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Abstract 
 

Let M be a 2-torsion free Γ-ring satisfying an assumption and let σ,τ be centralizing 
epimorphisms on M. Let f and g be (σ, τ)-derivations on M such that f(x)αx + xαg(x) = 0 for 
all x∈M, α∈Γ. Then we prove that f(u)β[x, y]α = g(u)β[x, y]α = 0 for all x, y, u∈M, α,β∈Γ 
and f, g map M into its center. 
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1. Introduction 
 

Let M and Γ be additive abelian groups. M is called a Γ-ring if for all x,y,z∈M, α,β∈Γ the 
following conditions are satisfied:  

(ii)   (x + y)αz = xαz + yαz,  x(α + β)y = xαy + xβy, 
                 xα(y + z) = xαy  + xαz,  

(iii)   (xαy)βz = xα(yβz). 
 

For any x, y∈M, the notation [x, y]α and (x, y)α will denote xαy − yαx and xαy + yαx 
respectively. We know that [xβy, z]α = xβ[y, z]α + [x, z]αβy + x[β,α]zy and [x, yβz]α = yβ[x, 
z]α + [x,y]αβz + y[β,α]xz, for all x,y,z∈M and for all α,β∈Γ. We shall take an assumption 
(*) xαyβz = xβyαz for all x,y,z∈M, α,β∈Γ. Using this assumption the identities [xβy, z]α= 
xβ[y,z]α + [x,z]αβy and [x,yβz]α = yβ[x,z]α + [x,y]αβz, for all x,y,z∈M and for all α,β∈Γ are 
used extensively in our results. An additive mapping d from M into itself is called a 
derivation if d(xαy) = xαd(y) + d(x)αy for all x, y∈M, α∈Γ. A mapping f from M into itself 
is commuting if [f(x), x]α = 0, and centralizing if [f(x), x]α ∈Z(M) for all x∈M, α∈Γ. We 
call a mapping f : M → M central if f(x)∈Z(M) for all x∈M. Recall that if f is an additive 
commuting mapping from M into itself, then a linearization of [f(x), x]α = 0 yields [f(x), y]α 
= [x, f(y)]α for all x, y∈M, α∈Γ. 

                                                 
* Corresponding author: kkdmath@yahoo.com 

Available Online 

Publications 
 

J. Sci. Res. 3 (3), 515-524 (2011) 

JOURNAL OF  
SCIENTIFIC RESEARCH 

www.banglajol.info/index.php/JSR  



516 On a Pair of (σ, τ)-derivations 
 

Let σ,τ be mappings of M into itself. An additive mapping d of M into itself is called a 
(σ, τ)-derivation if d(xαy) = σ(x)αd(y) + d(x)ατ(y) for all x, y∈M, α∈Γ. If τ = 1, where 1 is 
the identity mapping of M, then d is called a σ-derivation or a (σ, 1)-derivation or a skew-
derivation. Of course, a (1, 1)-derivation or a 1-derivation is a derivation. 

In classical ring theories, Chaudhry and Thaheem [1] worked on (α, β)-derivations in 
semiprime rings. Quite a few Mathematicians studied (α, β) or (σ, τ)-derivations in prime 
and semiprime rings and they obtained some fruitful results in these fields. 

In this paper we work on semiprime Γ-rings with a pair of (σ, τ)-derivations. Some 
characterizations are obtained relating to (σ, τ)-derivations. 
 
2. The Results 
 
First we prove the following lemma. 
 

Lemma 2.1 Let T be an endomorphism of the prime Γ-ring M, and let I be a nonzero left 
ideal of M. Then 

(i)  if T(r) = r for all r∈I, T is the identity map on M, 
(ii) if T is one-to-one on I, it is one-to-one on M. 

 
Proof 

(i) For arbitrary x∈M and r∈I, xαr = T(xαr) = T(x)αT(r) = T(x)αr, α∈Γ, hence (x − 
T(x))αr = 0. Thus we have (x − T(x))αyβr = 0, x,y∈M, α,β∈Γ, and therefore by the 
primeness of M we get, x = T(x) for all x∈M. 
(ii) Observe that ker(T)ΓI ⊆ ker(T) ∩ I = {0}, and since I ≠ {0}, ker(T) = {0}. 

 
Lemma 2.2 Let I ≠ {0} be a left ideal of the semiprime Γ-ring M satisfying the condition 
(*). If T is an endomorphism of M which is centralizing on I, then T is commuting on I. 
 
Proof 
Linearizing the condition that [x, T(x)]α ∈Z for all x∈I, α∈Γ, we obtain   

 

[x, T(y)]α + [y, T(x)]α ∈Z for all x,y∈I, α∈Γ.                                                                (1) 
 
Replacing y by xβx in (1) we then get  [x, T(xβx)]α + [xβx, T(x)]α  
= xβ[x, T(x)]α + [x, T(x)]αβx + [x, T(x)βT(x)]α  
= xβ[x, T(x)]α +[x, T(x)]αβx + T(x)β[x, T(x)]α + [x, T(x)]αβT(x) 
= xβ[x, T(x)]α + xβ[x, T(x)]α + T(x)β[x, T(x)]α + T(x)β[x, T(x)]α  
= 2xβ[x, T(x)]α + 2T(x)β[x, T(x)]α ∈Z for all x∈I, α,β∈Γ,  

 

and since the first summand commutes with x, we have  
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   2[T(x)β[x, T(x)]α, x]α = 0, from which it follows that  
   2[T(x), x]αβ[x, T(x)]α + 2T(x)β[[x, T(x)]α, x]α  
   = 2[x, T(x)]αβ[x, T(x)]α = 0 for all x∈I, α,β∈Γ. Since the center of a semiprime Γ-ring 
contains no nonzero nilpotent elements, we conclude that 

2[x, T(x)]α = 0 for all x∈I, α∈Γ,                                                                                  (2) 
and hence 

2([x, T(y)]α + [y, T(x)]α) = 0 for all x,y∈I, α∈Γ.  (3) 
Now, we have, 

[xβy + yβx, T(x)]α + [xβx, T(y)]α  
= [xβy, T(x)]α + [yβx, T(x)]α + [xβx, T(y)]α  
= xβ[y, T(x)]α + [x, T(x)]αβy + yβ[x, T(x)]α + [y, T(x)]αβx + xβ[x, T(y)]α + [x, T(y)]αβx  
= xβ[y, T(x)]α + yβ[x, T(x)]α + yβ[x, T(x)]α + xβ[y, T(x)]α + xβ[x, T(y)]α + xβ[x, T(y)]α 
= xβ[y, T(x)]α + 2yβ[x, T(x)]α + xβ[y, T(x)]α + xβ[x, T(y)]α + xβ[x, T(y)]α  
= 2xβ([y, T(x)]α + [x, T(y)]α) + 2yβ[x, T(x)]α  
 

Applying (2) and (3), we get the identity 
 

[xβy + yβx, T(x)]α + [xβx, T(y)]α = 0 for all x,y∈I, α,β∈Γ.                                          (4) 
For x∈I, take y = T(x)δxβx in (4), thereby obtaining  

 

[xβT(x)δxβx + T(x)δxβxβx, T(x)]α + [xβx, T(T(x)δxβx)]α  
=  xβT(x)β[xβx, T(x)]α + [xβT(x), T(x)]αβxβx + T(x)δxβ[xβx  
= T(x)]α + [T(x)δx, T(x)]αβxβx + T(T(x))β[xβx, T(x)βT(x)]α +  [xβx, T(T(x))]αβT(x)βT(x) 
= xβT(x)β[xβx, T(x)]α + [xβT(x), T(x)]αβxβx + T(x)δxβ[xβx, T(x)]α + [T(x)δx, T(x)]αβxβx     
   + T(T(x))β[xβx, T(x)βT(x)]α + [xβx, T(T(x))]αβT(x)βT(x)  
= 0,                   for all x,y∈I, α,β∈Γ. 

Now  
[xβx, T(x)]α = xβ[x, T(x)]α + [x, T(x)]αβx  
= xβ[x, T(x)]α + xβ[x, T(x)]α = 2xβ[x, T(x)]α = 0, for all x,y∈I, α,β∈Γ                          (5) 

Replacing y = T(x) in above relation, we get for all x∈I, α,β∈Γ, 
         

 [xβT(x) + T(x)βx, T(x)]αβT(x)βT(x) + [xβx, T(T(x)]αβT(x)βT(x) = 0                             (6) 
Replacing y by T(x) in (4), we get,  

[xβT(x) + T(x)βx, T(x)]α = xβ[T(x), T(x)]α + [x, T(x)]αβT(x) + T(x)β[x, T(x)]α  
+ [T(x), T(x)]αβx  
= [x, T(x)]αβT(x) + T(x)β[x, T(x)]α  

       = T(x)β[x, T(x)]α + T(x)β[x, T(x)]α, 
       = 2T(x)β[x, T(x)]α = 0,    for all x,y∈I, α,β∈Γ. 
So we get from (6) for all x∈I, α,β∈Γ, 

[xβx, T(T(x))]αβT(x)βT(x) = 0                                                                                      (7) 
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On the other hand, taking y = T(x)δx in (4) yields  
[xβT(x)δx + T(x)δxβx, T(x)]α + [xβx, T(T(x)δx)]α  
= [xβT(x)δx + T(x)δxβx, T(x)]α + [xβx, T(T(x))δT(x)]α  
= [xβT(x)δx + T(x)δxβx, T(x)]α + [xβx, T(T(x)δx)]α, 

Hence 
[([x, T(x)]α + 2T(x)βx), T(x)]αβT(T(x)) +  [xβx, T(x)]αβT(x) + [xβx, T(x)]α = 0  
Or,      [x, T(x)]αβ[x, T(x)]α + [xβx, T(T(x))]αβT(x) = 0       for all x∈I, α,β∈Γ              (8) 

 

From (8) it follows that w = [xβx, T(T(x))]αβT(x)  is central, and from (7) that wγw = 0. 
It is now apparent from (8) that [x, T(x)]αβ[x, T(x)]αγ[x, T(x)]αβ[x, T(x)]α = 0, and the 
absence of nonzero central nilpotent elements implies that [x, T(x)]α = 0 for all x∈I, α∈Γ. 
 
Lemma 2.3  
Let M be a semiprime Γ-ring satisfying the condition (*). Let aβ[x, y]α = 0, for a,x,y∈M, 
α,β∈Γ, then a∈Z(M). 
 
Proof 
Since aβ[x, y]α = 0, for a,x,y∈M, α,β∈Γ, then replace y by a, we get aβ[x, a]α = 0, for 
a,x∈M, α,β∈Γ. Thus we get aβxαa = aβaαx, for all a,x∈M, α,β∈Γ. 
Now [a, x]αβ[a, y]α = (aαx − xαa)β(aαy − yαa)  

= aαxβaαy − aαxβyαa − xαaβaαy + xαaβyαa 
= aα(xβa)αy − aα(xβy)αa − xαaβaαy + xαaβ(yαa) 
= aαaβxαy − aαaαxβy − xαaβaαy + xαaβaαy 
= aαaβxαy − aαaαxβy = aαaβxαy − aαaβxαy = 0,      for all a,x,y∈M, α,β∈Γ. 

Hence [a, x]αβ[a, y]α = 0,    for all a,x,y∈M, α,β∈Γ. 
Replace y by yδx, we get, 
         [a, x]αβ[a, yδx]α = [a, x]αβyδ[a, x]α + [a, x]αβ[a, y]αδx = [a, x]αβyδ[a, x]α = 0, for all 
a,x,y∈M, α,β,δ∈Γ. By the semiprimeness of M we get, [a, x]α = 0, for all a,x∈M, α∈Γ.  
Hence a∈Z(M), for all a∈M. 
 
Lemma 2.4 Let σ,τ be epimorphisms of a semiprime Γ-ring M satisfying the assumption 
(*) and such that τ is centralizing. If d is a commuting (σ, τ)-derivation of M, then [x, 
y]αβd(u) = 0 = d(u)β[x, y]α for all x, y, u∈M, α,β∈Γ, in particular, d maps M into its center. 
 
Proof 
Since τ is a centralizing epimorphism, by Lemma 2.2 τ is commuting. Then we have [τ(x), 
x]α = 0 and [d(x), x]α = 0, for all x∈M, α∈Γ. 
Thus [τ(x), y]α = [x, τ(y)]α. Also, [d(x), y]α = [x, d(y)]α for all x, y∈M, α∈Γ. 
We consider 
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[d(yβx), x]α = [yβx, d(x)]α = yβ[x, d(x)]α + [y, d(x)]αβx = [y, d(x)]αβx                         (9)  
and 
[d(yβx), x]α = [σ(y)βd(x) + d(y)βτ(x), x]α  
= σ(y)β[d(x), x]α + [σ(y), x]αβd(x) +d(y)β[τ(x), x]α + [d(y), x]αβτ(x)  
= [σ(y), x]αβd(x) + [d(y), x]αβτ(x), for x, y∈M, α,β∈Γ                                              (10) 

From (9) and (10), we get [y, d(x)]αβx = [σ(y), x]αβd(x) + [d(y), x]αβτ(x)  
Thus [y, d(x)]αβx  − [x, d(y)]αβτ(x) = [σ(y), x]αβd(x),  for all x, y∈M, α,β∈Γ.   

 [y, d(x)]αβx  − [y, d(x)]αβτ(x) = [σ(y), x]αβd(x),  for all x, y∈M, α,β∈Γ. 
 

 [y, d(x)]αβ(x  − τ(x)) = [y, σ(x)]αβd(x) ,   for all x, y∈M, α,β∈Γ                               (11) 
We further consider  
        [x, τ(yβx)]α = [x, τ(y)]αβτ(x),                                                                                     (12)  
Again,  
     [x, τ(yβx)]α = [τ(x), yβx]α = [x, τ(y)]αβx + τ(y)β[x, τ(x)]α.= [x, τ(y)]αβx                       (13) 

From (12) and (13), we get [x, τ(y)]αβτ(x) = [x, τ(y)]αβx. Since τ is onto, we get 
 

[x, y]αβτ(x) = [x, y]αβx      for all x, y∈M, α,β∈Γ.                                                      (14) 
Replacing y by d(y) in (14), we have 
[x, d(y)]αβτ(x) = [x, d(y)]αβx for all x, y∈M, α,β∈Γ 
 [x, d(y)]αβx − [x, d(y)]αβτ(x) = 0 
 [x, d(y)]αβ(x − τ(x)) = [d(x), y]αβ(x −τ(x)) = 0                                                          (15) 

 

Using (15), from (11) we get [σ(y), x]αβd(x) = 0. Since σ is onto, we get 
 

[y, x]αβd(x) = 0 for all x, y∈M, α,β∈Γ                                                                       (16) 
Replacing y by yδz in (16), we get yδ[z, x]αβd(x) + [y, x]αδzβd(x) = 0, which along with 
(16) yields 

 

[y, x]αδzβd(x) = 0 for all x, y, z∈M, α,β,δ∈Γ                                                             (17) 
Linearizing (16) (in x), we get 

[y, x + u]αβd(x + u) = 0 for all x, y∈M, α,β∈Γ 
        [y, x]αβd(x) + [y, x]αβd(u) + [y, u]αβd(x) + [y, u]αβd(u) = 0 for all x,y,u∈M, α,β∈Γ. 

 

 [y, x]αβd(u) = [u, y]αβd(x) for all x, y, u∈M, α,β∈Γ                                                 (18) 
 

Replacing z by d(u)λzδ[u, y]α in (17) and using (18), we have  
 

0 = [y, x]αβd(u)λzδ[u, y]αβd(x) = [y, x]αβd(u)λzδ[y, x]αβd(u). 
  

The semiprimeness of M implies  
 

[y, x]αβd(u) = 0 for all x, y, u∈M, α,β∈Γ                                                                   (19) 
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Substituting yδz for y in (19), we have [y, x]αδzβd(u) = 0, and so  
d(u)β[y, x]αδzβd(u)β[y, x]α =0. Since M is semiprime, we get d(u)β[y, x]α = 0 for all x, y, 
u∈M, α,β∈Γ. Thus [x, y]αβd(u) = 0 = d(u)β[x, y]α for all x, y, u∈M, α,β∈Γ, and further 
d(u)∈Z(M). 
Now we prove our main result. 
 

Theorem 2.5. Let M be a 2-torsion free semiprime Γ-ring satisfying the assumption (*) 
and σ,τ be centralizing epimorphisms of M. Let f, g be (σ, τ)-derivations of M such that  
 

f(x)αx + xαg(x) = 0 for all x∈M, α∈Γ.  (20) 
Then g(u)β[x, y]α = f(u)β[x, y]α = 0 for all x, y, u∈M, α,β∈Γ and f, g map M into its center. 
Proof 
Since σ,τ are centralizing epimorphisms, they are commuting by Lemma 2.2 and hence σ 
− 1 is a commuting σ-derivation and τ − 1 is a commuting τ-derivation. Thus by Lemma 
2.3 we get  

σ(u) − u∈Z(M), σ(u)β[x, y]α = uβ[x, y]α and  
[x, y]αβσ(u) = [x, y]αβu for all x, y, u∈M, α,β∈Γ                                                       (21)  

and for all x, y, u∈M, α,β∈Γ, 
     τ(u) − u∈Z(M), τ(u)β[x, y]α = uβ[x, y]α and [x, y]αβτ(u) = [x, y]αβu                            (22) 

 

Linearizing (20), we get  
 

    f(x)αy + f(y)αx + xαg(y) + yαg(x) = 0 for all x, y∈M, α∈Γ                                           (23) 
 

Replacing y by yβx in (23) and using (21), we get 
0 = f(x)αyβx + σ(y)βf(x)αx + f(y)βτ(x)αx + xασ(y)βg(x) + xαg(y)βτ(x) + yβxαg(x) 
= f(x)αyβx + σ(y)βf(x)αx + f(y)β(τ(x) − x)αx + f(y)βxαx + xα(σ(y) − y)βg(x)  
+ xαyβg(x) + xαg(y)βτ(x) + yαxβg(x) 
= f(x)αyβx + σ(y)βf(x)αx + (τ(x) − x)βf(y)αx + f(y)βxαx + (σ(y) − y)αxβg(x)  
+ xαyβg(x) + xαg(y)βτ(x) + yαxβg(x) 
= f(x)αyβx + σ(y)β(f(x)αx + xαg(x)) + (τ(x) − x)αf(y)αx + f(y)βxαx − yαxβg(x) 
 + xαyβg(x) + xαg(y)α(τ(x) − x) + xαg(y)βx + yαxβg(x) 
= f(x)αyβx + f(y)αxβx + xαyβg(x) + xαg(y)βx + (τ(x) − x)β(f(y)αx + xαg(y)) 
= (f(x)αy + f(y)αx + xαg(y))βx + xαyβg(x) + (τ(x) − x)β(f(y)αx + xαg(y)). 

That is for all x, y∈M, α,β∈Γ,  
(f(x)αy + f(y)αx + xαg(y))βx + xαyβg(x) + (τ(x) − x)β(f(y)αx + xαg(y)) = 0                (24) 

By (23) and (24), we get  
0 = −yαg(x)βx + xαyβg(x) + (τ(x) − x)β(f(y)αx + xαg(y))  
= −[yβg(x), x]α + (τ(x) − x)β(f(y)αx + xαg(y)). 

 That is, 
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−[yβg(x), x]α + (τ(x) − x)β(f(y)αx + xαg(y)) = 0 for all x, y∈M, α,β∈Γ                     (25) 
 
Let z∈M. Then by (25), we get 

0 = [[−yβg(x), x]α, z]α + [(τ(x) − x)β(f(y)αx + xαg(y)), z]α 

= −[[yβg(x), x]α, z]α + (τ(x) − x)β[f(y)αx + xαg(y), z]α + [τ(x) − x, z]αβ(f(y)αx + xαg(y)). 
Using (22), we get  
 
       [[yβg(x), x]α, z]α = 0     for all x, y, z∈M, α,β∈Γ                                                        (26) 
From (26) we get [yβg(x), x]α ∈Z(M) for all x, y∈M, α,β∈Γ and, in particular,  
 
    [[yβg(x), x]α, x]α = 0    for all x, y∈M, α,β∈Γ                                                               (27) 
 
Replacing y by zαy in (27) we get for all x, y∈M, α,β∈Γ, 

[[zαyβg(x), x]α, x]α  
= [zα[yβg(x), x]α, x]α + [z, x]αα[yβg(x), x]α  
= [z, x]αα[yβg(x), x]α + zα[yβ[g(x), x]α, x]α + [z, x]αα[yβg(x), x]α  
= 2[z, x]αα[yβg(x), x]α  + zα[[yβg(x), x]α, x]α  = 0                                                                       (28) 

 
Replacing z by yβg(x) in (28) and using (27), we get 2[yβg(x), x]αα[yβg(x), x]α = 0. Since 
M is 2-torsion free and, being semiprime, has no nonzero central nilpotents, we have,  

[yβg(x), x]α = 0   for all x, y∈M, α,β∈Γ                                                                     (29) 
Replacing y by zαy in (29), we get 

 
[z, x]ααyβg(x) = 0    for all x, y, z∈M, α,β∈Γ                                                             (30) 

Replacing y by g(x)βyγ[z, x]α in (30), we get  
[z, x]ααg(x)βyγ[z, x]αβg(x) = 0 for all x, y, z∈M, α,β,γ∈Γ. 

Since M is semiprime, we get  
 

[z, x]αβg(x) = 0   for all x, z∈M, α,β∈Γ                                                                       (31) 
Using (29) and (31), we get yβ[g(x), x]α = 0 for all x, y∈M, α,β∈Γ and hence by the 

semiprimeness of M, we have [g(x), x]α = 0 for all x∈M. Thus g is a commuting (σ, τ)-
derivation of M. Hence, by Lemma 2.3, g(x)∈Z(M) and g(u)β[x, y]α = 0 for all u, x, y∈M, 
α,β∈Γ. Also, f(x)∈Z(M) and f(u)β[x, y]α = 0 for all u, x, y∈M, α,β∈Γ follows analogously. 
 
Theorem 2.6 Let M be a 2-torsion free semiprime Γ-ring satisfying the assumption (*). If 
f, g are derivations on M such that f(x)αx + xαg(x) = 0 for all x∈M, α∈Γ,  then f(u)β[x, y]α 
= g(u)β[x, y]α = 0 for all x, y, u∈M, α,β∈Γ, in particular, f, g map M into its center. 
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Proof 
Since derivations are (1, 1)-derivations, it follows immediately from Theorem 2.5. 
 
Corollary 2.7 Let M be a 2-torsion free prime Γ-ring satisfying the assumption (*) and σ, 
τ-centralizing epimorphisms of M. Let f, g be (σ, τ)-derivations of M such that f(x)αx + 
xαg(x) = 0 for all x∈M, α∈Γ. Then either M is commutative or f = g = 0. 
 
Proof 
Since the center of a prime Γ-ring contains no nonzero divisors of zero, this corollary is 
immediate from Theorem 2.5. 
 
Theorem 2.8 Let M be a 2-torsion free semiprime Γ-ring satisfying the assumption (*) 
and σ, τ centralizing epimorphisms of M. Let f, g be (σ, τ)-derivations of M such that  
 

f(x)αx + xαg(x)∈Z(M)   for all x∈M, α∈Γ                                                                  (32) 
Then  (i) if Z(M) = 0, then f = g = 0, and  

(ii) if Z(M) ≠ 0, then cδf(u)β[x, y]α = cδg(u)β[x, y]α = 0 and cδf(x), cδg(x)∈Z(M) 
for all x, y, u∈M, α,β,δ∈Γ and nonzero c∈Z(M). 
 
Proof 
(i) Assume that Z(M) = 0. Then, by hypothesis, f(x)αx + xαg(x) = 0 for all x∈M, α∈Γ and 
hence by Theorem 2.5, f(x), g(x)∈Z(M). Since Z(M) = 0, we have  
f(x) = g(x) = 0 for all x∈M. Thus f = g = 0. 
(ii) Let Z(M) ≠ 0 and c be a nonzero element of Z(M). Since σ, τ are centralizing 
epimorphisms, therefore, as in Theorem 2.5,  
        σ(u) − u∈Z(M), σ(u)β[x, y]α = uβ[x, y]α and [x, y]αβσ(u) = [x, y]αβu                       (33) 
And for all u, x, y∈M, α,β∈Γ, 

τ(u) − u∈Z(M), τ(u)β[x, y]α = uβ[x, y]α and [x, y]αβτ(u) = [x, y]αβu                           (34)  
Moreover, since σ and τ are onto, therefore σ(c) and τ(c)∈Z(M). 
Linearizing (32), we get 

f(x)αy + f(y)αx + xαg(y) + yαg(x)∈Z(M) for all x, y∈M, α∈Γ                                  (35) 
Replacing y by c in (35), we get for all x∈M, α∈Γ, 
        
 f(x)αc + f(c)αx + xαg(c) + cαg(x)∈Z(M)                                                                          (36) 
Replacing y by cδc in (35), we get 

f(x)αcδc + f(cδc)αx + xαg(cδc) + cδcαg(x)  
= cδ(f(x)αc + cαg(x)) + (σ(c) + τ(c))δ(f(c)αx + xαg(c)) 
= cδ(f(x)αc + cαg(x) + f(c)αx + xαg(c)) + (σ(c) + τ(c) − c)δ(f(c)αx + xαg(c)) 
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= cδ(f(x)αc + cαg(x) + f(c)αx + xαg(c)) + (σ(c) + τ(c) − c)δ(f(c)αx + xαg(c) 
 + f(x)αc + cαg(x)) − (σ(c) + τ(c) − c)δ(f(x)αc + cαg(x))∈Z(M). 

That is for all x,c∈M, α,δ∈Γ,  
        (σ(c) + τ(c))δ(f(x)αc + cαg(x) + f(c)αx + xαg(c))  
         − (σ(c) + τ(c) − c)δ(f(x)αc  + cαg(x))∈Z(M)                                                           (37) 
 
As σ(c) + τ(c)∈Z(M) and by (36) the first summand in (37) is in Z(M), (37) implies  

(σ(c) + τ(c) − c)δ(f(x)αc + cαg(x))  
= (σ(c) + τ(c) − c)δcα(f(x) + g(x))∈Z(M) for all x∈M, α,δ∈Γ.  

Thus 
(σ(c) + τ(c) − c)δcα(f(x) + g(x))∈Z(M)   for all x∈M, α,δ∈Γ.    (38) 

Since c, (σ(c) + τ(c) − c)δc∈Z(M) and f, g are (σ, τ)-derivations, therefore  
((σ(c) + τ(c) − c)δc)αf, ((σ(c) + τ(c) − c)δc)αg, cδf and cδg are (σ, τ)-derivations. Thus 
((σ(c) + τ(c) − c)δc)α(f + g) is an (σ, τ)-derivation and (38) implies that it is central and 
hence a commuting (σ, τ)-derivation. Thus by Lemma 2.4, we get  

 
((σ(c) + τ(c) − c)δc)α(f  + g)(u)β[x, y]α = 0 for all u, x, y∈M, α,β,δ∈Γ                    (39) 

Using (32) and (33), from (31) we get  
0 = (f + g)(u)β(σ(c) + τ(c) − c)δcβ[x, y]α  
= (f + g)(u)βcδ(σ(c) + τ(c) − c)β[x, y]α  
= ((f + g)(u)βc)δ(σ(c)β[x, y]α + τ(c)β[x, y]α − cβ[x, y]α) 
= ((f + g)(u)βc)δ(cβ[x, y]α + cβ[x, y]α − cβ[x, y]α = (f + g)(u)βcδcβ[x, y]α  
= cβcδ(f + g)(u)β[x, y]α for all u, x, y∈M, α,β∈Γ. That is,  
 
cδ(cβf(u) + g(u))β[x, y]α = 0 for all u, x, y∈M, α,β,δ∈Γ                                           (40) 

As c∈Z(M) and M is semiprime, it follows from (30) that  
         
 cδ(f(u) + g(u))β[x, y]α = 0 for all u, x, y∈M, α,β,δ∈Γ                                                     (41) 
Similarly, we have [x, y]αβcδ(f(u) + g(u)) = 0. Thus, by Lemma 2.3 we get  
cδf(u) + cδg(u)∈Z(M). Using this and (31), we get  
[(cδf(u) + cδg(u))βu, y]α = (cδf(u) + cδg(u))β[u, y]α + [cδf(u) + cδg(u), y]αβu = 0. That is,  
      
  [cδf(u)βu + cδg(u)βu, y]α = 0 for all u, y∈M, α,β,δ∈Γ                                                   (42) 
Since c∈Z(M) and f(u)βu + uβg(u)∈Z(M) (by 32)), we get cδf(u)βu + cδuβg(u)∈Z(M). 
Thus  
         

[cδf(u)βu + cδuβg(u), y]α = 0 for all u, y∈M, α,β,δ∈Γ                                               (43) 
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Subtracting (43) from (42), we get [cδg(u)βu − cδuβg(u), y]α = 0. That is, [cδ(g(u)βu − 
uβg(u)), y]α = [cδ[g(u), u]β, y]α = [[cδg(u), u]β, y]α = 0 for all u, y∈M, α,β,δ∈Γ, which 
implies [cδg(u), u]β ∈Z(M). Thus cδg is a centralizing (σ, τ)-derivation. We get that cδg is 
a commuting (σ, τ)-derivation. By Lemma 2.3, we get cδg(u)∈Z(M) and cδg(u)β[x, y]α  
= 0 for all u, x, y∈M, α,β,δ∈Γ. Since cδf(u) + cδg(u)∈Z(M) and cδg(u)∈Z(M), therefore 
cδf(u)∈Z(M). Thus cδf is central and hence a commuting (σ, τ)-derivation. By Lemma 
2.3, we get cδf(u)∈Z(M) and cδf(u)β[x, y]α = 0 for all u, x, y∈M, α,β,δ∈Γ.  
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