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Abstract 

The study intends to investigate the problem of surface roughness effects on porous pivoted 

slider bearings with squeeze film formed by couple stress fluid. On the basis of the micro 

continuum theory, the modified Reynolds’ type equation of porous slider bearing is obtained 

by considering rough surface and squeezing action. The closed-form expressions for the mean 

pressure, load carrying capacity, frictional force and centre of pressure are obtained.  Capacity 

for load bearing and point where pressure is centred are evaluated in form of various 

parameters that are couple stress, permeability and surface roughness. It is concluded that 

capacity for load bearing increases with roughness and decreases with increase in 

permeability parameters. Normal behaviour of exists for surface roughness parameters with 

pressure and pressure with permeability parameters. Computed values of load capacity, 

frictional force and coefficient of friction are displayed in graphical form.                                                                         
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1. Introduction 

Hydrodynamic bearings are commonly used in various machines. The slider bearing being 

the most common and simplest type among them. Probably, this is because the expression 

for film thickness is simple and the boundary conditions required to be zero at the bearing 

ends are less complicated. Because the film in slider bearings is continuous and non-

diverging the issue of negative pressure is avoided. These bearings are designed to support 

the axial loads. Slider bearings are often designed for supporting the transverse load in 

engineering applications. Bearing characteristics for different film shapes have been 

analyzed by Pinkus and Sternlicht [1], Bagci and Singh [2], Hamrock [3] etc.                                                                                                                                                                                  

Squeeze films play an important role in engineering practice. The application of squeeze 

film slider bearings in clutch plates, automobile transmissions and domestic appliances 
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many investigators dealt with the problem of squeeze film slider bearing such as Prakash 

and Vij [4], Bhat [5], Bhat and Patel [6] etc.  

The fluid flow through porous media has been an interesting area of research for the last 

five decades. Many industrial, geologists, hydrologists and several other researchers have 

been attracted to study the flow behavior in a porous medium. In a macroscopic scale the 

fluid flow in an isotropic and homogeneous porous medium is governed by Darcy’s law [7] 

or Brinkman’s equations [8]. There have been numerous analytical studies of porous 

bearings including the work by Cameron et al. [9], Murati [10], Wu [11], Uma [12] and 

Naduvinamani et al. [13]. They all found that when permeability increases the drag force 

decreases because high permeability offers less resistance to flow through the porous 

interior. 

In recent years surface roughness and its effects on machine design have been 

intensively investigated to determine how they affect flow patterns. Some mathematical 

models have been proposed to derive the different Reynold’s types by considering the 

surface roughness effects. Averaging fluid film thicknesses or flow quantities between two 

lubricated roughness has been used to analyze surface effects. The effect of surface 

roughness, Christensen [14,15] utilized a stochastic concept and introduced an averaging 

film model to lubricated surfaces with straightened roughness. The stochastic Reynold’s 

type equations of rough bearing were derived and applied to investigate the effects of 

surface roughness on the bearing performance characteristics. Several investigators have 

adopted a stochastic approach to model the random roughness. Christensen and Tonder [16] 

presented a comprehensive general analysis of surface roughness (both transverse and 

longitudinal) based on a general probability density function by modifying and developing 

the approach of Tzeng and Seibel [17]. Subsequently, on the ground of this Christensen and 

Tonder’s stochastic model, many researchers have been carried out the study of the effect 

of surface roughness on hydrodynamic mechanisms, such as the works in the 

hydrodynamics journal bearing by Guha [18] and Taranga et al. [19]. The squeeze film 

spherical bearings by Andharia et al. [20]. Lin et al. [21] and Naduvinmani et al. [22] used 

this theory for the study of surface roughness effects on different bearing systems. 

The motion of non-Newtonian fluids has numerous important uses in modern 

technology and industries. This has prompted several researchers to explore various flow 

issues associated with several types of non-Newtonian fluids. A couple stress fluid proposed 

by Stoke’s [23] during the last five decades has attracted the attention of numerous 

researchers in fluid mechanics. A couple stress fluid theories are a simple generalization of 

a Newtonian fluid theory that allows the sustenance of couple stresses and body couples. A 

couple stresses arise as a result of the mechanical interactions in the fluid medium being 

modelled. This stress tensor is not symmetric, it adequately describes the flow behavior of 

fluids with a substructure such as lubricating oils, liquid crystals and animal blood. In 

numerous studies of hydrodynamic lubrication of squeeze film flows, the lubricant has been 

considered as a couple stress fluid and these studies have shown that couple stress fluids 

increase the bearing’s load capacity. Ramanaiah [24] analyzed squeeze films between finite 

plates lubricated by fluids with couple stress. Naduvinamani et al. [25] have analyzed 

https://www.sciencedirect.com/topics/engineering/stress-tensor
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hydrodynamic lubrication of rough slider bearings with couple stress fluids. Rao and 

Agarwal [26] studied the problem of the effects of couple stresses on the performance of 

rough step slider bearings with assorted porous structures. Naduvinamani et al. [27] studied 

the static and dynamic characteristics of porous plane inclined slider bearings lubricated 

with magnetohydrodynamic couple stress fluid. Surface roughness effects on curved 

pivoted slider bearings with coupe stress fluid were discussed by Naduvinmani and Biradar 

Kashinath [28]. Nisha et al. [29] studied the squeeze film characteristics and steady-state 

performance of a parabolic inclined porous slider bearing using couple stress fluid. Panchal, 

et al. [30] studied, Effect of Various Shapes of Rough Transverse Slider Bearing Equipped 

with Ferro-Lubricant on the Load-Tolerating Capability by Mathematical Modeling. 

 In this paper the effect of surface roughness on porous pivoted slider bearings lubricated 

with couple stress fluid was studied, along with squeeze film action, on which a study has 

not been conducted so far as per the relevant literature.  An averaged modified Reynold’s-

type equation for rough porous pivoted slider bearings has been computed and numerical 

computations were carried out to get the required results. 

 

2. Mathematical Formulation and Solution of the Problem 

 

The basic equations governing the motion of an incompressible flow in deprivation of body 

forces and couples are given by, 

𝜌
𝐷𝑉

→

𝐷𝑡
= −𝛻𝑝 + 𝜇𝛻2𝑉

→

− 𝜂𝛻4𝑉
→

,                   (1) 

𝛻 ⋅ 𝑉
→

= 0                    (2) 

where, 𝜌, 𝑝, 𝜇 and 𝜂 represents density, pressure, coefficient of viscosity and material 

constant respectively.  

The physical configuration of the curved pivoted porous slider bearings lubricated with 

couple stress fluid is shown in Fig. 1. It consists of two surfaces separated by a lubricant 

film. It is assumed that the upper surface is rough and is moving at a constant velocity U. 

While the lower porous matrix supported by a solid backing is at rest. It is assumed that the 

lubricant in the film region as well as in the porous region is assumed to be Stokes (1966) 

couple stress fluid. A stator with a central thickness of Hc (u,v), where u and v represent 

the fluid film’s x and y velocity components. The thickness of film H, here h0 and h1 are 

minimum and maximum film thickness respectively. Also, the stator moves normally 

towards the lower surface-slider with the uniform velocity. 

ℎ
⋅

=
𝑑ℎ

𝑑𝑡
                     (3) 

where, t is time in seconds, is called squeeze velocity.   

To represent the surface roughness the mathematical expression for the film thickness is 

considered to be consisting of two parts. 

𝐻(𝑥) = ℎ(𝑥) + ℎ𝑠                                (4) 

where,  

ℎ(𝑥) = 𝐻𝑐 {4 (
𝑥

𝐿
−

1

2
)

2

− 1} + ℎ0 (𝑎 − 𝑎
𝑥

𝐿
+

𝑥

𝐿
)                             (5)      

 in which  
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𝑎 =
ℎ1

ℎ0

 

where h(x) is the mean film thickness and hs is a randomly varying quantity measured from 

the mean level and thus characterizes the surface roughness. Furthermore, hs is considered 

to have probability density function f(hs) defined over the domain −𝑐 ≤ ℎ𝑠 ≤ 𝑐,where c is 

the maximum deviation from the mean film thickness. The mean 𝛼 ∗, the standard deviation 

𝜎 ∗ and the pressure parameter 𝜀 ∗ which is the measure of the symmetry of the random 

variable hs, are defined as                                                           
𝜕ℎ

𝜕𝑡
 

↓ 

 

Fig. 1. Couple stress fluid lubricated curved pivoted porous slider bearings with squeeze velocity ḣ. 

 

𝛼 ∗= 𝐸(ℎ𝑠)                                 (6) 

𝜎 ∗2= 𝐸[(ℎ𝑠 − 𝛼)2]                                (7) 

𝜀 ∗= 𝐸[(ℎ𝑠 − 𝛼)3]                                (8) 

where E is an expectation operator defined by, 

𝐸(⋅) = ∫ (⋅)𝑓(ℎ𝑠) 𝑑ℎ𝑠
∞

−∞
                                             (9)  

where the parameters 𝛼 ∗, 𝜎 ∗ and 𝜀 ∗ are all independent of x. The mean 𝛼 ∗and the 

parameter 𝜀 ∗ can assume both positive and negative values but 𝜎 ∗ can only assume 

positive values. 

The porous region is assumed to be homogeneous and isotropic and the lubricant is 

incompressible couple stress fluid. It is assumed that body force and body couples are absent 

with the usual assumptions of hydrodynamic lubrication applicable to thin films. The 

equations of motions (1) and (2) take the following form in terms of Cartesian coordinates: 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                            (10) 
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𝝁
𝝏𝟐𝒖

𝝏𝒚𝟐 − 𝜼
𝝏𝟒𝒖

𝝏𝒚𝟒 =
𝝏𝒑

𝝏𝒙

  

                                         (11) 

𝜕𝑝

𝜕𝑦
= 0                                                          (12) 

The flow of couple stress fluid in a porous matrix is governed by the modified form of 

Darcy’s law for isotropic porous materials,       

𝑞
→

∗=
−𝑘

𝜇(1−𝛽)
𝛻𝑝∗                                                                                   (13)  

where, 𝑞
→

∗= (𝑢 ∗, 𝑣 ∗), 𝛽 =
𝜂

𝜇𝜅
 and the parameter 𝜅 is the permeability of the porous 

material and is known as pore size and 𝛽 is the ratio of microstructure size to the pore size. 

If (
𝜂

𝜇
)
1/2

≈ √𝑘  i.e., 𝛽 ≈ 1 then the microstructure additives present in the lubricant block 

the pores in the porous layer and thus reduce the Darcy flow through the porous matrix. 

When the microstructure size is very small when compared with the porous size, 𝛽 << 1 

the additives percolate into the porous matrix. The limit 𝛽 → 0+ equation (13) reduces to 

the usual Darcy’s law. The pressure in the porous region due to continuity satisfies 

Laplace’s equation: 
𝜕2𝑝∗

𝜕𝑥2 +
𝜕2𝑝∗

𝜕𝑦2 = 0                                                                      (14) 

The relevant boundary conditions for the velocity components are:   

(i) At the upper solid surface (y = H) 

𝑢 = U  , 
𝜕2𝑢

𝜕𝑦2 = 0                                                                                  (15a) 

𝑣 =
𝑑ℎ

𝑑𝑡
(15b) 

(ii)  At the lower surface (y = 0) 

𝒖 = 0,   
𝝏𝟐𝒖

𝝏𝒚𝟐 = 𝟎                                                                                   (16a) 

 𝑣 = 𝑣 ∗                                                                     (16b) 

Solving equation (11) with boundary conditions (15a) and (16a) the velocity components u 

can be derived as follows  

     

𝑢 =
𝑈𝑦

𝐻
+

1

2𝜇
⋅

𝜕𝑝

𝜕𝑥
{2𝑙2 [1 − 𝑐𝑜𝑠ℎ (

𝑦

𝑙
) + 𝑠𝑖𝑛ℎ (

𝑦

𝑙
) 𝑡𝑎𝑛ℎ (

𝑦

2𝑙
)] + 𝑦2 − 𝑦𝐻}                      (17) 

where 𝑙 = (
𝜂

𝜇
)
1/2

is couple stress parameter. 

Integrating equation (14) with respect to z over the porous layer thickness H and applying 

the boundary conditions  
𝜕𝑝∗

𝜕𝑦
= 0 at y = - H, it is obtained,  

(
𝜕𝑝∗

𝜕𝑦
)

𝑦=0
= −∫

𝜕2𝑝∗

𝜕𝑥2

−𝐻

𝑦=0
dy                                                                                  (18)   

The porous layer thickness H is assumed to be very small and applying the pressure p = p* 

continuity condition of the interface y = 0 of porous matrix and fluid film, equation (18) 

reduces to: 

(
𝜕𝑝∗

𝜕𝑦
)

𝑦=0
= −𝐻

𝜕2𝑝∗

𝜕𝑥2                                                                                            (19)

 
Substituting the expressions for u in the continuity equation (10) and integrating across the 

fluid film thickness and using the boundary conditions (16b) and (17b) for v gives the 

nonlinear modified Reynold’s equation is:
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𝜕

𝜕𝑥
∫ 𝑢 𝑑𝑦 + 𝑣𝑦=ℎ − 𝑣𝑦=0 = 0
ℎ

0
                                                                    (20) 

yields,    

𝜕

𝜕𝑥
{12𝑙3 (

𝑠𝑖𝑛ℎ (
𝐻

𝑙
) − 𝑐𝑜𝑠ℎ (

𝐻

𝑙
) 𝑡𝑎𝑛ℎ (

𝐻

2𝑙
) + 𝑡𝑎𝑛ℎ (

𝐻

2𝑙
) +

𝐻3 − 12𝑙2𝐻 − 12𝑘𝐻 ∗
)

𝜕𝑝

𝜕𝑥
} = 6𝜇𝑈

𝑑𝐻

𝑑𝑥
+ 12𝜇𝑉                     (21)    

where  𝑣𝑦=ℎ = 𝑉 =
𝑑ℎ

𝑑𝑡
= ℎ

⋅

 

The surface roughness parameters are used to get the following 

equation:

 
𝜕

𝜕𝑥
{(
ℎ

3 + 3ℎ2𝛼 ∗ +3ℎ(𝛼 ∗2+  𝜎 ∗2−  4𝑙2) + 𝑡𝑎𝑛ℎ (
ℎ

2𝑙
) (24𝑙3 − 6𝑙𝛼 ∗2 - 6𝑙𝜎 ∗2) +

𝑡𝑎𝑛ℎ2 (
ℎ

2𝑙
) (4𝜀 ∗ + 4𝛼 ∗3+ 12𝛼 ∗ 𝜎 ∗2− 12𝑙2𝛼 ∗) − 12𝑘𝐻 ∗

)
𝜕𝑝

−

𝜕𝑥
} 

= 6𝜇𝑈
𝑑ℎ

𝑑𝑥
+ 12𝜇𝑉                                            (22) 

 where, 𝛼 ∗, 𝜎 ∗ and 𝜀 ∗ are the parameters due to surface roughness and 𝐸(𝐻) =

ℎ and E(𝑝) = 𝑝
−

 

 Using the following dimensionless quantities we get, 

𝑥∗ =
𝑥

𝐿
, 𝑙∗ =

𝑙

ℎ0
, 𝛽 = 

𝐻𝑐

𝐻0
, ℎ∗ =

ℎ

ℎ0
,  𝑝 =

𝑝 ∗ ℎ0
2

𝜇𝑈𝐿
,  S =

-2𝑉𝐿
⋅

𝑈ℎ0
, 𝜓 = 

12𝑘𝐻 ∗

ℎ0
3 , 𝛼 =

𝛼 ∗

ℎ0
, 

𝜎 =
𝜎 ∗

ℎ0
, 𝜀 =

𝜀 ∗

ℎ0
3

 

Equation (12) takes the form:                                                                                                  

𝜕

𝜕𝑥∗
{(
ℎ

∗3
+ 3ℎ∗2𝛼 + 3ℎ ∗ (𝛼2 + 𝜎2 −  4𝑙 ∗2) + 𝑡𝑎𝑛ℎ (

ℎ∗

2𝑙
) (24𝑙 ∗3−  6𝑙 ∗ 𝛼2- 6𝑙 ∗ 𝜎2) +

𝑡𝑎𝑛ℎ2 (
ℎ∗

2𝑙∗
) (4𝜀 +  4𝛼3 + 12𝛼 𝜎2 − 12𝑙 ∗2 𝛼) − 𝜓

)
𝜕𝑝∗

𝜕𝑥∗
} =

𝑑𝐺

𝑑𝑥∗
 

                                              (23)  

 

where, 

G = 6ℎ − 6𝑆𝑥 ∗,                                                      

Equation (23) is known as the dimensionless Reynold’s equation. Since the pressure is 

negligible on the boundaries of the slider bearing compared to inside pressure.                                                                                  

The pressure field boundary conditions are: 

𝑝 = 0 at  𝑥∗ = 0,1  (Ambient pressure)                                                                           (24) 

Integrating the equation of (23) with respect to x* 
𝜕𝑝 ∗

𝜕𝑥 ∗

= (𝐺 − 𝑄)(
ℎ

∗3
+ 3ℎ∗2𝛼 + 3ℎ ∗ (𝛼2 + 𝜎2 −  4𝑙 ∗2) + 𝑡𝑎𝑛ℎ(

ℎ ∗

2𝑙
) (24𝑙 ∗3−  6𝑙 ∗ 𝛼2- 6𝑙 ∗ 𝜎2) +

𝑡𝑎𝑛ℎ2 (
ℎ ∗

2𝑙 ∗
) (4𝜀 +  4𝛼3 + 12𝛼𝜎2 − 12𝑙 ∗2 𝛼) − 𝜓

)

−1

 

                     (25) 

where Q is the constant of integration. 

Solving equation (25) subject to the boundary conditions (24) which gives the 

dimensionless film pressure p* is obtained as: 

𝑝 ∗= ∫ (𝐺1 −
𝑥∗

𝑥∗=0

𝑄)(
ℎ

∗ + 3ℎ∗2𝛼 + 3ℎ ∗ (𝛼2 + 𝜎2 −  4𝑙 ∗2) + 𝑡𝑎𝑛ℎ (
ℎ∗

2𝑙
) (24𝑙 ∗3− 6𝑙 ∗ 𝛼2

- 6𝑙 ∗ 𝜎2) + 𝑡𝑎𝑛ℎ2 (
ℎ∗

2𝑙∗
) (4𝜀 +  4𝛼3 + 12𝛼 𝜎2 − 12𝑙 ∗2 𝛼) − 𝜓

)

−1

 𝑑𝑥 ∗                  (26)                                                                                                                                        

where,  
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𝑄 =

∫ (𝐺1) ⋅ (
ℎ

∗ + 3ℎ∗2𝛼 + 3ℎ ∗ (𝛼2 + 𝜎2 −  4𝑙 ∗2) + 𝑡𝑎𝑛ℎ (
ℎ∗

2𝑙
) (24𝑙 ∗3−  6𝑙 ∗ 𝛼2- 6𝑙 ∗ 𝜎2) +

𝑡𝑎𝑛ℎ2 (
ℎ∗

2𝑙∗
) (4𝜀 +  4𝛼3 + 12𝛼 𝜎2 − 12𝑙 ∗2 𝛼) − 𝜓

)

−1

𝑑𝑥 ∗
1

𝑥∗=0

∫
1

(
ℎ
∗+3ℎ∗2𝛼+3ℎ∗(𝛼2+ 𝜎2− 4𝑙∗2)+𝑡𝑎𝑛ℎ(

ℎ∗

2𝑙
)(24𝑙∗3− 6𝑙∗𝛼2- 6𝑙∗𝜎2)+

𝑡𝑎𝑛ℎ2(
ℎ∗

2𝑙∗
)(4𝜀+ 4𝛼3+12𝛼 𝜎2−12𝑙∗2𝛼)−𝜓

)

𝑑𝑥 ∗
1

𝑥∗=0

 

The load carrying capacity W* are given in dimensionless form by,  

𝑊 ∗=
𝑊ℎ0

2

𝜇𝑈𝐿2 = ∫ 𝑝 
1

0
𝑑𝑥 ∗                                           (27) 

The component of the stress tensor required to calculate the frictional force is  

𝜏𝑦𝑥 = 𝜇 (
𝜕𝑢

𝜕𝑦
) −  𝜂 (

𝜕3𝑢

𝜕𝑦3)                                                                     (28)  

The frictional force F* per unit width on the sliding bearing pivoted surface is given by,  

𝐹 = ∫ (𝜏𝑦𝑥)𝑦=𝐻
𝐿

0
𝑑𝑥                                                        (29) 

Use of expression (8) for u in equation (16) and substituting it in equation (17) gives 

frictional force which after dimensionless becomes, 

𝐹 ∗= ∫

[
 
 
 
 
 

ℎ∗

2
.

(

 
 
 

(𝐺 − 𝑄)

(

 
 
ℎ

∗3
+ 3ℎ∗2𝛼 + 3ℎ ∗ (𝛼2 + 𝜎2 −  4𝑙 ∗2) +

𝑡𝑎𝑛ℎ (
ℎ∗

2𝑙
) (24𝑙 ∗3−  6𝑙 ∗ 𝛼2 + - 6𝑙 ∗ 𝜎2)

𝑡𝑎𝑛ℎ2 (
ℎ∗

2𝑙∗
) (4𝜀 +  4𝛼3 + 12𝛼 𝜎2 − 12𝑙 ∗2 𝛼) − 𝜓

)

 
 

−1

)

 
 
 

+
1

ℎ∗

]
 
 
 
 
 

𝑑𝑥 ∗
1

0
 (30)    

The coefficient of friction is:  

𝑓 ∗=
𝐹∗

𝑊∗
                                                                       (31) 

The location of the centre of pressure where the resultant force acts are,  

𝑥 ∗=
𝑋

𝐿
=

1

𝑊∗
∫ 𝑝 ∗⋅  𝑥 ∗  𝑑𝑥 ∗

1

0
                                                       (32) 

 

3. Results and Discussion 

 
In the present paper the effects of bearing surface roughness, the permeability of the porous 

bearing and the couple stresses present in the lubricant due to micro structure additives are 

examined with the help of the dimensionless roughness parameters σ (standard deviation), 

α (mean), ε (symmetry of surface roughness), the permeability parameter 𝜓, the couple 

stress parameter l* and the squeeze velocity. 

 

3.1. Fluid film pressure  

 

The graphs illustrated in Figs. 2 to 6 represent variation in non-dimensional pressure p* 

against x* with the effect of squeeze velocity ḣ≠0. In Fig. 2 by fixing the values a=3.0, 

S=0.5, σ=0.1, α =0.05, ε =0.05, 𝛽=0.3, 𝜓=0.001 for different values of l*, it is found that 

the non-dimensional pressure p* increases for the couple stress fluids as compared to the 

corresponding Newtonian case (l*=0). The variation of p* with x* for different values of α, 

ε and σ is depicted in Figs. 3 to 5 respectively. It can be seen that p* increases for the 

negatively skewed surface roughness and decreases for the positively skewed surface 

roughness pattern. Furthermore, p* decreases for increasing σ values. Fig. 6 by fixing a=3.0, 

S=0.5, σ=0.1, α=0.05, ε=0.05, 𝛽=0.3, 𝜓=0.01 for different values of 𝜓, it is observed that 
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p* decreases for increasing values of 𝜓. It is also interesting to note that the point of 

maximum pressure 𝑥𝑚𝑎𝑥
∗  shifts towards the inlet edge for increasing values of 𝜓. 

 

3.2. Load carrying capacity 

 

The graphs illustrated in Figs. 7 to 11 represent variation in non-dimensional load W* 

against the curvature parameter 𝛽 with the effect of squeeze velocity ḣ≠0.  In Fig. 7 by 

fixing the values a=3.0, S=0.5, σ=0.1, α =0.05, ε =0.05, 𝜓=0.001 for different values of l*, 

it is noted that the bearings with couple stress fluid as lubricant carry a larger load as 

compared to the corresponding Newtonian case (l*=0). Figs. 8 and 9 respectively show the 

effect of α and ε on the variations of W* with 𝛽. It is found that negatively skewed surface 

roughness increases W* whereas positively skewed surface roughness decreases W*. In 

Fig. 10 by fixing a=3.0, S=0.5, α=0.05, ε=0.05, l*=0.3, 𝜓=0.001 and increasing values of σ 

the load carrying capacity W* decreases. In Fig. 11 by fixing a=3.0, S=0.5, σ=0.1, α=0.05, 

ε=0.05, l*=0.3 and increasing values of 𝜓 the load–carrying capacity W* found to be 

decreasing.  Fig. 12 shows the variation in non-dimensional load W* against the curvature 

parameter 𝛽 for different values of ḣ with l*=0.5, s*=0.3, ψ =0.001, h0 =0.02, L=0.005 and 

U= 1.0 and it is found that W* increases considerably in the presence of squeeze velocity.  

 

3.3. Coefficient of friction  

 

The graphs illustrated in Figs. 13 to 17 represent variation in the non-dimensional 

coefficient of friction f* against the curvature parameter 𝛽 with the effect of squeeze 

velocity ḣ≠0. In Fig. 13 by fixing the values a=3.0, S=0.5, σ=0.1, α =0.05, ε =0.05, 𝜓=0.001 

for different values of l* a drastic decrease in the coefficient of friction f* is observed for 

the couple stress lubricants as compared to the corresponding Newtonian case (l*=0). Figs. 

14 and 15 respectively show the effect of α and ε on the variations of f* with 𝛽, it is found 

that negatively skewed surface roughness decreases f* whereas positively skewed surface 

roughness increases f*. In Fig. 16 by fixing a=3.0, S=0.5, α=0.05, ε=0.05, l*=0.3, 𝜓=0.001 

and increasing values of σ the load carrying capacity W* increases. The coefficient of 

friction f* decreases for increasingly negative values of α and ε whereas the coefficient of 

friction f* increases for the increasingly positive values of α and ε. Also, f* increases for 

increasing σ values. In Fig. 17 by fixing a=3.0, S=0.5, σ=0.1, α=0.05, ε=0.05, 𝛽=0.3, l*=0.3 

and increasing values of 𝜓 the coefficient of friction f* found to be increasing. 

 

3.4 Centre of pressure 

 

The graphs illustrated in Figs. 18 to 22 represent variation in the non-dimensional center of 

pressure x* against the curvature parameter 𝛽 with the effect of squeeze velocity ḣ≠0. It can 

be seen that the center of pressure shifts towards the outlet edge for negatively skewed 

surface roughness, whereas it shifts towards the inlet edge for positively skewed surface 

roughness.   
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Fig. 2. Variation of non-dimensional pressure 

p* with x* for different values of couple stress 

l*, with a=3.0, S=0.5, σ=0.1, α=0.05, ε=0.05, 𝛽 

=0.3, 𝜓=0.001. 

 
Fig. 3. Variation of non-dimensional pressure 

p* with x* for different values of α with a=3.0, 

S=0.5, l*=0.3, σ=0.1, ε=0.05, 𝛽 =0.3, 𝜓=0.001. 

 
Fig. 4. Variation of non-dimensional pressure 

p* with x* for different values of ε with a=3.0, 

S=0.5, l*=0.3, σ=0.1, α =0.05, 𝛽 

=0.3, 𝜓=0.001. 

 
Fig. 5. Variation of non-dimensional pressure 

p* with x* for different values of σ with a=3.0, 

S=0.5, l*=0.3, ε=0.05, α=0.05, 𝛽 

=0.3, 𝜓=0.001. 

 

 
Fig. 6. Variation of non-dimensional pressure 

p* with x* for different values of 𝜓 with a=3.0, 

S=0.5, l*=0.3, ε =0.05, α =0.05, 𝛽 =0.3, σ =0.1 

 
Fig. 7. Variation of non-dimensional load W* 

with 𝛽 for different values of couple stress l* 

with a=3.0, S=0.5, σ=0.1, α=0.05, ε=0.05, 

𝜓=0.001. 
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Fig. 8. Variation of non-dimensional load W* 

with 𝛽 for different values of αwith a=3.0, 

S=0.5, σ=0.1, l*=0.03, ε=0.05, 𝜓=0.001. 

 
Fig.  9. Variation of non-dimensional load W* 

with 𝛽 for different values of ε, with a=3.0, 

S=0.5, σ=0.1, l*=0.03, α =0.05, 𝜓=0.001. 

 
Fig. 10. Variation of non-dimensional load W* 

with 𝛽 for different values of σ, with a=3.0, 

S=0.5, ε =0.05, l*=0.03, α =0.05,  𝜓=0.001. 

 
Fig. 11. Variation of non-dimensional load W* 

with 𝛽 for different values of with 𝜓, a=3.0, 

S=0.5, ε =0.05, l*=0.03, α =0.05, σ=0.1. 

 
Fig. 12. Variation of the non-dimensional load 

W* with a* for different values of ḣ with 

s*=0.3, S=0.5, l* =0.3, 𝛽 =0.3, 𝜓=0.001, h0 

=0.02, L=0.005 and U=1.0. 

 
Fig. 13. Variation of non-dimensional 

coefficient of friction f* with 𝛽 for different 

values of couple stress l*, with, a=3.0, S=0.5, ε 

= 0.05, α =0.05, σ=0.1, 𝜓=0.001. 
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Fig. 14. Variation of non-dimensional 

coefficient of friction f* with 𝛽 for different 

values of α, with, a=3.0, S=0.5, l*=0.3, ε =0.05, 

σ=0.1, ψ=0.001. 

 
Fig. 15. Variation of non-dimensional 

coefficient of friction f* with 𝛽 for different 

values of ε, with, a=3.0, S=0.5, l*=0.3, α =0.05, 

σ=0.1,  𝜓=0.001. 

 
Fig. 16. Variation of non-dimensional 

coefficient of friction f* with 𝛽 for different 

values of σ, with, a=3.0, S=0.5, l*=0.3, α 

=0.05, ε =0.05,  𝜓=0.001. 

Fig. 17. Variation of non-dimensional 

coefficient of friction f* with 𝛽 for different 

values of 𝜓, with, a=3.0, S=0.5, l*=0.3, α =0.05, 

ε =0.05, σ=0.1. 

 
Fig. 18. Variation of non-dimensional center of 

pressure x*with 𝛽 for different values of couple 

stress l*, with, a=3.0, S=0.5, ε =0.05, α =0.05, 

σ=0.1,𝜓=0.001. 

 
Fig. 19. Variation of non-dimensional center of 

pressure x*with 𝛽 for different values of α, with, 

a=3.0, S=0.5, l*=0.3, ε =0.05, σ=0.1, 𝜓=0.001. 
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Fig. 20. Variation of non-dimensional center of 

pressure x* with 𝛽 for different values of ε, 

with, a=3.0, S=0.5, l*=0.3, α =0.05, σ=0.1, 

𝜓=0.001. 

 

 
Fig. 21. Variation of non-dimensional center of 

pressure x* with 𝛽 for different values of σ, 

with, a=3.0, S=0.5, l*=0.3, α =0.05, ε =0.05, 

𝜓=0.001. 

 
Fig. 22. Variation of non-dimensional center of 

pressure x* with 𝛽 for different values of 𝜓, 

with, a=3.0, S=0.5, l*=0.3, α =0.05, ε =0.05, σ 

=0.1. 

 

 

4. Conclusions  

 

In this chapter, the performance of rough porous pivoted slider bearings based on Darcy’s 

law and Stoke’s micro-continuum theory was studied. Based on the numerical computation 

of the results for various values of the dimensionless parameters the   following important 

conclusions are drawn: 

The use of couple stresses in the lubricant due to microstructure additives provides an 

increased load-carrying capacity and decreased coefficient of friction. The steady load 

carrying capacity decreases with increases in the value of permeability. The center of 

pressure shows normal behavior with permeability parameters. The presence of negatively 

(positively) skewed surface roughness provides an increase (decrease) in load-carrying 

capacity. The load-carrying capacity of bearings increases with increasing values of the 

curvature parameter but at the same time coefficient of friction also increases.  
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