

# JOURNAL OF SCIENTIFIC RESEARCH

J. Sci. Res. **3** (2), 331-337 (2011)

www.banglajol.info/index.php/JSR

### **Short Communication**

## On the Trace of a Permuting Tri-additive Mapping in Left $s_r$ -unital $\Gamma$ -rings

K. K. Dev\* and A. C. Paul

Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh

Received 15 March 2011, accepted in final revised form 17 April 2011

#### Abstract

Let M be 2 and 3 torsion-free left  $s_{\Gamma}$ -unital  $\Gamma$ -rings. Let  $D: M \times M \times M \to M$  be a permuting tri-additive mapping with the trace d(x) = D(x,x,x). Let  $\sigma: M \to M$  be an endomorphism and  $\tau: M \to M$  an epimorphism. The objective of this paper is to prove the following: a) If d is  $(\sigma,\tau)$ -skew commuting on M, then D=0; b) If d is  $(\tau,\tau)$ -skew-centralizing on M, then d is  $(\tau,\tau)$ -commuting on M; c) If d is  $2-(\sigma,\tau)$ -commuting on M, then d is  $(\sigma,\tau)$ -commuting on M.

Keywords: Permuting tri-additive mappings; Skew-commuting mappings; Skew-centralizing mappings; Commuting mappings.

© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi:10.3329/jsr.v3i2.7278 J. Sci. Res. **3** (2), 331-337 (2011)

#### 1. Introduction

In this paper, we consider M as a  $\Gamma$ -ring in the sense of Barnes [1]. It is obvious that every ring is a  $\Gamma$ -ring. Ceven and Ozturk [2] worked on the trace of a permuting tri-additive mapping in left s-unital rings. Some characterizations of the left s-unital rings were obtained by means of the trace of the permuting tri-additive mappings. Ozturk [3] proved some properties of prime and semiprime rings by using the permuting tri-additive derivations. Ozturk  $et\ al.$  [4] worked on symmetric bi-derivations on prime  $\Gamma$ -rings. They obtained some remarkable results on prime  $\Gamma$ -rings.

Ozden and Ozturk [3] studied on permuting tri-derivations in prime and semiprime  $\Gamma$ -rings. They obtained some fruitful results. An example of a permuting tri-derivation is given here.

In this paper, we develop some results of Ceven and Ozturk [2] in  $\Gamma$ -rings. Here we prove the following:

<sup>\*</sup> Corresponding author: kkdmath@yahoo.com

Let d be the trace of a permuting tri-additive mapping D on 2 and 3 torsion-free left  $s_{\Gamma}$ -unital  $\Gamma$ -rings M and  $\sigma$  be an endomorphism on M and  $\tau$  an epimorphism on M. Then

- (i) If d is  $(\sigma, \tau)$ -skew commuting on M, then D = 0.
- (ii) If d is  $(\tau,\tau)$ -skew-centralizing on M, then d is  $(\tau,\tau)$ -commuting on M.
- (iii) If d is  $2-(\sigma,\tau)$ -commuting on M, then d is  $(\sigma,\tau)$ -commuting on M.

#### 2. Preliminaries

Throughout this paper, all rings M will be a  $\Gamma$ -ring and the center of a ring will be denoted by Z. Let  $\sigma$ , $\tau$  be additive mappings of M into M and x,  $y \in M$ . As usual, we introduce the following notations

$$[x, y]_{\alpha} = x\alpha y - y\alpha x,$$
  $\langle x, y \rangle_{\alpha} = x\alpha y + y\alpha x,$   $[x, y]_{\alpha} = (\sigma, \tau) = x\alpha \sigma(y) - \tau(y)\alpha x,$   $\langle x, y \rangle_{\alpha} = (\sigma, \tau) = x\alpha \sigma(y) + \tau(y)\alpha x.$ 

Let d be a mapping from M into M, and S a nonempty subset of M. Then d is called  $(\sigma,\tau)$ -skew-commuting (respectively,  $(\sigma,\tau)$ -skew-centralizing) on S if  $< d(x),x>_{\alpha}^{(\sigma,\tau)}=0$  (respectively,  $< d(x),x>_{\alpha}^{(\sigma,\tau)}\in Z$ ) for all  $x\in S$ . Similarly f is said to be  $(\sigma,\tau)$ -commuting on S if  $[f(x),x]_{\alpha}^{(\sigma,\tau)}=0$  for all  $x\in S$ . If  $\sigma=\tau=1$  (the identity map on M), then d is called simply skew-commuting, skew-centralizing and commuting on S, respectively. A mapping  $D:M\times M\to M$  is said to be symmetric if D(x,y)=D(y,x) for all  $x,y\in M$ .

A mapping  $d: M \rightarrow M$  defined by d(x) = D(x, x) for all  $x \in M$ , where  $D: M \times M \rightarrow M$  is a symmetric mapping, is called the trace of D.

A mapping  $D: M \times M \times M \rightarrow M$  is called tri-additive if

$$D(x+w, y, z) = D(x, y, z) + D(w, y, z),$$

$$D(x, y + w, z) = D(x, y, z) + D(x, w, z),$$

$$D(x, y, z + w) = D(x, y, z) + D(x, y, w)$$
 holds for all  $x, y, z, w \in M$ .

A tri-additive mapping  $D: M \times M \times M \to M$  is called permuting tri-additive if D(x,y,z) = D(x,z,y) = D(y,x,z) = D(y,z,x) = D(z,x,y) = D(z,y,x) holds for all  $x,y,z \in M$ . A mapping  $d:M \to M$  defined by d(x) = D(x,x,x) is called the trace of the permuting tri-additive mapping D. It is obvious that, if  $D: M \times M \times M \to M$  is a permuting tri-additive mapping then the trace of D satisfies the relation d(x+y) = d(x) + d(y) + 3D(x,x,y) + 3D(x,y,y) for all  $x,y \in M$ . The mapping  $d:M \to M$  defined by d(x) = D(x,x,x) is an odd function.

M is called a left  $s_{\Gamma}$ -unital (resp.  $s_{\Gamma}$ -unital)  $\Gamma$ -ring if for each  $x \in M$  there holds  $x \in M\Gamma x$  (resp.  $x \in M\Gamma x \cap x\Gamma M$ ). If M is a left  $s_{\Gamma}$ -unital (resp.  $s_{\Gamma}$ -unital)  $\Gamma$ -ring then for any finite subset F of M there exists an element e in M such that  $e\alpha x = x$  (resp.  $e\alpha x = x\alpha e = x$ )

for all  $x \in F$ ,  $\alpha \in \Gamma$ . Such an element e will be called a left pseudo-identity (resp. pseudo-identity) of F.

Throughout this paper e will be a left pseudo-identity of the set

$$E = \{x, d(x), d(e), \sigma(x), D(x, x, e), D(x, e, e)\} \subseteq M$$

where x is an arbitrary element of M.

In this paper, we investigate permuting tri-additive mapping and the trace of its with  $(\sigma,\tau)$ -skew-commuting and  $(\sigma,\tau)$ -skew-centralizing maps in left  $s_{\Gamma}$ -unital  $\Gamma$ -rings.

## 3. Some Results on the Trace of a Permuting Tri-additive Mapping

The first result is the following.

**Theorem 3.1.** Let M be 2 and 3-torsion-free left  $s_{\Gamma}$ -unital  $\Gamma$ -ring. Let  $\sigma$ :  $M \rightarrow M$  be an endomorphism and  $\tau$ :  $M \rightarrow M$  an epimorphism. Let D:  $M \times M \times M \rightarrow M$  be a permuting triadditive mapping and d the trace of D. If d is  $(\sigma, \tau)$ -skew-commuting on M, then D = 0.

**Proof.** It is given that, for all  $x \in M$ ,

$$< d(x), x>_{\alpha}^{(\sigma,\tau)} = d(x)\alpha\sigma(x) + \tau(x)\alpha d(x) = 0 \text{ for all } \alpha \in \Gamma.$$
 (1)

 $\tau(e)$  is also a left pseudo-identity of M since  $\tau$  is an epimorphism. So from (1), we have

$$< d(e), e>_{\alpha}^{(\sigma,\tau)} = d(e)\alpha\sigma(e) + d(e) = 0$$
, for all  $\alpha \in \Gamma$ . (2)

and right-multiplying by  $\sigma(e)$  gives  $d(e)\alpha\sigma(e) = 0$  since M is 2-torsion-free.

Hence, by (2), we get d(e) = 0.

Substituting x + e for x in (1), we obtain, for all  $x \in M$ ,

$$< d(x), e>_{\alpha}^{(\sigma,\tau)} + 3 < P, x>_{\alpha}^{(\sigma,\tau)} + 3 < P, e>_{\alpha}^{(\sigma,\tau)} + 3 < Q, x>_{\alpha}^{(\sigma,\tau)} + 3 < Q, e>_{\alpha}^{(\sigma,\tau)} = 0,$$
 (3)

where P = D(x, x, e), Q = D(x, e, e).

Putting -x instead of x in (3) and comparing (3) with the obtained equation, we have

$$P\alpha\sigma(e) + P + Q\alpha\sigma(e) + Q = 0, \qquad (4)$$

since *d* is odd function, *M* is 2 and 3-torsion-free and  $\tau(e)$  is a left pseudo-identity. Right multiplication of (4) by  $\sigma(e)$  gives  $P\alpha\sigma(e) + Q\alpha\sigma(e) = 0$ .

Using the last relation and (4), we obtain P + Q = 0. Hence, we arrive at d(x + e) = d(x) for all  $x \in M$ .

Then, we have

$$0 = \langle d(x+e), x+e \rangle_{\alpha}^{(\sigma,\tau)} = \langle d(x), e \rangle_{\alpha}^{(\sigma,\tau)} = d(x)\alpha\sigma(e) + d(x).$$
 (5)

Multiplying  $\sigma(e)$  from the right, we get  $d(x)\alpha\sigma(e) = 0$ . So from (5), we obtain

$$d(x) = D(x, x, x) = 0 \tag{6}$$

for all  $x \in M$ . Then it follows that, for all  $x, y \in M$ ,

$$D(x, x, y) + D(x, y, y) = 0,$$
(7)

since D(x + y, x + y, x + y) = 0, D is permuting tri-additive mapping and M is 3-torsion-free ring. Since D(x + y + z, x + y + z, x + y + z) = 0 and M is 2 and 3-torsion free, and using (7), we obtain D(x, y, z) = 0 for all  $x, y, z \in M$  which gives the conclusion.

**Theorem 3.2.** Let M be 2 and 3-torsion-free left  $s_{\Gamma}$ -unital  $\Gamma$ -ring. Let  $\tau$ :  $M \rightarrow M$  be an epimorphism. Let  $D: M \times M \times M \rightarrow M$  be a permuting tri-additive mapping and d the trace of D. If d is  $(\tau,\tau)$ -skew-centralizing on M, then d is  $(\tau,\tau)$ -commuting on M.

Proof. Since d is  $(\tau,\tau)$ -skew-centralizing on M, we know that

$$< d(x), x>_{\alpha}^{(\sigma,\tau)} = d(x)\alpha\tau(x) + \tau(x)\alpha d(x) \in \mathbb{Z}$$
 for all  $x \in M$ . (8)

Hence 
$$d(e)\alpha\tau(e) + d(e) \in Z$$
, since  $\tau(e)$  is a left pseudo-identity (9)

Commuting with  $\tau(e)$  gives  $d(e) = d(e)\alpha\tau(e)$  and we get  $2d(e) \in Z$  by (9). Hence  $d(e) \in Z$ .

Let us replace x + e by e in (8). We get

$$2\tau(x)\alpha d(e) + 3\tau(x)\alpha P + 3\tau(x)\alpha Q + d(x) + 3P + 3Q + d(x)\alpha\tau(e) + 3P\alpha\tau(x)$$

$$+3P\alpha\tau(e) + 3Q\alpha\tau(x) + 3Q\alpha\tau(e) \in \mathbb{Z},$$

$$(10)$$

using (8), (9) and  $d(e) \in \mathbb{Z}$ , where P = D(x, x, e), Q = D(x, e, e).

Substituting -x for x in (10) and comparing (10) with the new one, we have

$$\tau(x)\alpha Q + P + P\alpha\tau(e) + Q\alpha\tau(x) \in \mathbb{Z}, \qquad (11)$$

or, 
$$2\tau(x)\alpha d(e) + 3\tau(x)\alpha P + d(x) + 3P + d(x)\alpha\tau(e) + 3P\alpha\tau(x) + 3Q\alpha\tau(e) \in \mathbb{Z}$$
, (12)

since *M* is 2 and 3 torsion-free ring.

Let us put x + e instead of x in (10). Since  $d(e) \in \mathbb{Z}$  and  $\tau(e)$  is left pseudo-identity, we obtain  $\tau(x)\alpha Q + 2\tau(x)\alpha d(e) + 3Q + P + P\alpha\tau(e) + 3Q\alpha\tau(e) + Q\alpha\tau(x) \in \mathbb{Z}$ .

Using (5), we get

$$2\tau(x)\alpha d(e) + 3Q + 3Q\alpha\tau(e) \in Z \tag{13}$$

and commuting with  $\tau(e)$ , we obtain  $Q\alpha\tau(e) = Q$ . Writing this in (13), and using 2-torsion free, we have  $\tau(x)\alpha d(e) + 2Q \in \mathbb{Z}$ . Commuting with  $\tau(x)$ , using  $d(e) \in \mathbb{Z}$ , we get

$$Q = D(x, e, e) \in \mathbb{Z},\tag{14}$$

since  $\tau$  is an epimorphism.

Let us commute with  $\tau(e)$  the equation (11). We obtain  $P\alpha\tau(e) = P$  since  $Q \in Z$ . Hence from (11), we have  $Q\alpha\tau(x) + P \in Z$  and commuting again with  $\tau(x)$ , we obtain

$$P = D(x, x, e) \in Z. \tag{15}$$

335

Using the equations (14) and (15) in Eq. (12), we get

$$2\tau(x)\alpha d(e) + 6\tau(x)\alpha P + 6Q + d(x) + d(x)\alpha\tau(e) \in Z$$
(16)

Commuting with  $\tau(e)$  in (16), we obtain, for all  $x \in M$ ,  $d(x)\alpha\tau(e) = d(x)$ . Using this equality in (16), we have  $\tau(x)\alpha d(e) + 3\tau(x)\alpha P + 3Q + d(x) \in \mathbb{Z}$ .

Commuting with  $\tau(x)$ , it is obtained that  $d(x)\alpha\tau(x) = \tau(x)\alpha d(x)$ . Hence d is  $(\tau,\tau)$ -commuting.

**Theorem 3.3**. Let M be 2 and 3—torsion free left  $s_{\Gamma}$ -unital  $\Gamma$ -ring. Let  $\sigma$ :  $M \rightarrow M$  be an endomorphism and  $\tau$ :  $M \rightarrow M$  an epimorphism. Let  $D: M \times M \times M \rightarrow M$  be a permuting triadditive mapping and d the trace of D. If d is  $2 - (\sigma, \tau)$ —commuting on M, then d is  $(\sigma, \tau)$ -commuting on M.

**Proof.** Let us define a mapping  $h: M \rightarrow M$  by  $h(x) = [d(x), x]_{\alpha}^{(\sigma, \tau)}$  for all  $x \in M$ ,  $\alpha \in \Gamma$ . Note that h is even function. From the hypothesis, we can write

$$< h(x), x>_{\alpha}^{(\sigma,\tau)} = [d(x), x\alpha x]_{\alpha}^{(\sigma,\tau)} = 0$$
, for all  $x \in M$ ,  $\alpha \in \Gamma$ . (24)

Since  $\tau$  is an epimorphism,  $\tau(e)$  is also a left pseudo-identity. So, we have

$$h(e)\alpha\sigma(e) + h(e) = 0$$
, for all  $x \in M$ ,  $\alpha \in \Gamma$ . (25)

Right multiplying by  $\sigma(e)$  gives  $h(e)\alpha\sigma(e)=0$  since M is 2-torsion free. Hence, by (25), we get

$$h(e) = [g(e), e]_{\alpha}^{(\sigma,\tau)} = 0.$$
 (26)

Since d(x+e) = d(x)+d(e)+3M+3N, where M = G(x, x, e) and N = G(x, e, e), we obtain

$$h(x+e) = h(x) + [d(x), e]_{\alpha}^{(\sigma,\tau)} + [d(e), x]_{\alpha}^{(\sigma,\tau)} + 3[M, x]_{\alpha}^{(\sigma,\tau)} + 3[M, x]_{\alpha}^{(\sigma,\tau)} + 3[M, x]_{\alpha}^{(\sigma,\tau)}$$

$$+ 3[M, e]_{\alpha}^{(\sigma,\tau)} + 3[N, x]_{\alpha}^{(\sigma,\tau)} + 3[N, e]_{\alpha}^{(\sigma,\tau)}$$
(27)

If we replace x by x+e in (24) and using (24), (26) and permuting tri-additivity of D, we have, for all  $x \in M$ ,  $\alpha \in \Gamma$ .

$$h(x)\alpha\sigma(e) + [d(x), e]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(x) + [d(x), e]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(e) + [d(e), x]_{\alpha}^{(\sigma,\tau)}\sigma(x) +$$

$$[d(e), x]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(e) + 3[M, x]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(x) + 3[M, x]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(e) + 3[M, e]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(x)$$

$$+ 3[M, e]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(e) + 3[N, x]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(x) + 3[N, x]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(e) + 3[N, e]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(x) +$$

$$3[N, e]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(e) + h(x) + \tau(x)\alpha[d(x), e]_{\alpha}^{(\sigma,\tau)} + [d(x), e]_{\alpha}^{(\sigma,\tau)} + \tau(x)\alpha[d(e), x]_{\alpha}^{(\sigma,\tau)} +$$

$$[d(e), x]_{\alpha}^{(\sigma,\tau)} + 3\tau(x)\alpha[M, x]_{\alpha}^{(\sigma,\tau)} + 3[M, x]_{\alpha}^{(\sigma,\tau)} + 3\sigma(x)\alpha[M, e]_{\alpha}^{(\sigma,\tau)} + 3[M, e]_{\alpha}^{(\sigma,\tau)} +$$

$$3\tau(x)\alpha[N, x]_{\alpha}^{(\sigma,\tau)} + 3[N, x]_{\alpha}^{(\sigma,\tau)} + 3\tau(x)\alpha[N, e]_{\alpha}^{(\sigma,\tau)} + 3[N, e]_{\alpha}^{(\sigma,\tau)} = 0. \tag{28}$$

Substituting -x for x in (28) and comparing (28) with the obtained result, we get, for all  $x \in M$ ,

$$[d(x), e]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e) + [d(e), x]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e) + 3[M, x]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e) + 3[M, e]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(x) +$$

$$[N, x]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(x) + 3[N, e]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e) + [d(x), e]_{\alpha}^{(\sigma,\tau)} + [d(e), x]_{\alpha}^{(\sigma,\tau)} + 3[M, x]_{\alpha}^{(\sigma,\tau)} +$$

$$3\sigma(x)\alpha[M, e]_{\alpha}^{(\sigma,\tau)} + 3\sigma(x)\alpha[N, x]_{\alpha}^{(\sigma,\tau)} + 3[N, e]_{\alpha}^{(\sigma,\tau)} = 0$$
(29)

since h and M are even, d and N are odd, M is 2-torsion free ring.

Right multiplication of (29) by  $\sigma(e)$  gives

$$2[d(x), e]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(e) + 2[d(e), x]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(e) + 6[M, x]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(e)$$

$$+ 6[N, e]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(e) + 3[M, e]_{\alpha}^{(\sigma,\tau)}\alpha(x)\alpha\sigma(e) + 3[N, x]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(x)\alpha\sigma(e) +$$

$$3\sigma(x)\alpha[M, e]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(e) + 3\sigma(x)[N, x]_{\alpha}^{(\sigma,\tau)}\alpha\sigma(e) = 0.$$

$$(30)$$

Substituting again x + e instead of x in (30) and using (30), we obtain

$$4[d(e), x]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e) + 12[N, e]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e) + 6[M, e]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e) + 6[N, x]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e) + 3[N, e]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(x) \alpha \sigma(e) + [d(e), x]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(x) \alpha \sigma(e) + 3\tau(x)\alpha[N, e]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e) + \tau(x)\alpha[d(e), x]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e) = 0,$$

$$(31)$$

since *M* is 2-torsion free ring.

Putting -x for x and comparing (31), we get

$$[d(e), x]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e) + 3[N, e]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e) = 0.$$
(32)

Furthermore we get

$$[d(e), x]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(x) + 3[N, e]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(x) = [d(e), x]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e\alpha x) + 3[N, e]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e\alpha x)$$

$$= ([d(e), x]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e) + 3[N, e]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e)) \alpha \sigma(x) = 0$$
(33)

According to Eqs. (32) and (33), the relation (31) becomes

$$[M, e]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e) + [N, x]_{\alpha}^{(\sigma, \tau)} \alpha \sigma(e) = 0.$$
(34)

With similar process as obtaining of Eq. (33), we have

$$[M, e]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(x) + [N, x]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(x) = 0.$$
(35)

Using the obtained Eqs. (32), (34) and (35) in (30), we get

$$[d(x), e]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e) + 3[M, x]_{\alpha}^{(\sigma,\tau)} \alpha \sigma(e) = 0.$$

337

Therefore Eq. (29) becomes

$$[d(x), e]_{\alpha}^{(\sigma,\tau)} + [d(e), x]_{\alpha}^{(\sigma,\tau)} + 3[M, x]_{\alpha}^{(\sigma,\tau)} + \tau(x)[M, e]_{\alpha}^{(\sigma,\tau)} + 3\tau(x)\alpha[N, x]_{\alpha}^{(\sigma,\tau)} + 3[N, e]_{\alpha}^{(\sigma,\tau)} = 0.$$
(36)

If we put x + e instead of x in Eq. (36), and compare with Eq. (36), we get

$$2[d(e), x]_{\alpha}^{(\sigma, \tau)} + 3[M, e]_{\alpha}^{(\sigma, \tau)} + 6[N, e]_{\alpha}^{(\sigma, \tau)} + 3[N, x]_{\alpha}^{(\sigma, \tau)} + 3[N, x]_{\alpha}^{(\sigma, \tau)} + 3[N, x]_{\alpha}^{(\sigma, \tau)} = 0.$$
(37)

Substituting -x for x and comparing Eq. (36) we write

$$[d(e), x]_{\alpha}^{(\sigma,\tau)} + 3[N, e]_{\alpha}^{(\sigma,\tau)} = 0.$$
(38)

So, the Eq. (37) becomes

$$[M, e]_{\alpha}^{(\sigma, \tau)} + [N, x]_{\alpha}^{(\sigma, \tau)} = 0.$$
 (39)

Hence from Eq. (36), we have

$$[g(x), e]_{\alpha}^{(\sigma,\tau)} + 3[M, x]_{\alpha}^{(\sigma,\tau)} = 0.$$
 (40)

Using Eqs. (38), (39) and (40) in (27), we obtain h(x + e) = h(x). Since  $\langle h(x), x \rangle_{\alpha}^{(\sigma, \tau)} = 0$  for all  $x \in M$ , the relation  $h(x + e)\alpha\sigma(x + e) + \tau(x + e)\alpha h(x + e) = 0$  becomes

$$h(x)\alpha\sigma(e) + h(x) = 0 \tag{41}$$

for all  $x \in M$ . Right multiplying Eq. (41) by  $\sigma(e)$  we have  $h(x)\alpha\sigma(e) = 0$  since M is 2-torsion free. Hence from Eq. (41), we obtain h(x) = 0 for all  $x \in M$  which gives the conclusion.

### References

- 1. W. E. Barnes, Pacific J. Math. 18, 411 (1966).
- 2. Y. Ceven and M. A. Ozturk, International J. Pure and Appl. Math. 23 (4), 465 (2005).
- 3. M. A. Ozturk, East Asian Math. J. 15 (2), 177 (1999).
- 4. M. A. Ozturk, M. Sapanci, M. Soyturk, and K. H. Kim, Sci. Math. Jpn. 53 (3), 495 (2001).
- 5. D. Ozden and M. A. Ozturk, Kyungpook Math. J. 46, 153 (2006).
- 6. M. A. Ozturk, M. Sapanci, and Y. B. Jun, East Asian Math. J. 15 (1), 105 (1999).
- 7. M. A. Ozturk and M. Sapanci, East Asian Math. J. 15 (2), 165 (1999).
- 8. J. Vukman, Aequationes Math. 38 (2), 245 (1989). doi:10.1007/BF01840009
- 9. J. Vukman, Aequationes Math. 40 (2-3), 181 (1990). doi:10.1007/BF02112294
- H. Yasret, M. A. Ozturk and Y. B. Jun, Commun. Fac. Sci. Univ. Ank. Series A154, (1), 1 (2005).