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Abstract 
 

Let M be 2 and 3 torsion-free left sΓ-unital Γ-rings. Let D: M ×M ×M → M be a permuting 
tri-additive mapping with the trace d(x) = D(x,x,x). Let σ: M → M be an endomorphism and 
τ: M → M an epimorphism. The objective of this paper is to prove the following: a) If d is 
(σ,τ)-skew commuting on M, then D = 0;   b) If d is (τ,τ)-skew-centralizing on M, then d is 
(τ,τ)-commuting on M;  c)  If d is 2−(σ,τ)-commuting on M, then d is (σ,τ)-commuting on 
M. 
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1.  Introduction   
 
In this paper, we consider M as a Γ-ring in the sense of Barnes [1]. It is obvious that every 
ring is a Γ-ring. Ceven and Ozturk [2] worked on the trace of a permuting tri-additive 
mapping in left s-unital rings. Some characterizations of the left s-unital rings were 
obtained by means of the trace of the permuting tri-additive mappings. Ozturk [3] proved 
some properties of prime and semiprime rings by using the permuting tri-additive 
derivations. Ozturk et al. [4] worked on symmetric bi-derivations on prime Γ-rings. They 
obtained some remarkable results on prime Γ-rings. 

Ozden and Ozturk [3] studied on permuting tri-derivations in prime and semiprime Γ-
rings. They obtained some fruitful results. An example of a permuting tri-derivation is 
given here. 

In this paper, we develop some results of Ceven and Ozturk [2] in Γ-rings. Here we 
prove the following: 
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Let d be the trace of a permuting tri-additive mapping D on 2 and 3 torsion-free left sΓ-
unital Γ-rings M and σ be an endomorphism on M and τ an epimorphism on M. Then      

(i)  If d is (σ,τ)-skew commuting on M, then D = 0. 
(ii)  If d is (τ,τ)-skew-centralizing on M, then d is (τ,τ)-commuting on M. 
(iii)  If d is 2−(σ,τ)-commuting on M, then d is (σ,τ)-commuting on M. 

  
2.  Preliminaries 
 
Throughout this paper, all rings M will be a Γ-ring and the center of a ring will be denoted 
by Z. Let σ,τ be additive mappings of M into M and x, y ∈M. As usual, we introduce the 
following notations  

[x, y]α = xαy − yαx,                        < x, y >α= xαy + yαx,  

[x, y]α (σ,τ) = xασ(y) −τ(y)αx,         < x, y >α
(σ,τ)= xασ(y) +τ(y)αx.  

Let d be a mapping from M into M, and S a nonempty subset of M. Then d is called 

(σ,τ)-skew-commuting (respectively, (σ,τ)-skew-centralizing) on S if <d(x),x>α
(σ,τ) = 0 

(respectively, < d(x), x >α
(σ,τ) ∈ Z) for all x ∈ S. Similarly f is said to be (σ,τ)-commuting 

on S if [f(x), x]α(σ,τ) = 0 for all x ∈ S. If  σ  = τ = 1 (the identity map on M), then d is called 

simply skew-commuting, skew-centralizing and commuting on S, respectively. A 

mapping D : M×M →M is said to be symmetric if D(x, y) = D(y, x) for all x, y ∈M.  

A mapping d : M→M defined by d(x) = D(x, x) for all x ∈M, where D: M × M →M is a 

symmetric mapping, is called the trace of D.  

A mapping D: M×M×M→M is called tri-additive if  

D(x+w, y, z) = D(x, y, z)+D(w, y, z),  

D(x, y + w, z) = D(x, y, z) + D(x, w, z), 

 D(x, y, z + w) = D(x, y, z) + D(x, y,w) holds for all x, y, z, w∈M. 

A tri-additive mapping D : M×M×M→M is called permuting tri-additive if  D(x,y,z) = 

D(x, z, y) = D(y, x, z) = D(y, z, x) = D(z, x, y) = D(z, y, x) holds for all x, y, z ∈M. A 

mapping d :M→M defined by d(x) = D(x, x, x) is called the trace of the permuting tri-

additive mapping D. It is obvious that, if D : M × M × M→M is a permuting tri-additive 

mapping then the trace of D satisfies the relation d(x+y) = d(x)+d(y)+3D(x, x, y)+3D(x, y, 

y) for all x, y ∈M. The mapping d : M→M defined by d(x) = D(x, x, x) is an odd function.  

M is called a left sΓ-unital (resp. sΓ-unital) Γ-ring if for each x ∈M there holds x ∈ 

MΓx ( resp. x ∈ MΓx∩ xΓM). If M is a left sΓ-unital (resp. sΓ-unital) Γ-ring then for any 

finite subset F of M there exists an element e in M such that eαx = x (resp. eαx = xαe = x) 
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for all x ∈ F, α∈Γ. Such an element e will be called a left pseudo-identity (resp. pseudo-

identity) of F. 

Throughout this paper e will be a left pseudo-identity of the set 

E = {x, d(x), d(e), σ(x),D(x, x, e),D(x, e, e)} ⊆ M,  

where x is an arbitrary element of M. 

In this paper, we investigate permuting tri-additive mapping and the trace of its with 

(σ,τ)-skew-commuting and (σ,τ)-skew-centralizing maps in left sΓ-unital Γ-rings. 

 
3.  Some Results on the Trace of a Permuting Tri-additive Mapping 
 
The first result is the following. 
 

Theorem 3.1. Let M be 2 and 3-torsion-free left sΓ-unital Γ-ring. Let σ: M→M be an 
endomorphism and τ : M→M an epimorphism. Let D: M×M×M →M be a permuting tri-
additive mapping and d the trace of D. If d is (σ,τ)-skew-commuting on M, then D = 0. 
 
Proof. It is given that, for all x ∈M, 
 

 < d(x), x >α
(σ,τ)= d(x)ασ(x) + τ(x)αd(x) = 0 for all α∈Γ.                                                  (1)  

 

τ(e) is also a left pseudo-identity of M since τ is an epimorphism. So from (1), we have 
 

< d(e), e >α
(σ,τ)= d(e)ασ(e) + d(e) = 0 , for all α∈Γ.                                                    (2) 

 

and right-multiplying by σ(e) gives d(e)ασ(e) = 0 since M is 2-torsion-free. 
Hence, by (2), we get d(e) = 0. 
Substituting x + e for x in (1), we obtain, for all x ∈M, 
    

 < d(x), e>α
(σ,τ) +3 < P, x>α

(σ,τ) +3 < P, e >α
(σ,τ) +3 < Q, x>α

(σ,τ)  + 3 < Q, e>α
(σ,τ)= 0 ,       (3) 

 

where P = D(x, x, e), Q = D(x, e, e). 
Putting -x instead of x in (3) and comparing (3) with the obtained equation, we have 
 

Pασ(e) +P + Qασ(e) + Q = 0 ,                                                                                     (4) 
 

since d is odd function, M is 2 and 3-torsion-free and τ(e) is a left pseudo-identity. Right 
multiplication of (4) by σ(e) gives Pασ(e) + Qασ(e) = 0.  

Using the last relation and (4), we obtain P + Q = 0. Hence, we arrive at d(x + e) = d(x) 
for all x ∈M. 

Then, we have 
 

0 = < d(x + e), x + e>α
(σ,τ) = < d(x), e>α

(σ,τ) = d(x)ασ(e) + d(x).                                    (5) 
 

Multiplying σ(e) from the right, we get d(x)ασ(e) = 0. So from (5), we obtain 
 

d(x) = D(x, x, x) = 0                                                                                                      (6) 
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for all x ∈M. Then it follows that, for all x, y ∈M, 
 

D(x, x, y) + D(x, y, y) = 0 ,                                                                                            (7) 
 

since D(x + y, x + y, x + y) = 0, D is permuting tri-additive mapping and M is 3-torsion-
free ring. Since D(x + y + z, x + y + z, x + y + z) = 0 and M is 2 and 3-torsion free, and 
using (7), we obtain D(x, y, z) = 0 for all x, y, z ∈M which gives the conclusion. 
Theorem 3.2. Let M be 2 and 3-torsion-free left sΓ-unital Γ-ring. Let τ: M→M be an 
epimorphism. Let D : M × M × M →M be a permuting tri-additive mapping and d the 
trace of D. If d is (τ,τ)-skew-centralizing on M, then d is (τ,τ)-commuting on M. 
 
Proof. Since d is (τ,τ)-skew-centralizing on M, we know that 

 

< d(x), x >α
(σ,τ)= d(x)ατ(x) + τ(x)αd(x) ∈ Z       for all x ∈M.                                      (8) 

 

Hence   d(e)ατ(e) + d(e) ∈ Z,   since τ(e) is a left pseudo-identity                              (9) 
 
Commuting with τ(e) gives d(e) = d(e)ατ(e) and we get 2d(e) ∈ Z by (9). Hence     

d(e) ∈ Z. 
Let us replace x + e by e in (8). We get 
 

2τ(x)αd(e) + 3τ(x)αP +3τ(x)αQ + d(x) + 3P + 3Q + d(x)ατ(e) + 3Pατ(x)  
 
 

+3Pατ(e) + 3Qατ(x) + 3Qατ(e) ∈ Z,                                                                         (10) 
 

using (8), (9) and d(e) ∈ Z, where P =D(x, x, e), Q = D(x, e, e). 
Substituting −x for x in (10) and comparing (10) with the new one, we have 

 

τ(x)αQ + P + Pατ(e) + Qατ(x)∈ Z ,                                                                          (11) 
 

or,  2τ(x)αd(e) + 3τ(x)αP + d(x) + 3P + d(x)ατ(e) + 3Pατ(x) + 3Qατ(e) ∈ Z,         (12) 
 

since M is 2 and 3 torsion-free ring. 
Let us put x + e instead of x in (10). Since d(e) ∈ Z and τ(e) is left pseudo-identity, we 

obtain τ(x)αQ + 2τ(x)αd(e) + 3Q +P +Pατ(e) + 3Qατ(e) + Qατ(x) ∈ Z. 
Using (5), we get 
  

2τ(x)αd(e) + 3Q + 3Qατ(e) ∈ Z                                                                                 (13) 
 

and commuting with τ(e), we obtain Qατ(e) = Q. Writing this in (13), and using 2-torsion 
free, we have τ(x)αd(e) + 2Q ∈ Z. Commuting with τ(x), using d(e) ∈ Z ,we get  
 

 Q = D(x, e, e) ∈ Z,                                                                                                    (14) 
 

since τ is an epimorphism. 
Let us commute with τ(e) the equation (11). We obtain Pατ(e) = P since Q ∈ Z. Hence 

from (11), we have Qατ(x) +P ∈ Z and commuting again with τ(x), we obtain  
 

P = D(x, x, e) ∈ Z.                                                                                                            (15) 
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Using the equations (14) and (15) in Eq. (12), we get 
 

2τ(x)αd(e) + 6τ(x)αP + 6Q + d(x) + d(x)ατ(e) ∈ Z                                                   (16) 
 

Commuting with τ(e) in (16), we obtain, for all x ∈M,   d(x)ατ(e) = d(x). Using this 
equality in (16), we have     τ(x)αd(e) + 3τ(x)αP + 3Q + d(x) ∈ Z. 

Commuting with τ(x), it is obtained that d(x)ατ(x) = τ(x)αd(x). Hence d is (τ,τ)-
commuting. 
 
Theorem 3.3. Let M be 2 and 3−torsion free left sΓ-unital Γ-ring. Let σ: M→M be an 
endomorphism and τ : M→M  an epimorphism. Let D :M×M× M→M  be a permuting tri-
additive mapping and d the trace of D. If d is 2 − (σ,τ)−commuting on M, then d is (σ,τ)-
commuting on M. 
 
Proof. Let us define a mapping h : M→M by h(x) = [d(x), x] α

(σ,τ) for all x ∈M, α∈Γ. Note 
that h is even function. From the hypothesis, we can write 
        

 < h(x), x >α
(σ,τ)= [d(x), xαx] α

(σ,τ) = 0 , for all x∈M, α∈Γ.                                         (24) 
 

Since τ is an epimorphism,τ(e) is also a left pseudo-identity. So, we have 
       
      h(e)ασ(e) + h(e) = 0, for all x ∈M, α∈Γ.                                                                  (25) 

Right multiplying by σ(e) gives h(e)ασ(e) = 0 since M is 2-torsion free. Hence, by 
(25), we get 
 

h(e) = [g(e), e] α
(σ,τ) = 0.                                                                                              (26) 

Since d(x+e) = d(x)+d(e)+3M+3N, where M = G(x, x, e) and N = G(x, e, e), 
we obtain 
 

h(x + e) = h(x) + [d(x), e] α
(σ,τ) + [d(e), x] α

(σ,τ) + 3[M, x] α
(σ,τ) 

 

+ 3[M, e] α
(σ,τ) + 3[N, x] α

(σ,τ) + 3[N, e] α
(σ,τ)                                                                                                   (27) 

 

If we replace x by x+e in (24) and using (24), (26) and permuting tri-additivity of D, 
we have, for all x ∈M, α∈Γ. 
 

h(x)ασ(e) + [d(x), e] α
(σ,τ)ασ(x) + [d(x), e] α

(σ,τ)ασ(e) + [d(e), x] α
(σ,τ)σ(x)+ 

 
 [d(e), x] α

(σ,τ)ασ(e) + 3[M, x] α
(σ,τ)ασ(x) + 3[M, x] α

(σ,τ)ασ(e)+ 3[M, e] α
(σ,τ)ασ(x)  

 
+ 3[M, e]α(σ,τ)ασ(e) + 3[N, x] α

(σ,τ)ασ(x) + 3[N, x] α
(σ,τ)ασ(e)+ 3[N, e] α

(σ,τ)ασ(x) +  
 
3[N, e]α(σ,τ)ασ(e)+ h(x) +τ(x)α[d(x), e]α(σ,τ) + [d(x), e] α

(σ,τ) + τ(x)α[d(e), x] α
(σ,τ) + 

 
 [d(e), x]α(σ,τ) + 3τ(x)α[M, x]α(σ,τ) + 3[M, x]α(σ,τ) + 3σ(x)α[M, e]α(σ,τ)+ 3[M, e]α(σ,τ) +  
 
3τ(x)α[N, x]α(σ,τ) + 3[N, x]α(σ,τ) + 3τ(x)α[N, e]α(σ,τ)+ 3[N, e]α(σ,τ) = 0 .                     (28) 
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Substituting −x for x in (28) and comparing (28) with the obtained result, we get, for 
all x ∈M, 
 

[d(x), e]α(σ,τ)ασ(e) + [d(e), x]α(σ,τ)ασ(e) + 3[M, x] α
(σ,τ)ασ(e) + 3[M, e] α

(σ,τ)ασ(x)+  
 
[N, x] α

(σ,τ)ασ(x) + 3[N, e] α
(σ,τ)ασ(e) + [d(x), e] α

(σ,τ) + [d(e), x] α
(σ,τ)+ 3[M, x] α

(σ,τ) + 
 

 3σ(x)α[M, e] α
(σ,τ) + 3σ(x)α[N, x] α

(σ,τ) + 3[N, e] α
(σ,τ) = 0                                    (29) 

 
since h and M are even, d and N are odd, M is 2-torsion free ring. 

Right multiplication of (29) by σ(e) gives 
 

2[d(x), e] α
(σ,τ)ασ(e) + 2[d(e), x] α

(σ,τ)ασ(e) + 6[M, x] α
(σ,τ)ασ(e) 

 

+ 6[N, e] α
(σ,τ)ασ(e) + 3[M, e] α

(σ,τ)α(x)ασ(e) + 3[N, x]α(σ,τ)ασ(x)ασ(e)+  
 

3σ(x)α[M, e] α
(σ,τ)ασ(e) + 3σ(x)[N, x] α

(σ,τ)ασ(e) = 0 .                                               (30) 
 

Substituting again x + e instead of x in (30) and using (30), we obtain 
 

4[d(e), x] α
(σ,τ)ασ(e) + 12[N, e] α

(σ,τ)ασ(e) + 6[M, e] α
(σ,τ)ασ(e) + 6[N, x] α

(σ,τ)ασ(e) +  
 

3[N, e] α
(σ,τ)ασ(x)ασ(e) + [d(e), x] α

(σ,τ)ασ(x)ασ(e) + 3τ(x)α[N, e] α
(σ,τ)ασ(e)+  

 

τ(x)α[d(e),x]α(σ,τ)ασ(e) = 0,                                                                                        (31) 
 

since M is 2-torsion free ring. 
Putting  - x for x and comparing (31), we get 

 

[d(e), x] α
(σ,τ)ασ(e) + 3[N, e] α

(σ,τ)ασ(e) = 0 .                                                              (32) 
 
Furthermore we get 
 

[d(e), x] α
(σ,τ)ασ(x) + 3[N, e] α

(σ,τ)ασ(x) = [d(e), x] α
(σ,τ)ασ(eαx) + 3[N, e] α

(σ,τ)ασ(eαx) 
 

=  ([d(e), x] α
(σ,τ)ασ(e) + 3[N, e] α

(σ,τ)ασ(e))ασ(x) = 0                                                (33) 
 
According to Eqs. (32) and (33), the relation (31) becomes 
 

[M, e] α
(σ,τ)ασ(e) + [N, x] α

(σ,τ)ασ(e) = 0.                                                                    (34) 
 
With similar process as obtaining of Eq.  (33), we have 
 

[M, e] α
(σ,τ)ασ(x) + [N, x] α

(σ,τ)ασ(x) = 0.                                                                    (35) 
 
Using the obtained Eqs. (32), (34) and (35) in (30), we get 
 

[d(x), e] α
(σ,τ)ασ(e) + 3[M, x] α

(σ,τ)ασ(e) = 0. 
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Therefore Eq. (29) becomes 
 

[d(x), e] α
(σ,τ) + [d(e), x] α

(σ,τ) + 3[M, x] α
(σ,τ) + τ(x)[M, e] α

(σ,τ) 

 

+ 3τ(x)α[N, x] α
(σ,τ) + 3[N, e] α

(σ,τ) = 0.                                                                        (36) 
 
If we put x + e instead of x in Eq.  (36), and compare with Eq. (36), we get 
 

2[d(e), x] α
(σ,τ) + 3[M, e] α

(σ,τ) + 6[N, e] α
(σ,τ) + 3[N, x] α

(σ,τ) 

 

+ 3τ(x)α[N, e] α
(σ,τ) + τ(x)[d(e), x] α

(σ,τ) = 0.                                                                (37) 

Substituting  - x for x and comparing  Eq. (36) we write 

[d(e), x] α
(σ,τ) + 3[N, e] α

(σ,τ) = 0.                                                                                  (38) 

So, the Eq. (37) becomes 

[M, e] α
(σ,τ) + [N, x] α

(σ,τ) = 0.                                                                                       (39) 

Hence from Eq. (36), we have 
 

[g(x), e] α
(σ,τ) + 3[M, x] α

(σ,τ) = 0.                                                                                 (40) 
 

Using Eqs. (38), (39) and (40) in (27), we obtain h(x + e) = h(x). Since < h(x), x >α
(σ,τ)  

= 0 for all x ∈M, the relation h(x + e)ασ(x + e) + τ(x + e)αh(x + e) = 0 becomes  
 

h(x)ασ(e) + h(x) = 0                                                                                                    (41) 
 

for all x ∈M. Right multiplying Eq. (41) by σ(e) we have h(x)ασ(e) = 0 since M is           
2-torsion free. Hence from Eq. (41), we obtain h(x) = 0 for all x ∈M which gives the 
conclusion. 
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