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Abstract 

In this paper, an analytical model of 2𝑝 orbital helium atom has been considered to quantify 

the values of the Rényi and Tsallis entropies along with their theoretical aspects. The 

normalized radial wave function used here (in atomic units) is obtained by solving the 

Schrödinger equation. The complete form of the coordinate space wave function is obtained 

by the use of the spherical harmonics. The momentum space wave function is obtained by 

taking the Fourier transform of the coordinate space wave function. The probability densities 

constituted with the respective coordinate and momentum space wave functions have been 

used to compute the numerical values of the Rényi and Tsallis entropies in the coordinate and 

momentum space for different values of the order 𝛽 varying from 2 to 10. The computed 

values are presented in a tabular form. Further, it is mathematically demonstrated that in the 

limit of order 𝛽 → 1, both the Rényi and Tsallis entropies lead to the Shannon entropy. Finally, 

an outlook of the present work has been summarized with some concluding remarks.  
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1.Introduction 

 

It is an important fact that the accurate values of the physical quantities obtained from the 

experiments or theoretical calculations could serve as the stepping stone in the area of 

research. Nowadays, the information theory of quantum mechanical systems is of great 

scientific challenge because (i) it provides a deeper insight into the internal structure of the 

systems [1] and (ii) it offers the strongest support to the modern quantum computation and 

information [2] which is regarded as the basic need for the numerous technological 

developments [3]. Actually, even for the one-dimensional single-particle systems with an 

analytically solvable Schrödinger equation where the wave functions of their physical states 

are controlled by special functions of mathematical physics such as classical orthogonal 

polynomials, spherical harmonics, Bessel functions, Macdonald functions, etc. [4], the basic 

information-theoretic quantities remain to be computed. This is because of the lack of 

knowledge relating to the application of the information-theoretic properties of special 
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functions despite the so many results provided by the theory of orthogonal polynomials and 

potential theory [5]. The determination of these information-theoretic quantities is one of 

the main goals of the information theory of the finite quantum systems, which is the 

strongest support of the modern information and computation. Moreover, these measures 

and the ideas related to disorder, randomness, localization and uncertainty are the basic 

ingredients that perform a relevant role for the identification and description of numerous 

quantum phenomena in physical systems and chemical processes. This was initially pointed 

out by Bialynicki-Birula and Mycielski [6], Sears et al. [7], Levine [8], Fisher [9], Frieden 

[10], Jaynes [11-15], Rényi [16], Shannon [17], Tsallis [18,19], Stam [20] and others, 

through various aspects of research in the fields of statistical mechanics, communication 

theory and classical information theory. The information-theoretic quantities play various 

significant roles in physical systems and chemical processes. Rényi [𝑅𝜌,𝛾(𝛽)] and Tsallis 

[𝑇𝜌,𝛾(𝛽)] entropies find numerous applications in science, technology, engineering, 

medicine, and economics, among others. Rényi entropy which was proposed by the 

Hungarian mathematician bearing his name [21] was successfully applied in coding theory 

[22]. Besides applications in physics and information theory, Rényi measure was used in 

the investigation of spatial distribution of earthquake epicenters [23], for the analysis of the 

landscape diversity and integrity [24,25], for predicting the behaviour of the stock markets 

[26], exploration and modification of the brain activity [27], digital image analysis [28], etc. 

Tsallis entropies are widely utilized in non-extensive systems including the structures and 

processes characterized by non-ergodicity, long-range correlations and space-time (multi) 

fractal geometry [29]. It should be noted that the subscripts 𝜌 and 𝛾 (or 𝜌, 𝛾) used in different 

expressions throughout our works are representing the coordinate space and momentum (or 

combining the both) spaces respectively. 

A few years ago, attempts were made by Ou et al. [30] to calculate the Rényi entropy, 

Tsallis entropy and Onicescu information energy for helium atom using highly correlated 

Hylleraas wave function. Later, Martinez-Flores [31] also worked on the same track using 

the screened Coulomb potential for helium atom. There are literatures where the numerical 

calculations for the Shannon and Fisher entropies were made using the correlated wave 

function for helium atom [32]. The similar calculations have been done for the free particles 

also [33,34]. An analytic correlated wave function was studied in detail to analyze the effect 

of electron correlation on the Rényi entropy, Tsallis entropy and Onicescu information 

energy for the neutral atoms helium to beryllium by Sarkar [35]. 

In this paper, an analytical model consisting of 2𝑝 orbital helium atom (two one-electron 

system) will be studied. Here, a two one-electron system has been considered, where ‘1𝑠’ 

electron is under the influence of full nuclear charge ‘2𝑒’ but the other ‘𝑛, 𝑙’ electron is 

under the influence of the screened charge ‘𝑒’. The coordinate space wave function  𝜓(𝑟) 

is obtained by the product of the normalized radial wave function 𝑅𝑛𝑙 [36] and the spherical 

harmonics 𝑌𝑙
𝑚𝑙. The momentum space wave function 𝜙(𝑝) is obtained by taking the Fourier 

transform [37] of that coordinate space wave function 𝜓(𝑟). The coordinate and momentum 

space probability densities 𝜌(𝑟) and 𝛾(𝑝) constructed by these wave functions are then used 

to compute the numerical values of the Rényi and Tsallis entropies both in the coordinate 
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and momentum space for the different values of the order 𝛽 (a non-negative parameter) 

varying from 2 to 10. It is shown that in the limit of the order 𝛽 → 1, both the Rényi and 

Tsallis entropies lead to the values of the Shannon entropy for this system. Further, the 

expressions obtained for the probability densities are used to study and analyze the variation 

of the probability densities 𝜌(𝑟) and 𝛾(𝑝) in the coordinate and momentum space as 

functions of the coordinate (𝑟) and momentum (𝑝)through their graphical representations.  

The physical and chemical properties of a system in a given quantum-mechanical state 

described by three integer quantum numbers (𝑛, 𝑙, 𝑚) are controlled by the spread of the of 

the coordinate and momentum space densities [𝜌𝑛(𝑟) and𝛾𝑛(𝑝)]. The location and motion 

of a quantum mechanical particle in information theory is described with the help of 

densities 𝜌𝑛(𝑟) and 𝛾𝑛(𝑝). These densities which are constituted by the squared amplitudes 

of the corresponding one-particle wave functions𝜓𝑛(𝑟) and 𝜙𝑛(𝑝) are described as follows: 

𝜌𝑛(𝑟) = |𝜓𝑛(𝑟)|2    and  𝛾𝑛(𝑝) = |𝜙𝑛(𝑝)|2                 (1) 

where a discrete index ‘𝑛’ counts all possible bound quantum states. In general, 𝑑-

dimensional space, 𝜓𝑛(𝑟) and 𝜙𝑛(𝑝) are related with the Fourier transform as follows: 

𝜓𝑛(𝑟) =  
1

(2𝜋)
3
2

∭ 𝜙𝑛(𝑝)
∞

−∞
𝑒𝑖 𝑝⃗⃗⃗⃗  .𝑟𝑑3𝑝 where, 𝜙𝑛(𝑝) =

1

(2𝜋)
3
2

∭ 𝜓𝑛(𝑟)
∞

−∞
𝑒−𝑖 𝑝⃗⃗⃗⃗  .𝑟𝑑3𝑟       (2) 

with integrations carried out over the whole available region.  

Among the prevailing information-theoretic quantities, a very special role is played by the 

Rényi and Tsallis entropies whose expressions in the coordinate and momentum spaces are 

defined as follows where the order 𝛽 ≠ 1: 

𝑅𝜌𝑛
(𝛽) =

1

1−𝛽
𝑙𝑛(∭ 𝜌𝑛

𝛽∞

−∞
(𝑟)𝑑3𝑟)  ,                  (3) 

𝑅𝛾𝑛
(𝛽) =

1

1−𝛽
𝑙𝑛(∭ 𝛾𝑛

𝛽∞

−∞
(𝑝)𝑑3𝑝) ,                 (4) 

and 

𝑇𝜌𝑛
(𝛽) =

1

𝛽−1
(1 − ∭ 𝜌𝑛

𝛽∞

−∞
(𝑟)𝑑3𝑟) ,                               (5) 

𝑇𝛾𝑛
(𝛽) =

1

𝛽−1
(1 − ∭ 𝛾𝑛

𝛽∞

−∞
(𝑝)𝑑3𝑝).                 (6) 

Here, the non-negative parameter 𝛽 is the ‘Order’ of the Rényi and Tsallis entropies 

associated with the probability densities𝜌𝑛
𝛽

(𝑟) and 𝛾𝑛
𝛽

(𝑝) respectively in the coordinate and 

momentum spaces. 

Rényi and Tsallis attempted to quantify ‘information’ with the help of a non-negative 

parameter, 0 < 𝛽 < ∞, which can be considered as a factor describing the reaction of the 

system to its deviation from the equilibrium. Eqs. (3) to (6) were used to study the variations 

of entropy with the varying 𝛽 values. If the limit of the integration in Eqs. (3) to (6) are 

taken as infinite then the corresponding values of the entropy lead to divergence. Special 

case 𝛽 = 1 with the help of the L’Hospital’s rule leads both the Rényi and Tsallis entropies 

to the celebrated Shannon entropies: 

𝑆𝜌𝑛
= − ∭ 𝜌𝑛(𝑟)𝑙𝑛𝜌𝑛(𝑟)

∞

−∞
𝑑3𝑟                                (7) 

𝑆𝛾𝑛
= − ∭ 𝛾𝑛(𝑝)𝑙𝑛𝛾𝑛(𝑝)

∞

−∞
𝑑3𝑝.                                (8) 

The dependence on 𝑆𝜌𝑛
 or 𝑆𝛾𝑛

 was introduced in 1948 by C.E. Shannon during the 

mathematical analysis of communication [38] for the random discrete distribution of a given 

sample of probabilities 𝑝𝑖 . From a quantum informational point of view, 𝑆𝜌𝑛
 or 𝑆𝛾𝑛
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quantitatively describes the lack of our knowledge about the corresponding property of the 

system. The smaller (greater) the value of this entropy is the more (less) information we 

have about a quantum mechanical object. Accordingly, the physical meaning of the Rényi 

entropy and the parameter ‘𝛽’ can be construed as follows; the equilibrium distribution 

corresponds to 𝛽 = 1, and any value of 𝛽 ≠ 1 is a deviation from it. The Rényi entropy is 

a measure of the sensitivity of the system to its deviation from the equilibrium. If the 

parameter 𝛽 > 1, then the corresponding entropy decreases, which means that such a 

configuration provides more information about the object than its equilibrium counterpart. 

On the other hand, the values of 𝛽 < 1, increases the entropy with the corresponding 

decrease of the available information. In the extreme case 𝛽 → 0, it reaches to its maximum 

value which for the infinite interval leads to a logarithmic divergence. Within this limit the 

integrals in Eqs. (3) to (6) are just a flat unit line; in such cases the Rényi entropy in the 

coordinate space does not provide any information about the location of the particle in 

space. Thus, the rate of change of the entropy with the order 𝛽 just shows the sensitivity of 

the system to the degree of non-equilibrium.  

Further, it can be noted that the Rényi and Tsallis entropies are interrelated as follows: 

𝑅 =
1

1−𝛽
𝑙𝑛[1 + (1 − 𝛽)𝑇]  and  𝑇 =

1

𝛽−1
[1 − 𝑒(1−𝛽)𝑅].                (9) 

And both the entropies are decreasing functions of the order 𝛽. One important difference 

between them lies in the fact that the Rényi entropy is additive (or extensive) whereas the 

Tsallis entropy is non-additive (or non-extensive). 

The aim of our present work is to derive an analytical model to quantify the values of 

the Rényi and Tsallis entropies of the 2𝑝 orbital helium atom (two one-electron systems) 

using its normalized wave function. The analytical model will be used to study the 

variations of the coordinate and momentum space probability densities 𝜌(𝑟) and 𝛾(𝑝) as 

functions of the coordinate (𝑟) and momentum (𝑝) graphically. Further, it will be used to 

compute the numerical values of the Rényi and Tsallis entropies and also demonstrate that 

in the limit of the non-negative parameter 𝛽 → 1 both the Rényi and Tsallis entropies lead 

to the Shannon entropy. The values of the entropies are to be computed both in the 

coordinate and momentum space with respect to varying values of the order 𝛽. In 

applicative context it will, therefore, be quite interesting to examine how the computed 

values of the Rényi and Tsallis entropies respond both in the coordinate and momentum 

space. Until now research has been focused mainly on Shannon entropy involving 

hydrogen-like systems [39,40]. To the best of our knowledge, the Rényi and Tsallis 

entropies using the wave function of the 2𝑝 orbital helium atom (two one-electron system) 

has not been reported before in the literature. 

The structure of the paper is as follows. The necessary mathematical elements to find 

the probability densities and their variations with graphical representation in the coordinate 

and momentum space for arbitrary 2𝑝 orbital using the complete form of the normalized 

wave function of the helium atom are summarized in Section 2. Then, in Section 3, it has 

been explicitly demonstrated hat in a closed and simple mathematical form how both the 

Rényi and Tsallis entropies in the limit of the order 𝛽 → 1 lead to the Shannon entropy. In 

Section 4, the numerical values of the Rényi and Tsallis entropies have been computed using 
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their corresponding probability densities 𝜌𝑛(𝑟) and 𝛾𝑛(𝑝) for different values of the order 

𝛽 both in the coordinate and momentum space. The computed values are presented in a 

tabular form. Finally, Section 5 has been devoted to present an outlook of the work done 

with some concluding remarks. 

 

2. Materials and Method 

 

In this Section, the necessary mathematical treatments have been described to find the 

probability densities of arbitrary 2𝑝 orbital states of helium atom employing the normalized 

radial wave function with the help of corresponding spherical harmonics. The exact 

solutions of the Schrödinger differential equation are very important in understanding the 

main recipe of the problems in Physics that can only be brought by such solutions [41,42]. 

These solutions are not only treated as valuable tools in checking and improving models 

but can be introduced in numerical methods for solving some complicated physical 

problems at least in some limiting cases also [43,44].One of such method is the analytical 

solution of the radial Schrödinger equation which is of high importance in non-relativistic 

quantum mechanics; because the wave function contains all necessary information for full 

description of a quantum mechanical system [45,46]. However, an alternative method 

known as the Nikiforov-Uvarov (NU) method [47] was also proposed for solving 

Schrödinger wave equation.  

A neutral helium atom has been considered here, where one electron is in the ‘1𝑠’ ground 

state and the other electron is in an ‘𝑛, 𝑙’ excited state (𝑛 ≥ 2, 𝑙 ≥ 1). The non-relativistic 

Hamiltonian (in atomic units) of helium atom can be written in the following form: 

𝐻̂ = −
1

2
∇1

2 −
1

2
∇2

2 −
2

𝑟1
−

2

𝑟2
+

1

𝑟12
 ,                 (10) 

where the subscript 1 and 2 represents the electron 1 and 2, respectively, and 𝑟12 is the 

distance between the two electrons. 

If the ‘1𝑠’electron is under the influence of full nuclear charge 2𝑒, but the ‘𝑛, 𝑙’ electron 

only to the screened charge 𝑒, then the two one-electron states can be described by the 

solution of the following differential equations 

(−
1

2
∇2 −

2

𝑟
) 𝑢 = 𝐸1𝑢 ; (−

1

2
∇2 −

1

𝑟
) 𝑣𝑛𝑙 = 𝐸𝑛𝑣𝑛𝑙               (11) 

with,𝑢 ≡ |1〉 = √
8

𝜋
𝑒−2𝑟 ; 𝐸1 = −2 ; 𝑣𝑛𝑙 ≡ |𝑛〉 = 𝑅𝑛𝑙(𝑟)𝑌𝑙,𝑚(𝜃, 𝜑); 𝐸𝑛 = −

1

2𝑛2 ,         (12) 

where, 𝑅𝑛𝑙(𝑟) belongs to the radial wave functions of the hydrogen atom. 

Now, the Schrödinger equation of the two-electron problem can be written as follows: 

{−
1

2
∇1

2 −
1

2
∇2

2 −
2

𝑟1
−

2

𝑟2
+

1

𝑟12
} 𝜓 = 𝐸𝜓.                (13) 

The approximate solution of this problem has been solved and discussed in detail in 

Flügge [36] by the symmetrized product wave function represented as follows: 

𝜓 = 𝑢(1)𝑣𝑛(2) + 𝜀𝑣𝑛(1)𝑢(2) = |1𝑛〉 + 𝜀|𝑛1〉               (14) 

with 𝜀 = +1 for para-helium (spins anti-parallel) and 𝜀 = −1 for ortho-helium (spins 

parallel). 
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The wave function 𝜓 is normalized according to ⟨𝜓|𝜓⟩ = 2 and the expression for the 

normalized radial wave function 𝑅𝑛𝑙for the states 𝑛 = 2, 𝑙 = 1 has been obtained (in atomic 

units) after some cumbersome mathematical workout as:  

𝑅2,1 =
1

√24
 𝑟𝑒−

𝑟

2.                   (15) 

 

2.1. Calculation of the complete wave functions 𝝍(𝒓⃗⃗)and 𝝓(𝒑⃗⃗⃗) in the coordinate and 

momentum space 

 

In order to find the complete form of the wave function in the coordinate space for the state 

corresponding to 𝑛 = 2 and 𝑙 = 1, we take recourse of the expression for the normalized 

radial wave function 𝑅2,1 =
1

√24
 𝑟𝑒−

𝑟

2 ; and the values of spherical harmonics (𝑌𝑙
𝑚𝑙) with 

𝑌1
0 =

√3

2√𝜋
cos 𝜃, 𝑌1

+1 =
√3

2√2𝜋
𝑠𝑖𝑛 𝜃 𝑒𝑖𝜑  and 𝑌1

−1 =
√3

2√2𝜋
𝑠𝑖𝑛 𝜃 ∙ 𝑒−𝑖𝜑. When, 𝑛 = 2 and 𝑙 = 1 

the corresponding values for ‘𝑚𝑙’ are taken as −1, 0, +1.  

In terms of the corresponding radial parts of the normalized radial wave function 𝑅2,1 

and spherical harmonics 𝑌1
0, 𝑌1

+1, 𝑌1
−1,  the expression of the coordinate space wave 

function 𝜓(𝑟) can be written as below:  

𝜓(𝑟) = {𝜓2,1,0 + 𝜓2,1,+1 + 𝜓2,1,−1} = 𝑅2,1 ∙ 𝑌1
0 + 𝑅2,1 ∙ 𝑌1

+1 + 𝑅2,1 ∙ 𝑌1
−1 

Thus, we get the expression for the coordinate space wave function: 

𝜓(𝑟) = 𝑟𝑒− 
𝑟

2(
1

√32𝜋
cos 𝜃 +

1

8√𝜋
sin 𝜃 𝑒𝑖𝜑 +

1

8√𝜋
sin 𝜃 𝑒−𝑖𝜑).               (16) 

The momentum space wave function 𝜙(𝑝) is obtained by performing the Fourier transform 

of each component of the momentum space wave function 𝜙2,1,0 , 𝜙2,1,+1 and 𝜙2,1,−1 in 

terms of the components of the coordinate space wave function  𝜓2,1,0 , 𝜓2,1,+1 and 𝜓2,1,−1 

using the Fourier transform relation of the Eq. (2) which is rewritten as: 

𝜙(𝑝) =
1

(2𝜋)
3
2

∭ 𝜓(𝑟)
∞

−∞
𝑒−𝑖 𝑝⃗ .𝑟𝑑3𝑟 where, 𝜓(𝑟) =  

1

(2𝜋)
3
2

∭ 𝜙(𝑝)
∞

−∞
𝑒+𝑖 𝑝⃗ .𝑟𝑑3𝑝. 

And the expression of the momentum space wave function 𝜙(𝑝) is written as: 

𝜙(𝑝) = {𝜙2,1,0 + 𝜙2,1,+1 + 𝜙2,1,−1} =
1

(2𝜋)
3
2

∭ {𝜓2,1,0 + 𝜓2,1,+1 +
∞

−∞
𝜓2,1,−1}𝑒−𝑖 𝑝⃗ .𝑟𝑑3𝑟.  

Thus, finally the expression for the momentum space wave function 𝜙(𝑝) is as follows:   

𝜙(𝑝) = −
64𝑖𝑝

𝜋(1+4𝑝2)3  .                   (17)

  

2.2. Calculation of the probability densities 𝝆(𝒓⃗⃗) and 𝜸(𝒑⃗⃗⃗) in the coordinate and 

momentum space 

 

The probability densities 𝜌(𝑟) and 𝛾(𝑝) associated with the coordinate and momentum 

space wave functions 𝜓(𝑟) and 𝜙(𝑝) are obtained as the sum of the square of the modulus 

values of each component of the coordinate space wave function (|𝜓2,1,0|
2

+ |𝜓2,1,+1|
2

+

|𝜓2,1,−1|
2
) and the momentum space wave function (|𝜙2,1,0|

2
+ |𝜙2,1,+1|

2
+ |𝜙2,1,−1|

2
). 

And the expression for the coordinate space probability density 𝜌(𝑟) is as follows: 

𝜌(𝑟) = 𝜓∗(𝑟)𝜓(𝑟) =
1

32𝜋
𝑟2𝑒− 𝑟.                 (18) 
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Similarly, the probability density 𝛾(𝑝) associated in the momentum space for the wave 

function 𝜙(𝑝) can be obtained as the following: 

𝛾(𝑝) = 𝜙∗(𝑝)𝜙(𝑝) =
4096𝑝2

𝜋2(1+4𝑝2)6 .                 (19) 

 

2.3. Graphical representation of the probability densities 𝝆(𝒓⃗⃗) and 𝜸(𝒑⃗⃗⃗) in the coordinate 

and momentum space 

 

The following graphs labelled as Fig. 1A,B have been plotted with the help of the 

expressions obtained for the coordinate and momentum space probability densities which 

are varying against their coordinate and momentum. 

 

  
Fig. 1. (A) Coordinate space probability density 𝜌(𝑟) versus the coordinate (𝑟). (B) Momentum space 

probability density 𝛾(𝑝) versus the momentum ((𝑝)). 

 

From the Fig. 1A,B it can be seen that the shape of the coordinate space probability 

density 𝜌(𝑟) indicated by the red dotted curve is flattened as compared to the momentum 

space probability density 𝛾(𝑝); whereas the momentum space probability density 𝛾(𝑝) 

indicated by the green dotted curve is observed as squeezed significantly as compared to 

the coordinate space probability density 𝜌(𝑟). Thus, it can be realized clearly from the 

above figure that the probability densities are playing a complementary role in respect of 

their shapes respectively in the coordinate and momentum space.  

 

3. Shannon Entropy as a Limiting Case of Rényi and Tsallis Entropy 

 

In this section, we shall discuss how the Rényi and Tsallis entropies as a limiting case turn 

in to the Shannon entropies. 

Given a sample of probabilities 𝑝𝑖 , the sum of ‘𝑝𝑖’ can be written as ∑ 𝑝𝑖
𝑁
𝑖=1 = 1. The 

Shannon entropy for the probability density 𝑝𝑖  is expressed as follows: 

𝑆 = − ∑ 𝑝𝑖
𝑁
𝑖=1 𝑙𝑛 𝑝𝑖 .                  (20) 

 
3.1. Rényi entropy as Shannon entropy 
 
The Rényi entropy of the sample for a fixed distribution 𝑃 of order 𝛽 is given by  
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𝑅𝛽(𝑃) =
1

1−𝛽
𝑙𝑛 ∑ 𝑝𝑖

𝛽𝑁
𝑖=1 .                  (21) 

At 𝛽 = 1, the value of this quantity is potentially undefined as it generates the 
0

0
(

Zero

Zero
) form. 

In order to find the limit of the Rényi entropy, the L’Hospital’s Theorem is applied to obtain 

 lim
𝛽→𝑎

𝑓(𝛽)

𝑔(𝛽)
= lim

𝛽→𝑎

𝑓′(𝛽)

𝑔′(𝛽)
 .  

Where in this case, 𝑎 = 1. Let, 𝑓(𝛽) = 𝑙𝑛 ∑ 𝑝𝑖
𝛽𝑁

𝑖=1   and   𝑔(𝛽) = 1 − 𝛽.             (22) 

Then 
𝑑

𝑑𝛽
𝑔(𝛽) = −1  and, applying the chain rule 

𝑑

𝑑𝛽
𝑓(𝛽) =

1

∑ 𝑝
𝑖
𝛽𝑁

𝑖=1

∑
𝑑

𝑑𝛽
𝑝𝑖

𝛽𝑁
𝑖=1 .           (23) 

The form 𝑎𝑥 can be differentiated w.r.t. ‘𝑥’ by putting 
𝑑

𝑑𝑥
𝑎𝑥 =

𝑑

𝑑𝑥
𝑒𝑥𝑙𝑛𝑎 = 𝑒𝑥𝑙𝑛𝑎 𝑑

𝑑𝑥
𝑥𝑙𝑛𝑎 =

𝑎𝑥𝑙𝑛𝑎.    

Therefore, 
𝑑

𝑑𝛽
𝑓(𝛽) =

1

∑ 𝑝
𝑖
𝛽𝑁

𝑖=1

∑ 𝑝𝑖
𝛽𝑁

𝑖=1 𝑙𝑛𝑝𝑖.                  (24) 

Letting  𝛽 → 1, the above quantity becomes 
𝑑

𝑑𝛽
𝑓(𝛽) =

1

∑ 𝑝𝑖
𝑁
𝑖=1

∑ 𝑝𝑖
𝑁
𝑖=1 𝑙𝑛𝑝𝑖 .  

Since the 𝑝𝑖  sum to unity, this gives  lim
𝛽→1

1

1−𝛽
𝑙𝑛 ∑ 𝑝𝑖

𝛽𝑁
𝑖=1 = − ∑ 𝑝𝑖

𝑁
𝑖=1 𝑙𝑛𝑝𝑖                     (25) 

which is the Shannon entropy. 

 

3.2. Tsallis entropy as Shannon entropy 

 

The Tsallis entropy for a fixed distribution𝑃 of order 𝛽 is defined as 

𝑇𝛽(𝑃) =
1

𝛽−1
(1 − ∑ 𝑝𝑖

𝛽𝑁
𝑖=1 ).                   (26) 

Let, the above quantity be expressed as𝑇𝛽(𝑃) =  
𝑓(𝛽)

𝑔(𝛽)
                            (27) 

with 𝑓(𝛽) = (1 − ∑ 𝑝𝑖
𝛽𝑁

𝑖=1 ), and 𝑔(𝛽) = 𝛽 − 1 which leads to 𝑔′(𝛽) = 1 [The prime sign 

indicating the derivative of the quantity concerned w.r.t. ‘𝛽’]. 

Further, it can be written as 

𝑓(𝛽) = (1 − ∑ 𝑝𝑖
𝛽𝑁

𝑖=1 ) and 𝑓′(𝛽) = − ∑ 𝑝𝑖
𝛽𝑁

𝑖=1 𝑙𝑛 𝑝𝑖 [since, (𝑝𝑖
𝛽

)′ = (𝑒𝛽 𝑙𝑛  𝑝𝑖)′ = 𝑝𝑖
𝛽

𝑙𝑛 𝑝𝑖].     (28) 

As both limits of 𝑓(𝛽) and 𝑔(𝛽)tend to 0 as 𝛽 → 1, then after applying the L’Hospital’s 

Theorem, the expression for 𝑇𝛽(𝑃) can be obtained as the following: 

lim
𝛽→1

𝑇𝛽(𝑃) =  lim
𝛽→1

𝑓(𝛽)

𝑔(𝛽)
= lim

𝛽→1

𝑓′(𝛽)

𝑔′(𝛽)
= − ∑ 𝑝𝑖

𝑁
𝑖=1 𝑙𝑛 𝑝𝑖 .                                         (29) 

which is namely the Shannon entropy. That is, the Tsallis entropy tends to the Shannon 

entropy as 𝛽 → 1. 

 

4. Results and Discussion 

 

In this Section, the numerical values of the Rényi [𝑅𝜌2
(𝛽), 𝑅𝛾2

(𝛽)] and Tsallis 

[𝑇𝜌2
(𝛽), 𝑇𝛾2

(𝛽)] entropies are calculated for the states 𝑛 = 2, 𝑙 = 1, varying the order 𝛽 

from 2 to 10 considering 𝛽 ≠ 1 for a continuous one-normalized one-electron probability 

densities 𝜌𝑛(𝑟) and 𝛾𝑛(𝑝) in the coordinate and momentum space. In order to perform the 

calculations, we have introduced a change in the limits of the integration of Eqs. (3) to (6) 

from (−∞ to ∞) to (0 to ∞) and carried out all the integrals after expressing the Eqs. (3) to 

(6) exactly in the similar forms as shown below: 

𝑅𝜌𝑛
(𝛽) =

1

1−𝛽
𝑙𝑛 (∭ 𝜌𝑛

𝛽∞

0
(𝑟) 4𝜋𝑟2𝑑𝑟) and 𝑇𝛾𝑛

(𝛽) =
1

𝛽−1
(1 − ∭ 𝛾𝑛

𝛽∞

0
(𝑝)4𝜋𝑝2𝑑𝑝).(30) 
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To make it understand the changes made in Eqs. (3) to (6) only two expressions; one 

relating to the Rényi entropy and the other relating to the Tsallis entropy have been 

illustrated here in Eq. (30). 

It is important to note that the expressions of the Rényi and Tsallis entropy contain the 

terms ∫ 𝜌𝑛
𝛽

(𝑟) 𝑑𝑟 or ∫ 𝛾𝑛
𝛽

(𝑝) 𝑑𝑝 which are called the entropic moment or 𝛽-order frequency 

moment [48] of the one-normalized one-electron probability densities 𝜌𝑛(𝑟) and 

𝛾𝑛(𝑝)[49,50]. In fact, it relates to several physical quantities such as the normalization of 

electron density for 𝛽 = 1, Thomas-Fermi kinetic energy for 𝛽 = 5
3⁄ , Dirac exchange 

energy for 𝛽 = 4
3⁄  and so on. For a continuous one-normalized one-electron probability 

densities, the numerical values of the Rényi [𝑅𝜌2
(𝛽), 𝑅𝛾2

(𝛽)] and Tsallis [𝑇𝜌2
(𝛽), 𝑇𝛾2

(𝛽)] 

entropies have been computed both in the coordinate and momentum space using different 

values of the order 𝛽 varying from 2 to 10 and put them in a tabular form as following: 
 

Table 1. The numerical values of Rényi [𝑅𝜌2
(𝛽), 𝑅𝛾2

(𝛽)] and Tsallis [𝑇𝜌2
(𝛽), 𝑇𝛾2

(𝛽)] entropies in 

coordinate and momentum space. 
 

Order (𝛽) 𝑅𝜌2
(𝛽) 𝑅𝛾2

(𝛽) 𝑇𝜌2
(𝛽) 𝑇𝛾2

(𝛽) 

𝛽 = 2 4.96269 -2.29039 0.99301 -8.87882 

𝛽 = 3 5.29164 -1.94661 0.49999 -24.03410 

𝛽 = 4 5.35189 -1.87365 0.33333 -91.71610 

𝛽 = 5 5.36420 -1.85188 0.25000 -411.83000 

𝛽 = 6 5.36339 -1.84557 0.20000 -2035.17000 

𝛽 = 7 5.35847 -1.84500 0.16667 -10702.40000 

𝛽 = 8 5.35238 -1.84675 0.14286 -58767.60000 

𝛽 = 9 5.34616 -1.84945 0.12500 -333092.00000 

𝛽 = 10 5.34021 -1.85249 0.11111 -19342330.86000 

 

From the above table, it can be observed that for the order 𝛽 ≥ 4, the values of the Rényi 

entropies tend to decrease very slowly in the coordinate space while a slowly increasing 

tendency for the same can be observed in the momentum space. However, a gradual 

decrease in the values of the Tsallis entropy is observed in the coordinate space but a rapid 

and strong decrease for the same can be observed in the momentum space with the 

increasing values of the order  𝛽 ≥ 4. 

 

5. Conclusion 

 

In the present work we have considered an analytical model to quantify the values of the 

Rényi and Tsallis entropies of the2𝑝 orbital helium atom (two one-electron systems). The 

normalized radial wave function 𝑅𝑛𝑙 has been used to obtain the complete form of the wave 

function 𝜓(𝑟) with the help of corresponding spherical harmonics (𝑌1
0, 𝑌1

+1 and 𝑌1
−1) for 

the state 𝑛 = 2, 𝑙 = 1 and for the corresponding values of ‘𝑚𝑙 = −1, 0, +1’. The radial 

wave function for the two one-electron system is obtained by solving the Schrödinger 

equation by the symmetrized product wave function. The wave function 𝜓(𝑟) is normalized 

according to ⟨𝜓|𝜓⟩ = 2. The momentum space representation 𝜙(𝑝) is obtained by taking 

the Fourier transform of the coordinate space wave function𝜓(𝑟). The coordinate and 

momentum space densities [𝜌(𝑟) and𝛾(𝑝)] are constituted by the squared amplitudes of the 
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corresponding one-electron wave functions 𝜓(𝑟)and 𝜙(𝑝). Interestingly, it can be noted 

that the momentum space wave function 𝜙(𝑝) as obtained through the Fourier transform of 

the coordinate space wave function𝜓(𝑟) is an imaginary quantity; however the square of 

the modulus value of 𝜙(𝑝) i.e. the probability density 𝛾(𝑝)is a real quantity and is 

independent of both the angles 𝜃 and 𝜑. The variation of shapes of the probability densities 

as functions of coordinate(𝑟) and momentum(𝑝) has been observed graphically in Sub-

section 2.3 revealing the complementary nature of the probability densities in the coordinate 

and momentum space. Here, in one hand, the coordinate space probability density 𝜌(𝑟) is 

seen to be flattened significantly in the coordinate space as compared to the momentum 

space probability density 𝛾(𝑝) and on the other hand, the momentum space probability 

density 𝛾(𝑝) gets squeezed a lot showing the opposite behaviour of the coordinate space 

probability density 𝜌(𝑟) in the momentum space. Further, the numerical values for the 

coordinate and momentum space Rényi and Tsallis entropies (for 𝛽 ≠ 1) have been 

computed for different values of the order 𝛽 varying from 2 to 10 and the obtained values 

are put into a tabular form accordingly.  It has been demonstrated in Sub-sections 3.1 and 

3.2 by applying L’Hospital’s Theorem in a closed and simple mathematical form that in the 

limit of the order 𝛽 → 1, both the Rényi and Tsallis entropies lead to the values of the 

Shannon entropy i.e. 𝑆 = − ∑ 𝑝𝑖
𝑁
𝑖=1 𝑙𝑛𝑝𝑖 . From the Table 1, it can be observed that for the 

order 𝛽 ≥ 4, the values of the Rényi entropies tend to decrease very slowly in coordinate 

space while a slowly increasing tendency for the same can be observed in the momentum 

space. However, a gradual decrease in the values of the Tsallis entropy is observed in the 

coordinate space but a rapid and strong decrease for the same can be observed in the 

momentum space with the increasing values of the order 𝛽 ≥ 4.Meanwhile, the positive 

values of the coordinate space Rényi and Tsallis entropy signify the spreading 

(delocalization) of the wave functions whereas the negative values for both the entropies in 

the momentum space indicate the gathering (localization) of the wave functions and these 

phenomena are showing some of the important aspects of the wave packet dynamics as 

well. The indications can also be predicted and analyzed from the graphical representation 

of the variations of the probability densities in both the coordinate and momentum space. It 

is important to mention that all the numerically computed quantities are expressed in atomic 

units (𝑚 = 1, ℏ = 1 and 𝑒 = 1). It can further be noted that the calculated numerical values 

reported in this work for the Rényi and Tsallis entropies against the varying order 𝛽 not 

only qualitatively agree, but are also more accurate than the trends those are presented in 

the contemporary literature. Moreover, a self-consistency in the numerical values has been 

found fulfilling the analytical relations of the Rényi and Tsallis entropies for the increasing 

order 𝛽. To the best of our knowledge, it is believed that the numerical results presented in 

this work would serve as a useful and reliable reference for the various applications 

involving the Rényi and Tsallis entropies. This research has got further scopes for analyzing 

the information-theoretic quantities of other atomic and molecular systems in excited states. 

Such systems will be tried to investigate further in our future works. 
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