On the Trace of a Permuting Tri-additive Mapping in Left \boldsymbol{s}_{Γ}-unital Γ-rings

K. K. Dey* and A. C. Paul
Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh

Received 15 March 2011, accepted in final revised form 17 April 2011

Abstract

Let M be 2 and 3 torsion-free left s_{Γ}-unital Γ-rings. Let $D: M \times M \times M \rightarrow M$ be a permuting tri-additive mapping with the trace $d(x)=D(x, x, x)$. Let $\sigma: M \rightarrow M$ be an endomorphism and $\tau: M \rightarrow M$ an epimorphism. The objective of this paper is to prove the following: a) If d is (σ, τ)-skew commuting on M, then $D=0$; b) If d is (τ, τ)-skew-centralizing on M, then d is ($\tau, \tau)$-commuting on M; c) If d is $2-(\sigma, \tau)$-commuting on M, then d is (σ, τ)-commuting on M.

Keywords: Permuting tri-additive mappings; Skew-commuting mappings; Skewcentralizing mappings; Commuting mappings.
© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.
doi:10.3329/jsr.v3i2.7278 J. Sci. Res. 3 (2), 331-337 (2011)

1. Introduction

In this paper, we consider M as a Γ-ring in the sense of Barnes [1]. It is obvious that every ring is a Γ-ring. Ceven and Ozturk [2] worked on the trace of a permuting tri-additive mapping in left s-unital rings. Some characterizations of the left s-unital rings were obtained by means of the trace of the permuting tri-additive mappings. Ozturk [3] proved some properties of prime and semiprime rings by using the permuting tri-additive derivations. Ozturk et al. [4] worked on symmetric bi-derivations on prime Γ-rings. They obtained some remarkable results on prime Γ-rings.

Ozden and Ozturk [3] studied on permuting tri-derivations in prime and semiprime Γ rings. They obtained some fruitful results. An example of a permuting tri-derivation is given here.

In this paper, we develop some results of Ceven and Ozturk [2] in Γ-rings. Here we prove the following:

[^0]Let d be the trace of a permuting tri-additive mapping D on 2 and 3 torsion-free left $\mathrm{s}_{\Gamma^{-}}$ unital Γ-rings M and σ be an endomorphism on M and τ an epimorphism on M. Then
(i) If d is (σ, τ)-skew commuting on M, then $D=0$.
(ii) If d is (τ, τ)-skew-centralizing on M, then d is (τ, τ)-commuting on M.
(iii) If d is $2-(\sigma, \tau)$-commuting on M, then d is (σ, τ)-commuting on M.

2. Preliminaries

Throughout this paper, all rings M will be a Γ-ring and the center of a ring will be denoted by Z . Let σ, τ be additive mappings of M into M and $x, y \in M$. As usual, we introduce the following notations

$$
\begin{array}{ll}
{[x, y]_{\alpha}=x \alpha y-y \alpha x,} & \langle x, y\rangle_{\alpha}=x \alpha y+y \alpha x, \\
{[x, y]_{\alpha}{ }^{(\sigma, \tau)}=x \alpha \sigma(y)-\tau(y) \alpha x,} & <x, y\rangle_{\alpha}^{(\sigma, \tau)}=x \alpha \sigma(y)+\tau(y) \alpha x .
\end{array}
$$

Let d be a mapping from M into M, and S a nonempty subset of M. Then d is called (σ, τ)-skew-commuting (respectively, (σ, τ)-skew-centralizing) on S if $\langle d(x), \chi\rangle_{\alpha}{ }^{(\sigma, \tau)}=0$ (respectively, $\langle d(x), x\rangle_{\alpha}{ }^{(\sigma, \tau)} \in \mathrm{Z}$) for all $x \in S$. Similarly f is said to be (σ, τ)-commuting on S if $[f(x), x]_{\alpha}^{(\sigma, \tau)}=0$ for all $x \in S$. If $\sigma=\tau=1$ (the identity map on M), then d is called simply skew-commuting, skew-centralizing and commuting on S, respectively. A mapping $D: M \times M \rightarrow M$ is said to be symmetric if $D(x, y)=D(y, x)$ for all $x, y \in M$.

A mapping $d: M \rightarrow M$ defined by $d(x)=D(x, x)$ for all $x \in M$, where $D: M \times M \rightarrow M$ is a symmetric mapping, is called the trace of D.

A mapping D : $M \times M \times M \rightarrow M$ is called tri-additive if

$$
\begin{aligned}
& D(x+w, y, z)=D(x, y, z)+D(w, y, z) \\
& D(x, y+w, z)=D(x, y, z)+D(x, w, z) \\
& D(x, y, z+w)=D(x, y, z)+D(x, y, w) \text { holds for all } x, y, z, w \in M .
\end{aligned}
$$

A tri-additive mapping $D: M \times M \times M \rightarrow M$ is called permuting tri-additive if $D(x, y, z)=$ $D(x, z, y)=D(y, x, z)=D(y, z, x)=D(z, x, y)=D(z, y, x)$ holds for all $x, y, z \in M$. A mapping $d: M \rightarrow M$ defined by $d(x)=D(x, x, x)$ is called the trace of the permuting triadditive mapping D. It is obvious that, if $D: M \times M \times M \rightarrow M$ is a permuting tri-additive mapping then the trace of D satisfies the relation $d(x+y)=d(x)+d(y)+3 D(x, x, y)+3 D(x, y$, $y)$ for all $x, y \in M$. The mapping $d: M \rightarrow M$ defined by $d(x)=D(x, x, x)$ is an odd function.
M is called a left s_{Γ}-unital (resp. s_{Γ}-unital) Γ-ring if for each $x \in M$ there holds $x \in$ $M \Gamma x$ (resp. $x \in M \Gamma x \cap x \Gamma M$). If M is a left s_{Γ}-unital (resp. s_{Γ}-unital) Γ-ring then for any finite subset F of M there exists an element e in M such that e $\alpha x=x($ resp. $\mathrm{e} \alpha x=x \alpha \mathrm{e}=x)$
for all $x \in F, \alpha \in \Gamma$. Such an element e will be called a left pseudo-identity (resp. pseudoidentity) of F.

Throughout this paper e will be a left pseudo-identity of the set

$$
E=\{x, d(x), d(e), \sigma(x), D(x, x, e), D(x, e, e)\} \subseteq M
$$

where x is an arbitrary element of M.
In this paper, we investigate permuting tri-additive mapping and the trace of its with (σ, τ)-skew-commuting and (σ, τ)-skew-centralizing maps in left s_{Γ}-unital Γ-rings.

3. Some Results on the Trace of a Permuting Tri-additive Mapping

The first result is the following.
Theorem 3.1. Let M be 2 and 3-torsion-free left s_{Γ}-unital Γ-ring. Let $\sigma: M \rightarrow M$ be an endomorphism and $\tau: M \rightarrow M$ an epimorphism. Let $D: M \times M \times M \rightarrow M$ be a permuting triadditive mapping and d the trace of D. If d is (σ, τ)-skew-commuting on M, then $D=0$.

Proof. It is given that, for all $x \in M$,

$$
\begin{equation*}
<d(x), x>_{\alpha}^{(\sigma, \tau)}=d(x) \alpha \sigma(x)+\tau(x) \alpha d(x)=0 \text { for all } \alpha \in \Gamma . \tag{1}
\end{equation*}
$$

$\tau(e)$ is also a left pseudo-identity of M since τ is an epimorphism. So from (1), we have

$$
\begin{equation*}
<d(e), e>_{\alpha}{ }^{(\sigma, \tau)}=d(e) \alpha \sigma(e)+d(e)=0, \text { for all } \alpha \in \Gamma . \tag{2}
\end{equation*}
$$

and right-multiplying by $\sigma(\mathrm{e})$ gives $d(\mathrm{e}) \alpha \sigma(\mathrm{e})=0$ since M is 2-torsion-free.
Hence, by (2), we get $d(\mathrm{e})=0$.
Substituting $x+\mathrm{e}$ for x in (1), we obtain, for all $x \in M$,
$\langle d(x), \mathrm{e}\rangle_{\alpha}{ }^{(\sigma, \tau)}+3\langle P, x\rangle_{\alpha}{ }^{(\sigma, \tau)}+3\langle P, \mathrm{e}\rangle_{\alpha}{ }^{(\sigma, \tau)}+3\langle Q, x\rangle_{\alpha}{ }^{(\sigma, \tau)}+3\langle Q, \mathrm{e}\rangle_{\alpha}{ }^{(\sigma, \tau)}=0$,
where $P=D(x, x, \mathrm{e}), Q=D(x, \mathrm{e}, \mathrm{e})$.
Putting $-x$ instead of x in (3) and comparing (3) with the obtained equation, we have

$$
\begin{equation*}
P \alpha \sigma(e)+P+Q \alpha \sigma(e)+Q=0, \tag{4}
\end{equation*}
$$

since d is odd function, M is 2 and 3-torsion-free and $\tau(\mathrm{e})$ is a left pseudo-identity. Right multiplication of (4) by $\sigma(\mathrm{e})$ gives $P \alpha \sigma(e)+Q \alpha \sigma(e)=0$.

Using the last relation and (4), we obtain $P+Q=0$. Hence, we arrive at $d(x+e)=d(x)$ for all $x \in M$.

Then, we have
$0=\langle d(x+e), x+e\rangle_{\alpha}{ }^{(\sigma, \tau)}=\langle d(x), e\rangle_{\alpha}{ }^{(\sigma, \tau)}=d(x) \alpha \sigma(e)+d(x)$.
Multiplying $\sigma(e)$ from the right, we get $d(x) \alpha \sigma(e)=0$. So from (5), we obtain

$$
\begin{equation*}
d(x)=D(x, x, x)=0 \tag{6}
\end{equation*}
$$

for all $x \in M$. Then it follows that, for all $x, y \in M$,

$$
\begin{equation*}
D(x, x, y)+D(x, y, y)=0, \tag{7}
\end{equation*}
$$

since $D(x+y, x+y, x+y)=0, D$ is permuting tri-additive mapping and M is 3-torsionfree ring. Since $D(x+y+\mathrm{z}, x+y+\mathrm{z}, x+y+\mathrm{z})=0$ and M is 2 and 3-torsion free, and using (7), we obtain $D(x, y, \mathrm{z})=0$ for all $x, y, \mathrm{z} \in M$ which gives the conclusion.
Theorem 3.2. Let M be 2 and 3-torsion-free left s_{Γ}-unital Γ-ring. Let $\tau: M \rightarrow M$ be an epimorphism. Let $D: M \times M \times M \rightarrow M$ be a permuting tri-additive mapping and d the trace of D. If d is (τ, τ)-skew-centralizing on M, then d is (τ, τ)-commuting on M.

Proof. Since d is (τ, τ)-skew-centralizing on M, we know that
$\langle d(x), x\rangle_{\alpha}{ }^{(\sigma, \tau)}=d(x) \alpha \tau(x)+\tau(x) \alpha d(x) \in \mathrm{Z} \quad$ for all $x \in M$.
Hence $d(e) \alpha \tau(e)+d(e) \in Z$, since $\tau(\mathrm{e})$ is a left pseudo-identity
Commuting with $\tau(e)$ gives $d(e)=d(e) \alpha \tau(e)$ and we get $2 d(e) \in Z$ by (9). Hence $d(\mathrm{e}) \in \mathrm{Z}$.

Let us replace $x+e$ by e in (8). We get

$$
\begin{align*}
& 2 \tau(x) \alpha d(e)+3 \tau(x) \alpha P+3 \tau(x) \alpha Q+d(x)+3 P+3 Q+d(x) \alpha \tau(e)+3 P \alpha \tau(x) \\
& +3 P \alpha \tau(e)+3 Q \alpha \tau(x)+3 Q \alpha \tau(e) \in \mathrm{Z}, \tag{10}
\end{align*}
$$

using (8), (9) and $d(e) \in \mathrm{Z}$, where $P=D(x, x, \mathrm{e}), Q=D(x, e, e)$.
Substituting $-x$ for x in (10) and comparing (10) with the new one, we have

$$
\begin{align*}
& \tau(x) \alpha Q+P+P \alpha \tau(e)+Q \alpha \tau(x) \in \mathrm{Z} \tag{11}\\
& \text { or, } 2 \tau(x) \alpha d(e)+3 \tau(x) \alpha P+d(x)+3 P+d(x) \alpha \tau(e)+3 P \alpha \tau(x)+3 Q \alpha \tau(e) \in \mathrm{Z} \tag{12}
\end{align*}
$$

since M is 2 and 3 torsion-free ring.
Let us put $x+e$ instead of x in (10). Since $d(e) \in \mathrm{Z}$ and $\tau(\mathrm{e})$ is left pseudo-identity, we obtain $\tau(x) \alpha Q+2 \tau(x) \alpha d(\mathrm{e})+3 Q+P+P \alpha \tau(\mathrm{e})+3 Q \alpha \tau(\mathrm{e})+Q \alpha \tau(x) \in \mathrm{Z}$.

Using (5), we get

$$
\begin{equation*}
2 \tau(x) \alpha d(e)+3 Q+3 Q \alpha \tau(e) \in Z \tag{13}
\end{equation*}
$$

and commuting with $\tau(e)$, we obtain $Q \alpha \tau(e)=Q$. Writing this in (13), and using 2-torsion free, we have $\tau(x) \alpha d(e)+2 Q \in \mathrm{Z}$. Commuting with $\tau(x)$, using $d(\mathrm{e}) \in \mathrm{Z}$, we get

$$
\begin{equation*}
Q=D(x, \mathrm{e}, \mathrm{e}) \in \mathrm{Z}, \tag{14}
\end{equation*}
$$

since τ is an epimorphism.
Let us commute with $\tau(e)$ the equation (11). We obtain $P \alpha \tau(e)=P$ since $Q \in \mathrm{Z}$. Hence from (11), we have $Q \alpha \tau(x)+P \in \mathrm{Z}$ and commuting again with $\tau(x)$, we obtain
$P=D(x, x, e) \in \mathrm{Z}$.

Using the equations (14) and (15) in Eq. (12), we get

$$
\begin{equation*}
2 \tau(x) \alpha d(e)+6 \tau(x) \alpha P+6 Q+d(x)+d(x) \alpha \tau(e) \in \mathrm{Z} \tag{16}
\end{equation*}
$$

Commuting with $\tau(e)$ in (16), we obtain, for all $x \in M, \quad d(x) \alpha \tau(e)=d(x)$. Using this equality in (16), we have $\tau(x) \alpha d(e)+3 \tau(x) \alpha P+3 Q+d(x) \in \mathrm{Z}$.

Commuting with $\tau(x)$, it is obtained that $d(x) \alpha \tau(x)=\tau(x) \alpha d(x)$. Hence d is (τ, τ) commuting.

Theorem 3.3. Let M be 2 and 3-torsion free left s_{Γ}-unital Γ-ring. Let $\sigma: M \rightarrow M$ be an endomorphism and $\tau: M \rightarrow M$ an epimorphism. Let $D: M \times M \times M \rightarrow M$ be a permuting triadditive mapping and d the trace of D. If d is $2-(\sigma, \tau)$-commuting on M, then d is (σ, τ) commuting on M.

Proof. Let us define a mapping $h: M \rightarrow M$ by $h(x)=[d(x), x]_{\alpha}{ }^{(\sigma, \tau)}$ for all $x \in M, \alpha \in \Gamma$. Note that h is even function. From the hypothesis, we can write
$\left\langle h(x), x>_{\alpha}{ }^{(\sigma, \tau)}=[d(x), x \alpha x]_{\alpha}^{(\sigma, \tau)}=0\right.$, for all $x \in M, \alpha \in \Gamma$.
Since τ is an epimorphism, $\tau(\mathrm{e})$ is also a left pseudo-identity. So, we have

$$
\begin{equation*}
h(e) \alpha \sigma(e)+h(e)=0, \text { for all } x \in M, \alpha \in \Gamma . \tag{25}
\end{equation*}
$$

Right multiplying by $\sigma(e)$ gives $h(e) \alpha \sigma(e)=0$ since M is 2-torsion free. Hence, by (25), we get

$$
\begin{equation*}
h(e)=[g(e), e]_{\alpha}{ }^{(\sigma, \tau)}=0 . \tag{26}
\end{equation*}
$$

Since $d(x+\mathrm{e})=d(x)+d(\mathrm{e})+3 M+3 N$, where $M=G(x, x, e)$ and $N=G(x, e, e)$, we obtain

$$
\begin{align*}
& h(x+e)=h(x)+[d(x), \mathrm{e}]_{\alpha}^{(\sigma, \tau)}+\left[d(e)_{, x}\right]_{\alpha}^{(\sigma, \tau)}+3[M, x]_{\alpha}^{(\sigma, \tau)} \\
& +3[M, e]_{\alpha}^{(\sigma, \tau)}+3[N, x]_{\alpha}^{(\sigma, \tau)}+3[N, e]_{\alpha}^{(\sigma, \tau)} \tag{27}
\end{align*}
$$

If we replace x by $x+e$ in (24) and using (24), (26) and permuting tri-additivity of D, we have, for all $x \in M, \alpha \in \Gamma$.

$$
\begin{align*}
& h(x) \alpha \sigma(e)+[d(x), e]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(x)+[d(x), e]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e)+[d(e), x]_{\alpha}^{(\sigma, \tau)} \sigma(x)^{(\sigma)} \\
& {[d(e), x]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(e)+3[M, x]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(x)+3[M, x]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e)+3[M, e]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(x)} \\
& +3[M, e]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e)+3[N, x]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(x)+3[N, x]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(e)+3[N, e]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(x)+ \\
& 3[N, e]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e)+h(x)+\tau(x) \alpha[d(x), e]_{\alpha}{ }^{(\sigma, \tau)}+[d(x), e]_{\alpha}{ }^{(\sigma, \tau)}+\tau(x) \alpha[d(e), x]_{\alpha}{ }^{(\sigma, \tau)}+ \\
& {[d(e), x]_{\alpha}^{(\sigma, \tau)}+3 \tau(x) \alpha[M, x]_{\alpha}{ }^{(\sigma, \tau)}+3[M, x]_{\alpha}^{(\sigma, \tau)}+3 \sigma(x) \alpha[M, e]_{\alpha}^{(\sigma, \tau)}+3[M, e]_{\alpha}^{(\sigma, \tau)}+} \\
& 3 \tau(x) \alpha[N, x]_{\alpha}^{(\sigma, \tau)}+3[N, x]_{\alpha}^{(\sigma, \tau)}+3 \tau(x) \alpha[N, e]_{\alpha}^{(\sigma, \tau)}+3[N, e]_{\alpha}^{(\sigma, \tau)}=0 . \tag{28}
\end{align*}
$$

Substituting $-x$ for x in (28) and comparing (28) with the obtained result, we get, for all $x \in M$,

$$
\begin{align*}
& {[d(x), e]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e)+[d(e), x]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e)+3[M, x]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e)+3[M, e]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(x)+} \\
& {[N, x]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(x)+3[N, e]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(\mathrm{e})+[d(x), e]_{\alpha}^{(\sigma, \tau)}+[d(e), x]_{\alpha}^{(\sigma, \tau)}+3[M, x]_{\alpha}^{(\sigma, \tau)}+} \\
& 3 \sigma(x) \alpha[M, \mathrm{e}]_{\alpha}^{(\sigma, \tau)}+3 \sigma(x) \alpha[N, x]_{\alpha}{ }^{(\sigma, \tau)}+3[N, \mathrm{e}]_{\alpha}^{(\sigma, \tau)}=0 \tag{29}
\end{align*}
$$

since h and M are even, d and N are odd, M is 2-torsion free ring.
Right multiplication of (29) by $\sigma(e)$ gives

$$
\begin{align*}
& 2[d(x), e]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(e)+2[d(\mathrm{e}), x]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e)+6[M, x]_{\alpha}{ }_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e) \\
& +6[N, e]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(e)+3[M, e]_{\alpha}{ }^{(\sigma, \tau)} \alpha(x) \alpha \sigma(e)+3[N, x]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(x) \alpha \sigma(e)+ \\
& 3 \sigma(x) \alpha[M, e]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(e)+3 \sigma(x)[N, x]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(e)=0 . \tag{30}
\end{align*}
$$

Substituting again $x+\mathrm{e}$ instead of x in (30) and using (30), we obtain

$$
\begin{align*}
& 4[d(e), x]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(e)+12[N, e]_{\alpha}{ }_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e)+6[M, e]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(e)+6[N, x]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(e)+ \\
& 3[N, e]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(x) \alpha \sigma(e)+[d(e), x]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(x) \alpha \sigma(e)+3 \tau(x) \alpha[N, e]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(e)^{+} \\
& \left.\tau(x) \alpha\left[d(e)_{,}\right]_{\alpha}\right]^{(\sigma, \tau)} \alpha \sigma(e)=0, \tag{31}
\end{align*}
$$

since M is 2-torsion free ring.
Putting - x for x and comparing (31), we get

$$
\begin{equation*}
[d(e), x]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e)+3[N, e]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e)=0 . \tag{32}
\end{equation*}
$$

Furthermore we get

$$
\begin{align*}
& {[d(e), x]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(x)+3[N, e]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(x)=[d(e), x]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e \alpha x)+3[N, e]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(e \alpha x)} \\
& =\left([d(e), x]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(e)+3[N, e]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(e)\right) \alpha \sigma(x)=0 \tag{33}
\end{align*}
$$

According to Eqs. (32) and (33), the relation (31) becomes

$$
\begin{equation*}
[M, e]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(e)+[N, x]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e)=0 . \tag{34}
\end{equation*}
$$

With similar process as obtaining of Eq. (33), we have

$$
\begin{equation*}
[M, e]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(x)+[N, x]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(x)=0 . \tag{35}
\end{equation*}
$$

Using the obtained Eqs. (32), (34) and (35) in (30), we get

$$
[d(x), e]_{\alpha}{ }^{(\sigma, \tau)} \alpha \sigma(e)+3[M, x]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e)=0 .
$$

Therefore Eq. (29) becomes

$$
\begin{align*}
& {[d(x), e]_{\alpha}^{(\sigma, \tau)}+[d(e), x]_{\alpha}^{(\sigma, \tau)}+3[M, x]_{\alpha}{ }^{(\sigma, \tau)}+\tau(x)[M, e]_{\alpha}^{(\sigma, \tau)}} \\
& +3 \tau(x) \alpha[N, x]_{\alpha}{ }^{(\sigma, \tau)}+3[N, e]_{\alpha}{ }^{(\sigma, \tau)}=0 . \tag{36}
\end{align*}
$$

If we put $x+e$ instead of x in Eq. (36), and compare with Eq. (36), we get

$$
\begin{align*}
& 2[d(e), x]_{\alpha}^{(\sigma, \tau)}+3[M, e]_{\alpha}^{(\sigma, \tau)}+6[N, e]_{\alpha}^{(\sigma, \tau)}+3[N, x]_{\alpha}^{(\sigma, \tau)} \\
& +3 \tau(x) \alpha[N, e]_{\alpha}{ }^{(\sigma, \tau)}+\tau(x)[d(e), x]_{\alpha}{ }^{(\sigma, \tau)}=0 . \tag{37}
\end{align*}
$$

Substituting - x for x and comparing Eq. (36) we write

$$
\begin{equation*}
[d(e), x]_{\alpha}^{(\sigma, \tau)}+3[N, e]_{\alpha}^{(\sigma, \tau)}=0 . \tag{38}
\end{equation*}
$$

So, the Eq. (37) becomes

$$
\begin{equation*}
[M, e]_{\alpha}{ }^{(\sigma, \tau)}+[N, x]_{\alpha}^{(\sigma, \tau)}=0 . \tag{39}
\end{equation*}
$$

Hence from Eq. (36), we have

$$
\begin{equation*}
[\mathrm{g}(x), e]_{\alpha}^{(\sigma, \tau)}+3[M, x]_{\alpha}^{(\sigma, \tau)}=0 . \tag{40}
\end{equation*}
$$

Using Eqs. (38), (39) and (40) in (27), we obtain $h(x+e)=h(x)$. Since $\langle h(x), x\rangle_{\alpha}{ }^{(\sigma, \tau)}$ $=0$ for all $x \in M$, the relation $h(x+e) \alpha \sigma(x+e)+\tau(x+e) \alpha h(x+e)=0$ becomes

$$
\begin{equation*}
h(x) \alpha \sigma(e)+h(x)=0 \tag{41}
\end{equation*}
$$

for all $x \in M$. Right multiplying Eq. (41) by $\sigma(e)$ we have $h(x) \alpha \sigma(e)=0$ since M is 2-torsion free. Hence from Eq. (41), we obtain $h(x)=0$ for all $x \in M$ which gives the conclusion.

References

1. W. E. Barnes, Pacific J. Math. 18, 411 (1966).
2. Y. Ceven and M. A. Ozturk, International J. Pure and Appl. Math. 23 (4), 465 (2005).
3. M. A. Ozturk, East Asian Math. J. 15 (2), 177 (1999).
4. M. A. Ozturk, M. Sapanci, M. Soyturk, and K. H. Kim, Sci. Math. Jpn. 53 (3), 495 (2001).
5. D. Ozden and M. A. Ozturk, Kyungpook Math. J. 46, 153 (2006).
6. M. A. Ozturk, M. Sapanci, and Y. B. Jun, East Asian Math. J. 15 (1), 105 (1999).
7. M. A. Ozturk and M. Sapanci, East Asian Math. J. 15 (2), 165 (1999).
8. J. Vukman, Aequationes Math. 38 (2), 245 (1989). doi:10.1007/BF01840009
9. J. Vukman, Aequationes Math. 40 (2-3), 181 (1990). doi:10.1007/BF02112294
10. H. Yasret, M. A. Ozturk and Y. B. Jun, Commun. Fac. Sci. Univ. Ank. Series A154, (1), 1 (2005).

[^0]: * Corresponding author: kkdmath@yahoo.com

