 𝑗 ∈ 𝑁𝑛, if ∃𝜎𝑗 ∈ [0,1) such that, ∥∥𝑌𝑗𝑛∥∥ ≤ 𝜎𝑗∥∥𝑌𝑗(𝑛−1)∥∥∀𝑛 ∈ ℕ. 

Proof. Let the sequences 𝑆𝑗𝑛 , 𝑗 ∈ 𝑁𝑛 be a partial sums of the series given by the system (3.5) 

as 

{
 
 

 
 
𝑆𝑗0 = 𝑌𝑗0(𝜉)

𝑆𝑗1 = 𝑌𝑗0(𝜉) + 𝑌𝑗1(𝜉)

𝑆𝑗2 = 𝑌𝑗0(𝜉) + 𝑌𝑗1(𝜉) + 𝑌𝑗2(𝜉)

⋮
𝑆𝑗𝑛 = 𝑌𝑗0(𝜉) + 𝑌𝑗1(𝜉) + 𝑌𝑗2(𝜉) + ⋯+𝑌𝑗𝑛(𝜉), 𝑗 = 1,2,… , 𝑛

(3.7) 
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Then must prove that in Banach space ℬ, {𝑆𝑗𝑛} are Cauchy sequences. The following 

factors are examined in this regard:  

∥∥𝑆𝑗(𝑛+1) − 𝑆𝑗𝑛∥∥ = ∥∥𝑌𝑗(𝑛+1)(𝜉)∥∥ ≤ 𝜎𝑗∥∥𝑌𝑗𝑛(𝜉)∥∥ ≤ 𝜎𝑗
2∥∥𝑌𝑗(𝑛−1)(𝜉)∥∥ ≤ ⋯ 

For 𝑛 ≥ 𝑚 & ∀𝑛,𝑚 ∈ ℕ, by using the system (3.7) and triangle inequality 

successively, we have, 

∥∥𝑆𝑗𝑛 − 𝑆𝑗𝑚∥∥ = ∥∥𝑆𝑗(𝑚+1) − 𝑆𝑗𝑚 + 𝑆𝑗(𝑚+2) − 𝑆𝑗(𝑚+1) +⋯+ 𝑆𝑖𝑛 − 𝑆𝑗(𝑛−1)∥∥

≤ ∥∥𝑆𝑗(𝑚+1) − 𝑆𝑗𝑚∥∥ + ∥∥𝑆𝑗(𝑚+2) − 𝑆𝑗(𝑚+1)∥∥ +⋯+ ∥∥𝑆𝑗𝑛 − 𝑆𝑗(𝑛−1)∥∥

 ≤ 𝜎𝑗
𝑚+1∥∥𝑌𝑗0(𝜉)∥∥ + 𝜎𝑗

𝑚+2∥∥𝑌𝑗0(𝜉)∥∥ +⋯+ 𝜎𝑗
𝑛∥∥𝑌𝑗0(𝜉)∥∥

 = 𝜎𝑗
𝑚+1(1+ 𝜎𝑗 +⋯+ 𝜎𝑗

𝑛−𝑚−1)∥∥𝑌𝑗0(𝜉)∥∥

 ≤ 𝜎𝑗
𝑚+1 (

1 − 𝜎𝑛−𝑚

1 − 𝜎𝑗
) ∥∥𝑌𝑗0(𝜉)∥∥.

 

As 0 < 𝜎𝑗 < 1, so 1 − 𝜎𝑗
𝑛−𝑚 ≤ 1 then 

∥∥𝑆𝑗𝑛 − 𝑆𝑗𝑚∥∥ ≤
𝜎𝑗
𝑚+1

1 − 𝜎𝑗
∥∥𝑌𝑗0(𝜉)∥∥ 

Since 𝑌𝑗0(𝜉) is bounded, then 

lim
𝑛,𝑚→∞

 ∥∥𝑆𝑗𝑛 − 𝑆𝑗𝑚∥∥ = 0,  𝑗 ∈ 𝑁𝑛 

As a result, the sequences {𝑆𝑗𝑛} in the Banach space ℬ are Cauchy sequences, and the series 

solution specified in system ( 3.6 ) converges. 

Theorem 3.2. The series solution (3.4) of the system (3.1) is determined to have a maximum 

absolute truncation error of (3.4). 

sup
𝜉∈Θ

  |𝑌𝑗(𝜉) −∑  

𝑚

𝑘=0

 𝑌𝑗𝑘(𝜉)| ≤
𝜎𝑗
𝑚+1

1 − 𝜎𝑗
sup
𝜉∈Θ

 |𝑌𝑗0(𝜉)|, 𝑗 ∈ 𝑁𝑛 

where the region Θ ⊂ ℝ𝑛+1. 

Proof. The following is deduced from Theorem 3.1:  

∥∥𝑆𝑗𝑛 − 𝑆𝑗𝑚∥∥ ≤
𝜎𝑗
𝑚+1

1 − 𝜎𝑗
sup
(𝜉)∈Θ

 |𝑌𝑗0(𝜉)|, 𝑗 ∈ 𝑁𝑛 (3.9) 

However, suppose that 𝑆𝑗𝑛 = ∑𝑘=0
𝑛  𝑌𝑗𝑘(𝜉) for 𝑗 = 1,2, … , 𝑛, and since 𝑛 → ∞, then obtain 

𝑆𝑗𝑛 → 𝑌𝑗(𝜉), so the system (3.9) can be rephrased as 

∥∥𝑌𝑗(𝜉) − 𝑆𝑗𝑚∥∥ =
∥
∥
∥
∥
𝑌𝑗(𝜉) −∑  

𝑚

𝑘=0

 𝑌𝑗𝑘(𝜉)
∥
∥
∥
∥

 ≤
𝜎𝑗
𝑚+1

1 − 𝜎𝑗
sup
𝜉∈Θ

 |𝑌𝑗0(𝜉)|, 𝑗 ∈ 𝑁𝑛.

 

As a result, in the Θ region, the maximum absolute truncation error is 

sup
𝜉∈Θ

  |𝑌𝑗(𝜉) −∑  

𝑚

𝑘=0

 𝑌𝑗𝑘(𝜉)| ≤
𝜎𝑗
𝑚+1

1 − 𝜎𝑗
sup
(𝜉)∈Θ

 |𝑌𝑗0(𝜉)|, 𝑗 ∈ 𝑁𝑛 

and this completes the proof. 
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4.  Numerical Approximation Solution of the Fractional Order SIR Model by FDTAM 

 

Now, in this section we'll try to solve mathematical SIR model of fractional order by using 

this new technique: 

𝑇𝛼
𝜉
𝑦1 = −𝜌𝑦1(𝜉)𝑦2(𝜉)

𝑇𝛼
𝜉
𝑦2 = 𝜌𝑦1(𝜉)𝑦2(𝜉) − 𝜂𝑦2(𝜉)

𝑇𝛼
𝜉
𝑦3 = η𝑦2(𝜉)

                       (4.1) 

In terms of an infinite power series, the FDTM with Adomian polynomials gives an 

analytical approximation solution. However, evaluating this solution and obtaining 

numerical numbers from the infinite power series is necessary in practise. To complete this 

work, the series is truncated as a result, and the practical approach is used. Now apply the 

FDTM with Adomian polynomials of equation 4.1 can be expressed as follows: 

𝑌1,𝑘+𝛼𝜃1(𝑘 + 𝛼𝜃1) =
Γ(1+𝑘/𝜃1)

Γ(𝛼+1+𝑘/𝜃1)
𝐴̃1𝑘

𝑌2,𝑘+𝛽𝜃1(𝑘 + 𝛽𝜃1) =
Γ(1+𝑘/𝜃2)

Γ(𝛼+1+𝑘/𝜃2)
(𝜌𝐴̃2𝑘 − (𝜂 + 𝜅)𝑌2(𝑘))

𝑌3,𝑘+𝛾𝜃3(𝑘 + 𝛾𝜃3) =
Γ(1+𝑘/𝜃3)

Γ(𝛼+1+𝑘/𝜃3)
𝜂𝑌2𝑘(𝑘)

         (4.2) 

where 𝜃1, 𝜃2, 𝜃3 are the fractions of order 𝛼, 𝛽, 𝛾 and 𝑌1,𝑘+𝛼𝜃1(𝑘 + 𝛼𝜃1), 𝑌2,𝑘+𝛽𝜃2(𝑘 + 𝛼𝜃2) 

and 𝑌3,𝑘+𝛾𝜃3(𝑘 + 𝛾𝜃3) are FDT of 𝑦1(𝜉), 𝑦2(𝜉) and 𝑦3(𝜉) respectively. The corresponding 

Adomian polynomials 𝐴𝑖𝑗 , 𝑖 = 1,2,3 and 𝑗 = 0,1,… 

𝐴̃10 = 𝑌10𝑌20,

𝐴̃11 = 𝑌11𝑌20 + 𝑌10𝑌21,

𝐴̃12 = 𝑌12𝑌20 + 𝑌11𝑌21 + 𝑌10𝑌22,

𝐴̃13 = 𝑌13𝑌20 + 𝑌12𝑌21 + 𝑌11𝑌22 + 𝑌10𝑌23,

𝐴̃14 = 𝑌14𝑌20 + 𝑌13𝑌21 + 𝑌12𝑌22 + 𝑌11𝑌23 + 𝑌10𝑌24,

 ⋮

 

𝐴̃20 = 𝑌10𝑌20
𝐴̃21 = 𝑌11𝑌20 + 𝑌10𝑌21
𝐴̃22 = 𝑌12𝑌20 + 𝑌11𝑌21 + 𝑌10𝑌22
𝐴̃23 = 𝑌13𝑌20 + 𝑌12𝑌21 + 𝑌11𝑌22 + 𝑌10𝑌23
𝐴̃24 = 𝑌14𝑌20 + 𝑌13𝑌21 + 𝑌12𝑌22 + 𝑌11𝑌23 + 𝑌10𝑌24

 

For sake of convenience use following parameter in given model 

 

Parameter Representation 

𝑦1 Represents those who are susceptible to infection. 

𝑦2 Represents people who have been infected . 

𝑦3 Represents people who have recovered from the Dengue virus. 

𝜂 Rate of change of infectives to immune population. 

𝜌 Rate of change of susceptibles to infective population. 

 

We utilise the following numerical values for parameters from [1] to derive the approximate 

series solution of the above model. 
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Let 𝑦1(0) = 20, 𝑦2(0) = 15 and 𝑦3(0) = 10. Now by using equation 2.6, the initial 

conditions can be transformed as 𝑌10(0) = 20, 𝑌20(0) = 15 and 𝑌30(0) = 10. If we taking 

the values of 𝜃1 =
1

𝛼
, 𝜃2 =

1

𝛽
, 𝜃3 =

1

𝛾
 and values of other parameters are 𝜂 = 0.02, 𝜌 =

0.01,. We have Using the equation 2.1.2 the foruth approximations are calculated for 

𝑦1(𝜉), 𝑦2(𝜉) and 𝑦3(𝜉), respectively. 

In view of these values, if 

  𝜃1 =
1

𝛼
, 𝜃2 =

1

𝛽
, 𝜃3 =

1

𝛾
 then 

𝑦1(𝜉) = 20 −
𝜌𝑎𝑏

Γ(𝛼 + 1)
𝜉𝛼 −

𝜌Γ(𝛼 + 1)

Γ(2𝛼 + 1)
(−

𝜌𝑎𝑏2

Γ(𝛼 + 1)
+
𝑎𝜌(𝑎𝑏 − 𝜂𝑏)

Γ(𝛽 + 1)
) 𝜉2𝛼 −

𝜌Γ(2𝛼 + 1)

Γ(3𝛼 + 1)

[
 
 
 
 (
−𝜌Γ(𝛼 + 1)

Γ(2𝛼 + 1)
(
−𝜌𝑎𝑏2

Γ(𝛼 + 1)
+
𝑎(𝑎𝑏 − 𝜂𝑏)

Γ(𝛽 + 1)
))𝑏 +

−𝜌𝑎𝑏(𝑎𝑏 − 𝜂𝑏)

Γ(𝛼 + 1)Γ(𝛽 + 1)

+
𝑎Γ(𝛽 + 1)

Γ(2𝛽 + 1)
(−

𝜌2𝑎𝑏2

Γ(𝛼 + 1)
+ (𝑎𝑏 − 𝜂𝑏)

(𝜌𝑎 − 𝜂)

Γ(𝛽 + 1)
)
]
 
 
 
 

𝜉3𝛼 +⋯

𝑦2(𝜉) = 15 +
𝜌𝑎𝑏 − 𝜂𝑏

Γ(𝛽 + 1)
𝜉𝛽 + (

Γ(𝛽 + 1)

Γ(2𝛽 + 1)
(−

𝜌2𝑎𝑏2

Γ(𝛼 + 1)
+
(𝜌𝑎𝑏 − 𝜂𝑏)(𝜌𝑎 − 𝜂)

Γ(𝛽 + 1)
))𝜉2𝛽

 +
Γ(2𝛽 + 1)

Γ(3𝛽 + 1)

[
 
 
 
 
−𝜌2Γ(𝛼 + 1)

Γ(2𝛼 + 1)
(
−𝜌𝑎𝑏2

Γ(𝛼 + 1)
+
𝑎(𝜌𝑎𝑏 − 𝜂𝑏)

Γ(𝛽 + 1)
)𝑏 + 𝜌 (

−𝜌𝑎𝑏(𝑎𝑏 − 𝜂𝑏)

Γ(𝛼 + 1)Γ(𝛽 + 1)
)

+(
Γ(𝛽 + 1)

Γ(2𝛽 + 1)
(−

𝜌𝑎𝑏2

Γ(𝛼 + 1)
+ 𝜌(𝜌𝑎𝑏 − 𝜂𝑏)

(𝜌𝑎 − 𝜂)

Γ(𝛽 + 1)
)) (𝑎 − 𝜂)

]
 
 
 
 

𝜉3𝛽 +⋯

 

𝑦3(𝜉) = 10 +
𝜂𝑏

Γ(𝛾 + 1)
𝜉𝛾 +

Γ(1 + 𝛾)

Γ(2𝛾 + 1)

𝜂(𝜌𝑎𝑏 − 𝜂𝑏)

Γ(𝛽 + 1)
𝜉2𝛾

+
𝜂Γ(1 + 2𝛾)

Γ(3𝛾 + 1)

Γ(𝛽 + 1)

Γ(2𝛽 + 1)

[
 
 
 
 
(𝜌𝑎𝑏 − 𝜂𝑏)(𝜌𝑎 − 𝜂)

Γ(𝛽 + 1)

−
𝜌2𝑎𝑏2

Γ(𝛼 + 1)
+⋯]

 
 
 
 

𝜉3𝛾

+⋯

 

Take 𝛼 = 𝛽 = 𝛾 = 1, then get 
𝑦1(𝜉) = 20 − 3𝜉 − 0.045𝜉

2 + 0.02805𝜉3 +⋯

𝑦2(𝜉) = 15 + 2.7𝜉 + 0.018𝜉
2 − 0.02817𝜉3 +⋯

𝑦3(𝜉) = 10 + 0.3𝜉 + 0.027𝜉
2 + 0.00012𝜉3 +⋯

                (4.3) 

These findings (4.3) are shown in Fig. 1, where an increase in the number of infected 

individuals followed by a decrease in the number of susceptible persons throughout the 

epidemic is demonstrated by the graphs. During this period, an increase in the number of 

immunized individuals compared to the findings of the immune population obtained using 

HPM [5] is observed. A comparison between the findings obtained via FDTAM and those 

obtained through HPM [5] demonstrates that the outcomes of the fourth-term 

approximations of FDTAM and HPM are the same. Therefore, it is concluded that this 

approach will work well in the epidemic scenario. 
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Fig. 1. Fourth approximate solution of 4.1 for different value of 𝛼, 𝛽, 𝛾. 

 
Table 1. Comparison of fourth-order HPM solution with fourth-order FDTAM solution 

𝑦1(𝜉) for 𝛼 = 1 
 

𝜉 Approximate by HPM Approximate by FDTAM Absolute Error 

2 14.0444 14.0444 0 

4 9.0752 9.0752 0 
6 6.4388 6.4388 0 
8 7.4816 7.4816 0 
10 13.55 13.55 0 
12 25.9904 25.9904 0 

 
Table 2. Comparison of fourth-order HPM solution with fourth-order FDTAM solution 𝑦2(𝜉) for 𝛼 =
1. 
 

𝜉 Approximate by HPM Approximate by FDTAM Absolute Error 

2 20.24664 20.24664 0 
4 24.28512 24.28512 0 
6 25.76328 25.76328 0 
8 23.32896 23.32896 0 
10 15.63 15.63 0 
12 1.31424 1.31424 0 
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Table 3. Comparison of fourth-order HPM solution with fourth-order FDTAM solution 𝑦3(𝜉) for 𝛼 =
1. 
 

𝜉 Approximate by HPM Approximate by FDTAM Absolute Error 

2 10.70896 10.70896 0 
4 11.63968 11.63968 0 
6 12.79792 12.79792 0 

8 14.18944 14.18944 0 
10 15.82 15.82 0 
12 17.69536 17.69536 0 

 

5. Conclusion 

 

In this study, the nonlinear system of fractional differential equations governing the 

epidemic model was solved using the fractional differential transform method (FDTM) with 

Adomian polynomials. We examined the recommended strategy for convergence analysis 

and absolute error, utilizing this novel approach to approximate solutions to the model of 

nonlinear equations. It is important to note that the technique can reduce the amount of 

computing effort required while maintaining high accuracy, resulting in an improvement in 

the approach's performance. A comparison between the findings obtained via FDTAM and 

those obtained through a precise method reveals that the outcomes of the fourth-term 

approximations of FDTAM and the precise method are consistent, thereby supporting the 

theoretical conclusions and the efficacy of the numerical approximation. Moreover, our 

analysis was discussed graphically using Python software. 
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