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Abstract 

This study intends to determine the inter-relationship among carbon emissions and economic 

development from agriculture in Jharkhand, during 2005-2022, utilizing decoupling and 

decomposition analysis. The decoupling analysis revealed a weakly decoupled state for 7 

years, followed by strongly decoupled and strongly coupled states for 3 years, an expansively 

coupled state for 2 years, a weakly coupled state for one year, and a recessively decoupled 

state for one year. This suggests that there was no consistent evolutionary path from the 

coupled state to the decoupled state. However, the empirical findings of the Log Mean Divisia 

Index method suggest that the rise in agricultural carbon emissions from 2005 to 2022 is 

primarily due to the effects of agricultural economics followed by the agricultural labor force. 

Additionally, factors such as the intensity of agricultural carbon emissions and agricultural 

structure tend to decrease agricultural carbon emissions, with the intensity of emissions 

having the largest impact on reducing emissions. Furthermore, the combination of decoupling 

and decomposition analysis suggests that the environmental pressure declined with a rise in 

the agricultural economy in 2008, 2009, and 2018. The intensity of agricultural carbon 

emissions significantly contributed to reducing overall emissions during these years. Overall, 

efforts to reduce carbon emissions from the agricultural sector in Jharkhand are still 

ineffective. 
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1. Introduction 

 

Global climate change is causing serious environmental problems worldwide due to 

greenhouse gas emissions driving global warming [1]. Modern agricultural activities 

significantly impact greenhouse gas emissions because of their substantial material inputs, 

high energy consumption, and levels of pollutant discharge. Food safety and climate 

emergency driven by greenhouse gas (GHG) emissions are critical global issues today. 

Based on the International Panel on Climate Change (IPCC) report, they accounted for 
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around 13 % of carbon dioxide (CO2), 44 % of methane (CH4), and 81 % of nitrous oxide  

(N2O) emissions from human activities globally during 2007-2016, representing 23% of 

total greenhouse gas emissions from the agriculture, forestry, and other land uses sector. 

Suppose, they consider emissions from both pre-and post-production in the global food 

system, in that case, emissions are estimated to be 21-37 % of total greenhouse emissions 

from the agriculture, forestry, and other land uses (AFOLU) sector globally [2]. 

 India's net greenhouse gas emissions rose from 1585.51 million tonnes in 2005 to 

2952.87 million tonnes in 2018. Net greenhouse emissions from the agriculture, forestry, 

and other land uses (AFOLU) sector were 16 % in 2005 and 6 % in 2018, respectively. It 

indicates that net agriculture, forestry, and other land uses (AFOLU) emissions declined at 

a rate of 3.09 %, from 256.70 million tonnes of CO2 equivalent in 2005, to 170.58 million 

tonnes of CO2 equivalent in 2018 [3]. On the other hand, Jharkhand’s net greenhouse 

emissions rose from 60.47 million tonnes CO2 equivalent in 2005 to 115.20 million tonnes 

CO2 equivalent in 2018, in which the share net agriculture, forestry, and other land uses 

(AFOLU) sector emissions increased at a rate of 3.41 % from 6.29 million tonnes CO2 

equivalent in 2005 to 9.72 million tonnes CO2 equivalent in 2018 [4]. 

 In Jharkhand, the primary farming method is rainfed agriculture, with only about 10–12 

% of the net cultivation area being served by a limited irrigation system. The rainfall pattern 

of Ranchi, Jharkhand has an increasing trend with a negative correlation with temperature 

[5]. These agricultural challenges are contributing to a considerable food grain shortage in 

Jharkhand. Over the 21st century, the production of crops rose from 2.02 million tonnes to 

7.83 million tonnes, indicating a compound annual growth rate of 106 %. Additionally, 

fertilizer consumption in gross cropped areas has increased from 44.1 kg per hectare in 2001 

to 109 kg per hectare in 2022, which translates to a compound annual growth rate of 104 

%. In the past two decades, there has been a significant increase in the use of chemical 

products in agriculture. This rise has contributed to higher net emissions from agricultural 

activities, posing a major challenge to achieving sustainable agricultural development [6]. 

 For the empirical findings on agricultural carbon emissions versus the produce value 

from agriculture, the concept of decoupling elasticity, and the decomposition method were 

used to examine the inter-relationships between carbon emissions and value-added from 

agricultural activities. In general, low-carbon agriculture is a modern farming method that 

increases output rapidly while using minimal chemical products and producing nominal 

carbon emissions, achieved through technological, policy, and management enhancements 

[7,8]. For example, He et al. [9] propose in their study that enhancing low carbon efficiency 

requires adapting the improvement and dissemination of appropriate agricultural green 

production technologies to local production conditions. They also advocate for improving 

the farm mechanization and Innovation system. However, many empirical studies indicate 

the interrelation between environmental deterioration and economic development [10-17]. 

Moreover, various researchers have investigated the connection between carbon emissions 

and economic development from agriculture [18-20]. For instance, an analysis conducted 

by Gessesse et al. [18] in China revealed an inverted U-shape curve between CO2 emissions, 

and Gross Domestic Product. Also, this study suggests there is no evidence of long-term 
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causality from CO2 emissions, and the income to energy utilization, which implies that the 

structure of economic development should be restructured towards a more energy-efficient 

and decarbonized economy. Sui et al. [19] noted that the growth of the agrarian economy 

has significantly contributed to the increase in carbon emissions from agriculture in Jilin 

province. Furthermore, the variations in agrarian carbon emissions have been influenced by 

economic policies, followed by environmental policies. On the other hand, Wang et al. [20] 

discovered an inverted U-shape curve correlation between agricultural economic growth 

and carbon emissions from agriculture in Henan Province, China over the period 2000-

2019. Furthermore, the characteristics of CO2-Environmental Kuznet Curve and decoupling 

state suggest that environmental policies have promoted decoupling. However, these 

policies faced time lags and lacked continuity, which could hinder efforts to reduce carbon 

emissions. Nonetheless, several quantitative studies show a connection between agricultural 

economic expansion and carbon emissions [21,22]. This study investigates the inter-

relationships between production level and carbon emissions from the agricultural sector in 

Jharkhand over the period 2005-2022. This type of research has been conducted on a larger 

scale, but agricultural production is significantly affected by climate change. Consequently, 

studying climate variables on a broader scale may not be particularly useful [23,24]. In 

contrast, this study was performed on a regional scale, making it more effective in 

understanding agricultural carbon emissions associated with grain production. Research on 

the impact of grain production on agricultural carbon emissions in Jharkhand is essential 

for climate sustainability. Agriculture, especially rice cultivation and fertilizer use, 

significantly contributes to greenhouse gas emissions. Understanding these emissions is 

crucial for developing climate-smart policies and low-carbon farming techniques. This 

study can also improve soil health, enhance farmer resilience, and guide carbon credit 

programs. A comparative analysis with other states can help optimize sustainable 

agricultural practices. Overall, this research is essential for food security, rural 

development, and environmental sustainability in Jharkhand. It will assist the state in 

transitioning toward a low-carbon and climate-resilient agricultural future. 

 The rest of this paper is structured in the following manner: the study region is described 

in Section 2, the technique and data collection are covered in Section 3, the empirical 

analysis results are shown in Section 4, and the study is concluded in the last section. 

 

2. Description of the Study Area 

 

Jharkhand is a state in the eastern India, established on 15th November 2000. The state 

spans an area of 79,714 square kilometers, with 29.61 % covered by forests. Jharkhand 

possesses about 40 % of India's total mineral resources and is often referred to as the "Land 

of Forests". Ranchi serves as its capital. The state's average elevation above mean sea level 

is 909 feet. For the financial year 2023-24, the Gross Domestic Product is approximately 

Rs. 4.23 lakh crore, with a per capita income of Rs. 1,07,336. Jharkhand is the fastest-

growing state economy in terms of Gross Domestic Product. According to the 2011 census, 
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Jharkhand has a population of 32,988,134, with 24.05 % living in urban areas and 75.95 % 

in rural areas. Fig. 1 displays the study area's location map. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Location map of Jharkhand, India. 

 

3. Material and Methods 

 

In this study, the interrelation between production level and carbon emissions from 

agricultural activities is examined using the decouple and decomposition methods. The data 

for the output value and gross output value from grain production has been collected from 

the Directorate of Economics and Statistics, Government of Jharkhand at the constant price 

2011-12. The agricultural sector’s carbon emissions dataset for the period 2005-2022 is 

taken from GHG Platform-India. The data on the agricultural labor force is collected from 

the “Handbook of Statistics on Indian States, 2023”. 

 

3.1. Linear regression model 

 

The analysis of variance is a statistical tool that helps to study the impact of one or more 

independent variables on the dependent variable. The dependent variable may be either 

quantitative or qualitative. Linear regression [25] is a statistical model that examines the 

linear relationship between a dependent variable (say) ‘E’ and one or more independent 

variables (say) ‘G’. This simple linear regression model can be expressed as 

E = α + βG                                                                                                                (1) 

In logarithmic form, equation (1) can be written as 

ln E = α + β ln G                                                                                                                (2) 

where ‘α’, and ‘β’ represents the intercept and slope of the line, respectively, and ‘ln’ refers 

to the natural logarithmic function.  

 

3.1.1. Coefficient of determinaton (𝑅2) 

 

The coefficient of determination or R-square (R2) is a measure that indicates the goodness 

of fit of a model. It always lies between the values 0 and 1. The general equation of R-

squared is defined as 
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R2 = 1 −
RSS

TSS
                                                                                                                (3) 

where, ‘RSS’ is the residual or error sum of squares, and ‘TSS’ is the total sum of squares. 

An R-squared close to 1 indicates a strong correlation between the model and the data, while 

an R-squared close to 0 indicates that the model is no better than fitting the mean. 

 

3.2. Decoupling degrees  

 

The decoupling index [26] is defined as follows 

DIt =
∆C

∆P
=

(
𝐶𝑡−𝐶𝑡−1

𝐶𝑡−1
)

(
𝑃𝑡−𝑃𝑡−1

𝑃𝑡−1
)

⁄                                                                                     (4) 

where DIt represents the change in one unit of CO2 emissions (C) with respect to produce 

value (P) from agriculture during the initial phase (t − 1), and the final phase (t). 

Ct−1and Ct represent the agricultural carbon emissions at the initial, and the final phases, 

respectively, and Pt−1 and Pt indicates the agricultural produce value at the initial, and the 

final phases, respectively. ∆C and ∆P represent the change rates of agricultural carbon 

emissions, and production value between the final and initial phases, respectively. 

 
Table 1. Decoupling degrees. 
 

Decoupling State 
∆C 

(%) 
∆P (%) DI Relationship 

Expansively Coupled ∆C > 0 ∆P > 0 DI > 1 
The economy is growing, but the 

environment is deteriorating rapidly. 

Strongly Coupled ∆C > 0 ∆P < 0 DI > 1 
The economy is declining, and the 

environment is worsening. 

Weakly Coupled ∆C > 0 ∆P < 0 0 < DI < 1 

The economic recession is occurring more 

quickly than the rate at which 

environmental conditions are improving. 

Weakly Decoupled ∆C > 0 ∆P > 0 0 < DI < 1 

Economic growth is occurring at a faster 

rate than the degradation of the 

environment. 

Strongly Decoupled ∆C < 0 ∆P > 0 DI < 1 
As the economy improves, the pressure on 

the environment decreases. 

Recessively Decoupled ∆C < 0 ∆P < 0 DI > 1 
The economy is shrinking, while the 

environment is improving. 

 

 The connection between the produce value and carbon emissions from agricultural 

activities is divided into six decoupling degrees based on the change rate of agricultural 

carbon emissions, agricultural produce value, and the decoupling index (Table 1). The 

decoupling degree model of agricultural carbon emissions and grain production is given in 

Fig. 2. 

 The recessive state indicates that agricultural carbon emissions decrease more rapidly 

than the agricultural produce value over the same phase, and the expansive coupling 

indicates that the value of agricultural production increases concurrently with higher carbon 

emissions in agriculture. Weak decoupling occurs when both agrarian carbon emissions and 
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produce value from agriculture increase simultaneously, while weak coupling means that 

agrarian carbon emissions decrease more slowly than agricultural produce value increases. 

However, strong decoupling suggests that improvements in agrarian carbon emissions 

become negligible or even negative as agricultural production value increases, and strong 

coupling indicates increased carbon emissions from agriculture, resulting in a decline in 

farm production value simultaneously (Table 1). 

 

 
 

Fig. 2. Decoupling degree model of agrarian carbon emissions and produce value from agriculture. 

 

3.3. Decomposition method: Log Mean Divisia Index (LMDI) 

This method [27] incorporates both multiplicative and additive factor decomposition, which 

might be interchanged. The variation in agrarian carbon emissions from the initial phase to 

the final phase can be attributed to four factors: the intensity of agrarian carbon emissions, 

agrarian structure, agrarian economy, and agrarian labor force effects. 

C =  
C

P
×

P

GP
×

GP

L
× L 

C = CIE × SE × EE × LE                                                                                                  (5) 

where CIE refers to the agrarian carbon emissions intensity effect (in tons/Rs.), and is 

defined as the ratio of carbon emissions (C) from agriculture to the value of agricultural 

production level (P); SE represents agrarian structure effect (%), which indicates the 
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proportion of production level (P) within the total production level (GP) from agriculture; 

EE denotes agrarian economic effect and is defined as the ratio of total produce value (GP) 

from agriculture to the agricultural labor force (L) (Rs. per person), and LE represents the 

agrarian labor force effect (here, LE = L) (in person). 

According to the principle of additive decomposition, the overall impact of carbon 

emissions from agriculture can be expressed as follows: 

∆Ctot. = Ct − Ct−1 

∆Ctot. = ∆CIE + ∆SE + ∆EE + ∆LE                                                                      (6) 

Where ∆CIE denotes the variation in agrarian carbon emissions intensity effect, which 

represents the ratio of the annual variation in agricultural carbon emissions to the change in 

agricultural production value; ∆SE denotes the annual variation in the proportion of 

agricultural produce value relative to the total gross agricultural produce value; ∆EE 

measures the annual variation in total agrarian produce value per agrarian labor force unit; 

and ∆LE implies that annual variation in the total agrarian labor force. Also, each effect 

defined in the above relation is given by 

∆CIE =  ∑
(Ct−Ct−1)

(ln Ct−ln Ct−1)
ln (

(CIE)t

(CIE)t−1
)                                                                      (7) 

 

∆SE =  ∑
(Ct−Ct−1)

(ln Ct−ln Ct−1)
ln (

(SE)t

(SE)t−1
)                                                                                    (8) 

 

∆EE =  ∑
(Ct−Ct−1)

(ln Ct−ln Ct−1)
ln (

(EE)t

(EE)t−1
)                                                                                    (9) 

 

∆LE =  ∑
(Ct−Ct−1)

(ln Ct−ln Ct−1)
ln (

(LE)t

(LE)t−1
)                                                                                  (10) 

 

4. Empirical Findings 

 
Table 2. Descriptive statistical analysis of variables. 
 

Variable Unit Mean Maximum Minimum Std. Dev. 

C Tonnes 7667092 10303058 5952609 1586698 

P Lacs (Rs.) 1692054 2448064 835736 459009 

GP Lacs (Rs.) 2175292 3058653 1047948 614253 

CIE Tonnes/Lacs 4.78711 7.522894 3.293549 1.32335 

SE % 0.78111 0.84 0.65 0.04862 

EE Rs. Per Capita 8222.89 11362 4638 1821.79 

LE 10,000 persons 2608.17 2957 2259 219.277 

 

 The descriptive statistical analysis of the raw dataset of selected variables, in which ‘C’ 

refers to agricultural carbon emissions; ‘P’ and ‘GP’ represent the production value and the 

gross production value from agriculture, respectively; ‘CIE’ refers to the agrarian carbon 

emission intensity effect; ‘SE’refers to the agrarian structure effect; ‘EE’ represents agrarian 

economic effect; ‘LE’ refers to the agrarian labor force (Table 2). 
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4.1. Result of regression analysis 

 

The agricultural carbon emissions rose from 6.29 Mt (in Million Tonnes) in 2005 to 9.71 

Mt (in Million Tonnes) in 2022, with an average annual growth rate of 3.013 % [Fig. 3]. 

The agriculture output value increased from 8.36 Lacs rupees in 2005 to 23.6 Lacs rupees 

in 2022, with an average annual growth rate of 7.05 % (Fig. 4). Based on regression 

analysis, there is a positive impact of grain production on agrarian carbon emissions for the 

period 2005-2022. This suggests that for every 1% increase in grain production, there is a 

corresponding 35 % increase in agrarian carbon emissions (Table 3). 

 According to the estimated result, the change features in both production level and 

carbon emissions from agriculture are represented in the scatter plot (Fig. 5). However, this 

does not illustrate any underlying relationships between agricultural carbon emissions and 

economic growth in agriculture. It is essential to determine the range to which carbon 

emissions can be separated from produce value from agriculture; thus, a decoupling analysis 

will be conducted. 

 

 
 

Fig. 3. Jharkhand’s agricultural CO2 emissions and growth rates during 2005-2022. 

 

 
Fig. 4. Jharkhand's agricultural output value and growth rates during 2005-2022. 
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Table 3. An estimated result of the regression model. 
 

Equation: ln(C) = Const. +αln(p) 

Variable Coefficient t-Statistic Prob.   

ln (p) 0.351678 2.55734 0.0211 

Const. 10.80376 5.49252 0.01 

F-statistic 6.54001     

Prob(F-statistic) 0.021088     

 

 
Fig. 5. Carbon emissions and produce value from agriculture in Jharkhand, India. 

 

4.2.t Results of the decoupling analysis 

 

Considering the criteria of decoupling degrees (Table 2 and Fig. 2), the outcomes of the 

decoupling analysis of agrarian carbon emissions related to production value from 

agriculture are shown in Table 4 and Fig. 6. There are six types of decoupling degrees 

observed in Jharkhand over the period 2005-2022. These are as follows: Recessive 

decoupling, which occurred in one year (2010); Strong decoupling, which took place over 

three years (2008, 2009, and 2018); Weak decoupling, experienced for seven years (2006, 

2007, 2011, 2012, 2013, 2017, and 2021); Expensive coupling, which was noted for two 

years (2015 and 2020);  Strong coupling, observed over three years (2014, 2016, and 2022); 

Weak coupling, which occurred in one year (2019).  

 The combined duration of the recessive, strong, and weak decoupling stages over the 

chosen period is ten years, which is a prominent sign of the connection between production 

level and carbon emissions from agriculture (Table 4). 

 
Table 4. Decoupling states in agrarian carbon emissions in Jharkhand, India. 
 

Year 

Change rate in 

agricultural 

carbon emissions 

(∆C %) 

Change rate 

in agricultural 

output value 

(∆P %) 

Decoupling 

Index (DI) 
Decoupling States 

2005-06 0.060 0.084 0.710 Weakly decoupled 

2006-07 0.040 0.175 0.231 Weakly decoupled 

2007-08 -0.010 0.148 -0.065 Strongly decoupled 
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2008-09 -0.067 0.251 -0.266 Strongly decoupled 

2009-10 -0.071 -0.059 1.207 Recessively decoupled 

2010-11 0.025 0.115 0.221 Weakly decoupled 

2011-12 0.014 0.135 0.101 Weakly decoupled 

2012-13 0.035 0.068 0.510 Weakly decoupled 

2013-14 0.017 -0.027 -0.621 Strongly coupled 

2014-15 0.051 0.048 1.058 Expansively coupled 

2015-16 0.383 -0.179 -2.134 Strongly coupled 

2016-17 0.090 0.221 0.405 Weakly decoupled 

2017-18 -0.057 0.046 -1.220 Strongly decoupled 

2018-19 -0.075 -0.106 0.714 Weakly coupled 

2019-20 0.027 0.001 19.684 Expansively coupled 

2020-21 0.026 0.314 0.083 Weakly decoupled 

2021-22 0.025 -0.037 -0.678 Strongly coupled 

 

4.2.1. Decoupling states 

 

Strong decoupling occurs when agricultural produce value changes at a positive rate, 

agricultural carbon emissions change at a negative pace, and a negative decoupling 

elasticity. It implies that the model of agricultural development, which formerly relied on 

high emissions and inputs to achieve rapid economic expansion, is now shifting to one that 

emphasizes reduced emissions and inputs. As a result, there is less pressure on the 

ecological environment in rural areas. The strong decoupling state is observed for the years 

2008, 2009, and 2018 wherein the agricultural carbon emission decreased by 1 %, 7 %, and 

6 %, respectively and the agricultural production increased by 15 %, 25 %, and 5 %, 

respectively. At these three time points, special events played a role in the significant strong 

decoupling.  

 Weak decoupling describes a situation where both carbon emissions and produce value 

in agriculture increase at a positive rate, with the decoupling index falling between 0 and 1. 

This state persisted for 7 years but was not consistent throughout the selected period, 

occurring in the years 2006, 2007, 2011, 2012, 2013, 2017, and 2021. This suggests that the 

implementation of numerous laws and initiatives is somewhat limiting the increase in 

carbon emissions from agriculture. However, the absolute reduction in carbon emissions 

during this period is smaller than the growth in agricultural economic output, leading to a 

continued increase in agricultural carbon emissions. Therefore, additional measures to 

reduce carbon emissions should be implemented. 

 The recessive decoupling occurred in 2010, with a change rate of carbon emissions and 

produce value at ‘-0.07’ and ‘-0.06’ from agriculture, respectively and the decoupling index 

is ‘1.21’. It concludes that the agricultural carbon emissions reduction rate is faster than the 

rate of declining agricultural output value. 

 

4.2.2. Coupling states 

 

The coupling states occurred for 6 years in the selected period, which is not a better 

indication of the relationship among the selected variables. Strong coupling refers to the 
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worst scenario in decoupling analysis where the agricultural production value declines 

while agrarian carbon emissions increase. For 3 years, strong coupling occurred 

intermittently in 2014, 2016, and 2022. This suggests that agricultural output value 

decreased due to specific factors like drought, while agricultural carbon emissions rose 

rapidly. 

 There is a significant weak coupling due to low willingness among farmers to grow 

crops, resulting in a negative change in the produce value and carbon emissions from 

agriculture, respectively. The weak coupling is evident in 2019, indicating that the decline 

in agricultural carbon emissions was slower than the decline in agricultural output value. 

 
Fig. 6. Agriculture's decoupling distribution. 

 

 
Fig. 7. Decoupling index in Jharkhand, India during 2005-2022. 
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is 1.06 in 2015 and 19.68 in 2020. This suggests that grain production led to increased 

agrarian carbon emissions in these specific years. 

 The variance in decoupling elasticity values is displayed in Figs. 6 and 7. The decoupling 

elasticity varies according to the several features of agricultural produce value and carbon 

emissions. Furthermore, decoupling occurred only at specific nodes, in the years 2008, 

2009, and 2018, followed by coupling in 2019 and 2020, decoupling in 2021, and coupling 

in 2022. As a result, there is no stable decoupling between produce value and carbon 

emissions from agriculture during the selected period, and typically, carbon emissions rise 

alongside the growth in agricultural economic value. 

 

4.3. Results of the Log Mean Divisia Index decomposition method 

 

According to equations (5)-(10), the decomposition results of the agricultural carbon 

emissions in Jharkhand, India from 2005 to 2022 are given in Table 5 and Figs. 8 and 9. 

 The overall variation in agrarian carbon emissions (∆Ctot.) is 3.42 million tonnes 

between 2005 and 2022. The main factors contributing to agrarian carbon emissions are the 

agrarian economic effect (∆EE), and labor force effect (∆LE), with contributions of 6.31 

million tonnes and 2.12 million tonnes, respectively, while the intensity effect of 

agricultural carbon emission(∆CIE) and the agricultural structure effect (∆SE) are the 

negative contributors to agrarian carbon emissions, with cumulative contributions of -4.74 

million tonnes and -0.27 million tonnes, respectively. This suggests that agricultural 

development significantly contributes to agrarian carbon emissions in Jharkhand, India. 

Furthermore, it has been observed that the strength of carbon emissions has the greatest 

hindering influence on the change in agrarian carbon emissions, and the agricultural 

structure effect is also a noteworthy negative factor. The intensity effect of agrarian carbon 

emissions has consistently been an inhibiting factor of agrarian carbon emissions for the 

first seven years after that it is not stable. Additionally, the changing trend of the farming 

structure effect suggests that its inhibiting factor of agrarian carbon emissions is not 

consistent. The combined impact of agricultural carbon emissions intensity and structural 

factors is insufficient to balance the agricultural economic impact between 2005 and 2022. 

Four decomposition factors exhibited varying quantities and directional influences of 

agrarian carbon emissions in Jharkhand, India between 2005 and 2022. 

 
Table 5. Decomposition results of agricultural carbon emission changes in Jharkhand, India (in 

Million Tonnes (105 tons)). 
 

Year 

Carbon 

Emission 

Intensity 

Effect (∆CIE) 

Structure 

Effect (∆SE) 

Economic 

Effect (∆EE) 

Labor Force 

Effect (∆LF) 

Total Effect 
(∆Ctot.) 

2005-06 -0.15 -0.06 0.46 0.12 0.38 

2006-07 -0.83 -0.61 1.59 0.12 0.27 

2007-08 -1.02 0.68 0.15 0.12 -0.07 

2008-09 -1.94 0.32 1.05 0.11 -0.46 

2009-10 -0.08 -0.20 -0.28 0.10 -0.46 
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2010-11 -0.50 0.02 0.54 0.10 0.15 

2011-12 -0.70 0.02 0.66 0.10 0.08 

2012-13 -0.20 0.06 0.26 0.10 0.22 

2013-14 0.28 -0.06 -0.22 0.10 0.11 

2014-15 0.02 -1.47 1.68 0.10 0.33 

2015-16 4.21 1.10 -2.82 0.12 2.62 

2016-17 -1.13 -0.10 1.93 0.15 0.85 

2017-18 -1.04 0.24 0.07 0.15 -0.58 

2018-19 0.31 -0.39 -0.79 0.14 -0.73 

2019-20 0.23 0.92 -1.04 0.13 0.24 

2020-21 -2.31 0.39 2.03 0.13 0.24 

2021-22 0.60 -0.83 0.33 0.13 0.24 

2005-22 -4.74 -0.27 6.31 2.12 3.42 

 

4.4. Results of integrating decoupling with decomposition analysis 

 

The strong decoupling states appeared for three years: 2008, 2009, and 2018. The 

agricultural economic growth rate of the strong decoupling is a positive value (∆P > 0), 

while the change rate of agricultural carbon emissions is a negative value (∆C < 0). Based 

on the LMDI method, positive agricultural economic effect (∆EE > 0) drove a rise in 

agrarian carbon emissions, while the intensity of negative agrarian carbon emissions 

(∆CIE < 0) inhibited them. Further, it has been observed that ∆CIE inhibiting power 

exceeded ∆EE driving power in agrarian carbon emissions in the same phase, neutralizing 

agrarian carbon emissions driven by the agrarian economic effect (∆EE). Therefore, the 

intensity of agrarian carbon emissions significantly contributed to emission reductions 

during these years, resulting in a strong decoupling. This suggests that the environmental 

pressure declined with a rise in the economic structure for the same period. 

 Weak decoupling states occurred for 7 years during the study period: 2006, 2007, 2011, 

2012, 2013, 2017, and 2021. In each weak decoupling state, both the rate of change of 

produce value and carbon emissions from agriculture are positive (∆P, ∆C > 0). On the 

other hand, the decomposition analysis indicates that the agricultural sector has a positive 

economic effect (∆EE > 0), increasing agrarian carbon emissions. However, the intensity 

effect of carbon emissions from agriculture (∆CIE < 0) has a negative value, which limits 

the rise in agrarian carbon emissions, similar to what occurs in the strong decoupling state 

to some extent. 

 On further analysis, unlike the strong decoupling state, the driving power of agricultural 

economic effect (∆EE) is stronger than the inhibiting power of intensity effect of agrarian 

carbon emission (∆CIE) in agrarian carbon emissions for the years: 2006, 2007, 2011, 2013, 

and 2017, the inhabiting power of agrarian carbon emission intensity effect is insufficient 

to contend with agrarian economic impact. However, in the years 2012 and 2021, the 

inhibiting influence of ∆CIE surpassed the driving power of ∆EE in agrarian carbon 

emissions, similar to a strong decoupling stage. Notably, the impact of the agrarian labor 

force is positive, whereas the agricultural structure effect does not seem to show a consistent 

variation trend. 
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 Regarding the recessive decoupling state, which occurred in 2010, both the rate of 

change of agrarian carbon emissions and output value from grain production have a negative 

value (∆C, ∆P < 0). As the result of decomposition analysis, both the intensity effect of 

agrarian carbon emission (∆CIE < 0) and agrarian economic effect (∆EE < 0) have a 

negative value, which inhibits agricultural carbon emissions. Additionally, the agrarian 

structure effect (∆SE < 0) and agrarian labor force effect (∆LE > 0) have negative and 

positive values, respectively. The combined effect of inhibiting powers of ∆CIE, ∆SE, and 

∆EE, reduces the driving power of ∆LE in agrarian carbon emissions for the same time node. 

It suggests that the agricultural carbon emissions decline in the recessive decoupling state. 

 Strong coupling states occurred in 2014, 2016, and 2022, due to the absence of long-

term incentive policies for grain production. In these time nodes, the change rate of agrarian 

carbon emissions is positive (∆C > 0), and the change rate of produce value from 

agriculture is negative (∆P < 0). The decomposition analysis suggests that in 2014 and 

2016, a positive agricultural carbon emission intensity effect (∆CIE > 0), with the 

contribution of 0.28 million tons and 4.21 million tonnes of agrarian carbon emissions, 

while the negative agrarian economic impact (∆EE < 0), with the contribution of -0.22 

million tonnes and -2.82 million tonnes of agrarian carbon emissions, respectively. The 

agricultural structure effect has a negative (2014) and positive (2016) value, while the 

agrarian labor force positively influences carbon emissions in agriculture for the same 

period. On the other hand, both the intensity effect of agrarian carbon emission  (∆CIE > 0) 

and agrarian economic effect (∆EE > 0) are positive driving factors of the rise in 

agricultural carbon emissions, with the contribution of 0.6 million tonnes and 0.33 million 

tonnes of agrarian carbon emissions in 2022. Additionally, the negative agricultural 

structure and positive agricultural labor force effects contributed to -0.83 million tonnes and 

0.13 million tonnes of agrarian carbon emissions. This concludes that the inhibiting power 

of the agricultural structure effect is not sufficient to pretend the rise of agricultural carbon 

emissions in 2022. Consequently, agricultural economic growth declined while agrarian 

carbon emissions increased during the same period. 

 The weak coupling state, which appeared in 2019, indicates that both rates of change of 

carbon emissions and produce value from agriculture are negative (∆C, ∆P < 0). On the 

other hand, decomposition analysis suggests that the strength of agrarian carbon emissions 

is positive (∆CIE > 0), which drives the rise in agrarian carbon emissions, while the 

agricultural economic effect is a negative value (∆EE < 0), which implies a reduction of 

carbon emissions from agriculture. Additionally, the agrarian structural effect (∆SE < 0) 

and the agrarian labor force effect (∆LE > 0) have negative and positive values. However, 

the total inhabiting power of the agricultural economic effect and agricultural structure 

effect is stronger than the total driving power of the intensity effect of agrarian carbon 

emission and agrarian labor force effect in 2019. This concludes that the inhibiting factor is 

sufficient to neutralize agrarian carbon emissions. It suggests that the agrarian carbon 

emissions decline in the weak coupling state. 
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Fig. 8. Analysis of the factors contributing to variations in agrarian carbon emissions in Jharkhand 

over the period 2005-2022. 

 

 
Fig. 9. The total impact of four factors on carbon emissions from agriculture in Jharkhand. 

 

 The expansive coupling state occurred for two-time nodes during the study period, in 

which the rate of change of agricultural carbon emissions (∆C > 0) and produce value 

(∆P > 0) are positive. On the other hand, decomposition analysis suggests that the positive 

driving factors are mainly the intensity of agricultural carbon emissions (∆CIE > 0), 

agrarian economic effect (∆EE > 0), and agrarian labor force effect (∆LE > 0) in the 

agrarian carbon emissions. In contrast, the agrarian structural impact (∆SE < 0) has the 

inhibiting power to decrease agrarian carbon emissions in 2015, meaning an insignificant 

inhibitory effect. However, in time point 2020, all the factors are positive driving factors of 

the agrarian carbon emissions, which caused for increase in the agricultural carbon 

emissions, except for the agricultural economic effect. 

 

5. Conclusion 

 

In this paper, we conducted the decoupling and decomposition analysis to examine the inter-

relationships between carbon emissions from agriculture and agrarian economic growth in 

Jharkhand, India during 2005-2022. The decoupling analysis revealed six decoupling states: 
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recessive decoupling (1 year), strong decoupling (3 years), weak decoupling (7 Years), 

expansive coupling (2 years), strong coupling (3 years), and weak coupling (1 year). While 

recessive, strong, and weak decoupling states were frequent, there was no clear pattern of 

transition from coupling to decoupling. This indicates the pressure and challenges faced by 

the state as it aims to develop low-carbon agriculture. 

 Based on the LMDI method, the results indicate that the increase in agricultural carbon 

emissions is significantly driven by the agricultural economic effect (∆EE) followed by the 

agricultural labor force effect (∆LE). On the other hand, factors such as the agricultural 

carbon emission intensity effect (∆CIE) and agricultural structure effect (∆SE) tend to 

inhibit agrarian carbon emissions, with the intensity effect of agrarian carbon emissions 

being the primary inhibiting factor. Furthermore, when combining decoupling with 

decomposition analysis, it has been observed that the environmental pressure declined with 

a rise in the agricultural economic structure for 2008, 2009, and 2018. The intensity of 

agrarian carbon emissions has played a significant role in reducing emissions during these 

years. It also suggests that agricultural carbon emissions declined in 2010 and 2019 due to 

recessive decoupling and weak coupling states. Overall, the efforts aimed at reducing 

carbon emissions from the agriculture sector in Jharkhand are still ineffective. 
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