On a Pair of (σ, τ)-derivations of Semiprime Γ-rings

K. K. Dey ${ }^{*}$ and A. C. Paul
Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh

Received 19 May 2011, accepted in final revised form 1 July 2011

Abstract

Let M be a 2-torsion free Γ-ring satisfying an assumption and let σ, τ be centralizing epimorphisms on M. Let f and g be (σ, τ)-derivations on M such that $f(x) \alpha x+x \alpha g(x)=0$ for all $x \in M, \alpha \in \Gamma$. Then we prove that $f(u) \beta[x, y]_{\alpha}=g(u) \beta[x, y]_{\alpha}=0$ for all $x, y, u \in M, \alpha, \beta \in \Gamma$ and f, g map M into its center.

Keywords. Epimorphism; Commuting; Map; Centralizing map; α-derivation; (α, β)-derivation; Prime Γ-ring; Semiprime Γ-ring.
© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.
doi:10.3329/jsr.v3i3.7659 J. Sci. Res. 3 (3), 515-524 (2011)

1. Introduction

Let M and Γ be additive abelian groups. M is called a Γ-ring if for all $x, y, z \in M, \alpha, \beta \in \Gamma$ the following conditions are satisfied:
(i) $x \beta y \in M$,
(ii) $(x+y) \alpha z=x \alpha z+y \alpha z, x(\alpha+\beta) y=x \alpha y+x \beta y$,

$$
x \alpha(y+z)=x \alpha y+x \alpha z,
$$

(iii) $(\mathrm{x} \alpha y) \beta \mathrm{z}=\mathrm{x} \alpha(\mathrm{y} \beta \mathrm{z})$.

For any $x, y \in M$, the notation $[x, y]_{\alpha}$ and $(x, y)_{\alpha}$ will denote $x \alpha y-y \alpha x$ and $x \alpha y+y \alpha x$ respectively. We know that $[x \beta y, z]_{\alpha}=x \beta[y, z]_{\alpha}+[x, z]_{\alpha} \beta y+x[\beta, \alpha]_{z} y$ and $[x, y \beta z]_{\alpha}=y \beta[x$, $z]_{\alpha}+[x, y]_{\alpha} \beta z+y[\beta, \alpha]_{x} z$, for all $x, y, z \in M$ and for all $\alpha, \beta \in \Gamma$. We shall take an assumption ${ }^{(*)} x \alpha y \beta z=x \beta y \alpha z$ for all $x, y, z \in M, \alpha, \beta \in \Gamma$. Using this assumption the identities $[x \beta y, z]_{\alpha}=$ $x \beta[y, z]_{\alpha}+[x, z]_{\alpha} \beta y$ and $[x, y \beta z]_{\alpha}=y \beta[x, z]_{\alpha}+[x, y]_{\alpha} \beta z$, for all $x, y, z \in M$ and for all $\alpha, \beta \in \Gamma$ are used extensively in our results. An additive mapping d from M into itself is called a derivation if $d(x \alpha y)=x \alpha d(y)+d(x) \alpha y$ for all $x, y \in M, \alpha \in \Gamma$. A mapping f from M into itself is commuting if $[f(x), x]_{\alpha}=0$, and centralizing if $[f(x), x]_{\alpha} \in Z(M)$ for all $x \in M, \alpha \in \Gamma$. We call a mapping $f: M \rightarrow M$ central if $f(x) \in Z(M)$ for all $x \in M$. Recall that if f is an additive commuting mapping from M into itself, then a linearization of $[f(x), x]_{\alpha}=0$ yields $[f(x), y]_{\alpha}$ $=[x, f(y)]_{\alpha}$ for all $x, y \in M, \alpha \in \Gamma$.

[^0]Let σ, τ be mappings of M into itself. An additive mapping d of M into itself is called a (σ, τ)-derivation if $d(x \alpha y)=\sigma(x) \alpha d(y)+d(x) \alpha \tau(y)$ for all $x, y \in M, \alpha \in \Gamma$. If $\tau=1$, where 1 is the identity mapping of M, then d is called a σ-derivation or a ($\sigma, 1$)-derivation or a skewderivation. Of course, a $(1,1)$-derivation or a 1-derivation is a derivation.

In classical ring theories, Chaudhry and Thaheem [1] worked on (α, β)-derivations in semiprime rings. Quite a few Mathematicians studied (α, β) or (σ, τ)-derivations in prime and semiprime rings and they obtained some fruitful results in these fields.

In this paper we work on semiprime Γ-rings with a pair of (σ, τ)-derivations. Some characterizations are obtained relating to (σ, τ)-derivations.

2. The Results

First we prove the following lemma.
Lemma 2.1 Let T be an endomorphism of the prime Γ-ring M, and let I be a nonzero left ideal of M. Then
(i) if $T(r)=r$ for all $r \in I, T$ is the identity map on M,
(ii) if T is one-to-one on I, it is one-to-one on M.

Proof

(i) For arbitrary $x \in M$ and $r \in I, x \alpha r=T(x \alpha r)=T(x) \alpha T(r)=T(x) \alpha r, \alpha \in \Gamma$, hence $(x-$ $T(x)) \alpha r=0$. Thus we have $(x-T(x)) \alpha y \beta r=0, x, y \in M, \alpha, \beta \in \Gamma$, and therefore by the primeness of M we get, $x=T(x)$ for all $x \in M$.
(ii) Observe that $\operatorname{ker}(T) \Gamma I \subseteq \operatorname{ker}(T) \cap I=\{0\}$, and since $I \neq\{0\}$, $\operatorname{ker}(T)=\{0\}$.

Lemma 2.2 Let $I \neq\{0\}$ be a left ideal of the semiprime Γ-ring M satisfying the condition $\left(^{*}\right)$. If T is an endomorphism of M which is centralizing on I, then T is commuting on I.

Proof

Linearizing the condition that $[x, T(x)]_{\alpha} \in Z$ for all $x \in I, \alpha \in \Gamma$, we obtain

$$
\begin{equation*}
[x, T(y)]_{\alpha}+[y, T(x)]_{\alpha} \in Z \text { for all } x, y \in I, \alpha \in \Gamma . \tag{1}
\end{equation*}
$$

Replacing y by $x \beta x$ in (1) we then get $[x, T(x \beta x)]_{\alpha}+[x \beta x, T(x)]_{\alpha}$
$=x \beta[x, T(x)]_{\alpha}+[x, T(x)]_{\alpha} \beta x+[x, T(x) \beta T(x)]_{\alpha}$
$=x \beta[x, T(x)]_{\alpha}+[x, T(x)]_{\alpha} \beta x+T(x) \beta[x, T(x)]_{\alpha}+[x, T(x)]_{\alpha} \beta T(x)$
$=x \beta[x, T(x)]_{\alpha}+x \beta[x, T(x)]_{\alpha}+T(x) \beta[x, T(x)]_{\alpha}+T(x) \beta[x, T(x)]_{\alpha}$
$=2 x \beta[x, T(x)]_{\alpha}+2 T(x) \beta[x, T(x)]_{\alpha} \in Z$ for all $x \in I, \alpha, \beta \in \Gamma$,
and since the first summand commutes with x , we have
$2\left[T(x) \beta[x, T(x)]_{\alpha}, x\right]_{\alpha}=0$, from which it follows that
$2[T(x), x]_{\alpha} \beta[x, T(x)]_{\alpha}+2 T(x) \beta\left[[x, T(x)]_{\alpha}, x\right]_{\alpha}$
$=2[x, T(x)]_{\alpha} \beta[x, T(x)]_{\alpha}=0$ for all $x \in \mathrm{I}, \alpha, \beta \in \Gamma$. Since the center of a semiprime Γ-ring contains no nonzero nilpotent elements, we conclude that

$$
\begin{equation*}
2[x, T(x)]_{\alpha}=0 \text { for all } x \in I, \alpha \in \Gamma, \tag{2}
\end{equation*}
$$

and hence
$2\left([x, T(y)]_{\alpha}+[y, T(x)]_{\alpha}\right)=0$ for all $x, y \in \mathrm{I}, \alpha \in \Gamma$. (3)
Now, we have,

$$
\begin{aligned}
& {[x \beta y+y \beta x, T(x)]_{\alpha}+[x \beta x, T(y)]_{\alpha}} \\
& =[x \beta y, T(x)]_{\alpha}+[y \beta x, T(x)]_{\alpha}+[x \beta x, T(y)]_{\alpha} \\
& =x \beta[y, T(x)]_{\alpha}+[x, T(x)]_{\alpha} \beta y+y \beta[x, T(x)]_{\alpha}+[y, T(x)]_{\alpha} \beta x+x \beta[x, T(y)]_{\alpha}+[x, T(y)]_{\alpha} \beta x \\
& =x \beta[y, T(x)]_{\alpha}+y \beta[x, T(x)]_{\alpha}+y \beta[x, T(x)]_{\alpha}+x \beta[y, T(x)]_{\alpha}+x \beta[x, T(y)]_{\alpha}+x \beta[x, T(y)]_{\alpha} \\
& =x \beta[y, T(x)]_{\alpha}+2 y \beta[x, T(x)]_{\alpha}+x \beta[y, T(x)]_{\alpha}+x \beta[x, T(y)]_{\alpha}+x \beta[x, T(y)]_{\alpha} \\
& =2 x \beta\left([y, T(x)]_{\alpha}+[x, T(y)]_{\alpha}\right)+2 y \beta[x, T(x)]_{\alpha}
\end{aligned}
$$

Applying (2) and (3), we get the identity

$$
\begin{equation*}
[x \beta y+y \beta x, T(x)]_{\alpha}+[x \beta x, T(y)]_{\alpha}=0 \text { for all } x, y \in I, \alpha, \beta \in \Gamma . \tag{4}
\end{equation*}
$$

For $x \in I$, take $y=T(x) \delta x \beta x$ in (4), thereby obtaining

$$
\begin{aligned}
& {[x \beta T(x) \delta x \beta x+T(x) \delta x \beta x \beta x, T(x)]_{\alpha}+[x \beta x, T(T(x) \delta x \beta x)]_{\alpha}} \\
& =x \beta T(x) \beta[x \beta x, T(x)]_{\alpha}+[x \beta T(x), T(x)]_{\alpha} \beta x \beta x+T(x) \delta x \beta[x \beta x \\
& =T(x)]_{\alpha}+[T(x) \delta x, T(x)]_{\alpha} \beta x \beta x+T(T(x)) \beta[x \beta x, T(x) \beta T(x)]_{\alpha}+[x \beta x, T(T(x))]_{\alpha} \beta T(x) \beta T(x) \\
& =x \beta T(x) \beta[x \beta x, T(x)]_{\alpha}+[x \beta T(x), T(x)]_{\alpha} \beta x \beta x+T(x) \delta x \beta[x \beta x, T(x)]_{\alpha}+[T(x) \delta x, T(x)]_{\alpha} \beta x \beta x \\
& \quad+T(T(x)) \beta[x \beta x, T(x) \beta T(x)]_{\alpha}+[x \beta x, T(T(x))]_{\alpha} \beta T(x) \beta T(x) \\
& =0, \quad \text { for all } x, y \in I, \alpha, \beta \in \Gamma .
\end{aligned}
$$

Now
$[x \beta x, T(x)]_{\alpha}=x \beta[x, T(x)]_{\alpha}+[x, T(x)]_{\alpha} \beta x$

$$
\begin{equation*}
=x \beta[x, T(x)]_{\alpha}+x \beta[x, T(x)]_{\alpha}=2 x \beta[x, T(x)]_{\alpha}=0, \text { for all } x, y \in I, \alpha, \beta \in \Gamma \tag{5}
\end{equation*}
$$

Replacing $y=T(x)$ in above relation, we get for all $x \in I, \alpha, \beta \in \Gamma$,

$$
\begin{equation*}
[x \beta T(x)+T(x) \beta x, T(x)]_{\alpha} \beta T(x) \beta T(x)+\left[x \beta x, T(T(x)]_{\alpha} \beta T(x) \beta T(x)=0\right. \tag{6}
\end{equation*}
$$

Replacing y by $T(x)$ in (4), we get,
$[x \beta T(x)+T(x) \beta x, T(x)]_{\alpha}=x \beta[T(x), T(x)]_{\alpha}+[x, T(x)]_{\alpha} \beta T(x)+T(x) \beta[x, T(x)]_{\alpha}$
$+[T(x), T(x)]_{\alpha} \beta x$
$=[x, T(x)]_{\alpha} \beta T(x)+T(x) \beta[x, T(x)]_{\alpha}$
$=T(x) \beta[x, T(x)]_{\alpha}+T(x) \beta[x, T(x)]_{\alpha}$,
$=2 T(x) \beta[x, T(x)]_{\alpha}=0, \quad$ for all $x, y \in I, \alpha, \beta \in \Gamma$.
So we get from (6) for all $x \in I, \alpha, \beta \in \Gamma$,
$[x \beta x, T(T(x))]_{\alpha} \beta T(x) \beta T(x)=0$

On the other hand, taking $y=T(x) \delta x$ in (4) yields

$$
\begin{aligned}
& {[x \beta T(x) \delta x+T(x) \delta x \beta x, T(x)]_{\alpha}+[x \beta x, T(T(x) \delta x)]_{\alpha}} \\
& =[x \beta T(x) \delta x+T(x) \delta x \beta x, T(x)]_{\alpha}+[x \beta x, T(T(x)) \delta T(x)]_{\alpha} \\
& =[x \beta T(x) \delta x+T(x) \delta x \beta x, T(x)]_{\alpha}+[x \beta x, T(T(x) \delta x)]_{\alpha},
\end{aligned}
$$

Hence

$$
\left[\left([x, T(x)]_{\alpha}+2 T(x) \beta x\right), T(x)\right]_{\alpha} \beta T(T(x))+[x \beta x, T(x)]_{\alpha} \beta T(x)+[x \beta x, T(x)]_{\alpha}=0
$$

$$
\begin{equation*}
\text { Or, } \quad[x, T(x)]_{\alpha} \beta[x, T(x)]_{\alpha}+[x \beta x, T(T(x))]_{\alpha} \beta T(x)=0 \quad \text { for all } x \in I, \alpha, \beta \in \Gamma \tag{8}
\end{equation*}
$$

From (8) it follows that $w=[x \beta x, T(T(x))]_{\alpha} \beta T(x)$ is central, and from (7) that $w \gamma w=0$. It is now apparent from (8) that $[x, T(x)]_{\alpha} \beta[x, T(x)]_{\alpha} \gamma[x, T(x)]_{\alpha} \beta[x, T(x)]_{\alpha}=0$, and the absence of nonzero central nilpotent elements implies that $[x, T(x)]_{\alpha}=0$ for all $x \in I, \alpha \in \Gamma$.

Lemma 2.3

Let M be a semiprime Γ-ring satisfying the condition (*). Let $a \beta[x, y]_{\alpha}=0$, for $a, x, y \in M$, $\alpha, \beta \in \Gamma$, then $a \in Z(M)$.

Proof

Since $a \beta[x, y]_{\alpha}=0$, for $a, x, y \in M, \alpha, \beta \in \Gamma$, then replace y by a, we get $a \beta[x, a]_{\alpha}=0$, for $a, x \in M, \alpha, \beta \in \Gamma$. Thus we get $a \beta x \alpha a=a \beta a \alpha x$, for all $a, x \in M, \alpha, \beta \in \Gamma$.
Now $[a, x]_{\alpha} \beta[a, y]_{\alpha}=(a \alpha x-x \alpha a) \beta(a \alpha y-y \alpha a)$
$=a \alpha x \beta a \alpha y-a \alpha x \beta y \alpha a-x \alpha a \beta a \alpha y+x \alpha a \beta y \alpha a$
$=a \alpha(x \beta a) \alpha y-a \alpha(x \beta y) \alpha a-x \alpha a \beta a \alpha y+x \alpha a \beta(y \alpha a)$
$=a \alpha a \beta x \alpha y-a \alpha a \alpha x \beta y-x \alpha a \beta a \alpha y+x \alpha a \beta a \alpha y$
$=a \alpha a \beta x \alpha y-a \alpha a \alpha x \beta y=a \alpha a \beta x \alpha y-a \alpha a \beta x \alpha y=0, \quad$ for all $a, x, y \in M, \alpha, \beta \in \Gamma$.
Hence $[a, x]_{\alpha} \beta[a, y]_{\alpha}=0$, for all $a, x, y \in M, \alpha, \beta \in \Gamma$.
Replace y by $y \delta x$, we get,
$[a, x]_{\alpha} \beta[a, y \delta x]_{\alpha}=[a, x]_{\alpha} \beta y \delta[a, x]_{\alpha}+[a, x]_{\alpha} \beta[a, y]_{\alpha} \delta x=[a, x]_{\alpha} \beta y \delta[a, x]_{\alpha}=0$, for all $a, x, y \in M, \alpha, \beta, \delta \in \Gamma$. By the semiprimeness of M we get, $[a, x]_{\alpha}=0$, for all $a, x \in M, \alpha \in \Gamma$.
Hence $a \in Z(M)$, for all $a \in M$.

Lemma 2.4 Let σ, τ be epimorphisms of a semiprime Γ-ring M satisfying the assumption $\left(^{*}\right)$ and such that τ is centralizing. If d is a commuting (σ, τ)-derivation of M, then [x, $y]_{\alpha} \beta d(u)=0=d(u) \beta[x, y]_{\alpha}$ for all $x, y, u \in M, \alpha, \beta \in \Gamma$, in particular, d maps M into its center.

Proof

Since τ is a centralizing epimorphism, by Lemma 2.2τ is commuting. Then we have [$\tau(x)$, $x]_{\alpha}=0$ and $[d(x), x]_{\alpha}=0$, for all $x \in M, \alpha \in \Gamma$.
Thus $[\tau(x), y]_{\alpha}=[x, \tau(y)]_{\alpha}$. Also, $[d(x), y]_{\alpha}=[x, d(y)]_{\alpha}$ for all $x, y \in M, \alpha \in \Gamma$.
We consider
$[d(y \beta x), x]_{\alpha}=[y \beta x, d(x)]_{\alpha}=y \beta[x, d(x)]_{\alpha}+[y, d(x)]_{\alpha} \beta x=[y, d(x)]_{\alpha} \beta x$
and
$[d(y \beta x), x]_{\alpha}=[\sigma(y) \beta d(x)+d(y) \beta \tau(x), x]_{\alpha}$
$=\sigma(y) \beta[d(x), x]_{\alpha}+[\sigma(y), x]_{\alpha} \beta d(x)+d(y) \beta[\tau(x), x]_{\alpha}+[d(y), x]_{\alpha} \beta \tau(x)$
$=[\sigma(y), x]_{\alpha} \beta d(x)+[d(y), x]_{\alpha} \beta \tau(x)$, for $x, y \in M, \alpha, \beta \in \Gamma$
From (9) and (10), we get $[y, d(x)]_{\alpha} \beta x=[\sigma(y), x]_{\alpha} \beta d(x)+[d(y), x]_{\alpha} \beta \tau(x)$
Thus $[y, d(x)]_{\alpha} \beta x-[x, d(y)]_{\alpha} \beta \tau(x)=[\sigma(y), x]_{\alpha} \beta d(x)$, for all $x, y \in M, \alpha, \beta \in \Gamma$.
$[y, d(x)]_{\alpha} \beta x-[y, d(x)]_{\alpha} \beta \tau(x)=[\sigma(y), x]_{\alpha} \beta d(x)$, for all $x, y \in M, \alpha, \beta \in \Gamma$.
$[y, d(x)]_{\alpha} \beta(x-\tau(x))=[y, \sigma(x)]_{\alpha} \beta d(x)$, for all $x, y \in M, \alpha, \beta \in \Gamma$
We further consider
$[x, \tau(y \beta x)]_{\alpha}=[x, \tau(y)]_{\alpha} \beta \tau(x)$,
Again,
$[x, \tau(y \beta x)]_{\alpha}=[\tau(x), y \beta x]_{\alpha}=[x, \tau(y)]_{\alpha} \beta x+\tau(y) \beta[x, \tau(x)]_{\alpha}=[x, \tau(y)]_{\alpha} \beta x$
From (12) and (13), we get $[x, \tau(y)]_{\alpha} \beta \tau(x)=[x, \tau(y)]_{\alpha} \beta x$. Since τ is onto, we get
$[x, y]_{\alpha} \beta \tau(x)=[x, y]_{\alpha} \beta x \quad$ for all $x, y \in M, \alpha, \beta \in \Gamma$.
Replacing y by $d(y)$ in (14), we have
$[x, d(y)]_{\alpha} \beta \tau(x)=[x, d(y)]_{\alpha} \beta x$ for all $x, y \in M, \alpha, \beta \in \Gamma$
$[x, d(y)]_{\alpha} \beta x-[x, d(y)]_{\alpha} \beta \tau(x)=0$
$[x, d(y)]_{\alpha} \beta(x-\tau(x))=[d(x), y]_{\alpha} \beta(x-\tau(x))=0$
Using (15), from (11) we get $[\sigma(y), x]_{\alpha} \beta d(x)=0$. Since σ is onto, we get
$[y, x]_{\alpha} \beta d(x)=0$ for all $x, y \in M, \alpha, \beta \in \Gamma$
Replacing y by $y \delta z$ in (16), we get $y \delta[z, x]_{\alpha} \beta d(x)+[y, x]_{\alpha} \delta z \beta d(x)=0$, which along with (16) yields

$$
\begin{equation*}
[y, x]_{\alpha} \delta z \beta d(x)=0 \text { for all } x, y, z \in M, \alpha, \beta, \delta \in \Gamma \tag{17}
\end{equation*}
$$

Linearizing (16) (in x), we get
$[y, x+u]_{\alpha} \beta d(x+u)=0$ for all $x, y \in M, \alpha, \beta \in \Gamma$
$[y, x]_{\alpha} \beta d(x)+[y, x]_{\alpha} \beta d(u)+[y, u]_{\alpha} \beta d(x)+[y, u]_{\alpha} \beta d(u)=0$ for all $x, y, u \in M, \alpha, \beta \in \Gamma$.
$[y, x]_{\alpha} \beta d(u)=[u, y]_{\alpha} \beta d(x)$ for all $x, y, u \in M, \alpha, \beta \in \Gamma$
Replacing z by $d(u) \lambda z \delta[u, y]_{\alpha}$ in (17) and using (18), we have

$$
0=[y, x]_{\alpha} \beta d(u) \lambda z \delta[u, y]_{\alpha} \beta d(x)=[y, x]_{\alpha} \beta d(u) \lambda z \delta[y, x]_{\alpha} \beta d(u) .
$$

The semiprimeness of M implies

$$
\begin{equation*}
[y, x]_{\alpha} \beta d(u)=0 \text { for all } x, y, u \in M, \alpha, \beta \in \Gamma \tag{19}
\end{equation*}
$$

Substituting $y \delta z$ for y in (19), we have $[y, x]_{\alpha} \delta z \beta d(u)=0$, and so
$d(u) \beta[y, x]_{\alpha} \delta z \beta d(u) \beta[y, x]_{\alpha}=0$. Since M is semiprime, we get $d(u) \beta[y, x]_{\alpha}=0$ for all x, y, $u \in M, \alpha, \beta \in \Gamma$. Thus $[x, y]_{\alpha} \beta d(u)=0=d(u) \beta[x, y]_{\alpha}$ for all $x, y, u \in M, \alpha, \beta \in \Gamma$, and further $d(u) \in Z(M)$.
Now we prove our main result.
Theorem 2.5. Let M be a 2-torsion free semiprime Γ-ring satisfying the assumption (*) and σ, τ be centralizing epimorphisms of M. Let f, g be (σ, τ)-derivations of M such that
$f(x) \alpha x+x \alpha g(x)=0$ for all $x \in M, \alpha \in \Gamma$.
Then $g(u) \beta[x, y]_{\alpha}=f(u) \beta[x, y]_{\alpha}=0$ for all $x, y, u \in M, \alpha, \beta \in \Gamma$ and f, g map M into its center.

Proof

Since σ, τ are centralizing epimorphisms, they are commuting by Lemma 2.2 and hence σ - 1 is a commuting σ-derivation and $\tau-1$ is a commuting τ-derivation. Thus by Lemma 2.3 we get
$\sigma(u)-u \in Z(M), \sigma(u) \beta[x, y]_{\alpha}=u \beta[x, y]_{\alpha}$ and
$[x, y]_{\alpha} \beta \sigma(u)=[x, y]_{\alpha} \beta u$ for all $x, y, u \in M, \alpha, \beta \in \Gamma$
and for all $x, y, u \in M, \alpha, \beta \in \Gamma$,
$\tau(u)-u \in Z(M), \tau(u) \beta[x, y]_{\alpha}=u \beta[x, y]_{\alpha}$ and $[x, y]_{\alpha} \beta \tau(u)=[x, y]_{\alpha} \beta u$
Linearizing (20), we get

$$
\begin{equation*}
f(x) \alpha y+f(y) \alpha x+x \alpha g(y)+y \alpha g(x)=0 \text { for all } x, y \in M, \alpha \in \Gamma \tag{23}
\end{equation*}
$$

Replacing y by $y \beta x$ in (23) and using (21), we get

$$
\begin{aligned}
& 0=f(x) \alpha y \beta x+\sigma(y) \beta f(x) \alpha x+f(y) \beta \tau(x) \alpha x+x \alpha \sigma(y) \beta g(x)+x \alpha g(y) \beta \tau(x)+y \beta x \alpha g(x) \\
& =f(x) \alpha y \beta x+\sigma(y) \beta f(x) \alpha x+f(y) \beta(\tau(x)-x) \alpha x+f(y) \beta x \alpha x+x \alpha(\sigma(y)-y) \beta g(x) \\
& +x \alpha y \beta g(x)+x \alpha g(y) \beta \tau(x)+y \alpha x \beta g(x) \\
& =f(x) \alpha y \beta x+\sigma(y) \beta f(x) \alpha x+(\tau(x)-x) \beta f(y) \alpha x+f(y) \beta x \alpha x+(\sigma(y)-y) \alpha x \beta g(x) \\
& +x \alpha y \beta g(x)+x \alpha g(y) \beta \tau(x)+y \alpha x \beta g(x) \\
& =f(x) \alpha y \beta x+\sigma(y) \beta(f(x) \alpha x+x \alpha g(x))+(\tau(x)-x) \alpha f(y) \alpha x+f(y) \beta x \alpha x-y \alpha x \beta g(x) \\
& +x \alpha y \beta g(x)+x \alpha g(y) \alpha(\tau(x)-x)+x \alpha g(y) \beta x+y \alpha x \beta g(x) \\
& =f(x) \alpha y \beta x+f(y) \alpha x \beta x+x \alpha y \beta g(x)+x \alpha g(y) \beta x+(\tau(x)-x) \beta(f(y) \alpha x+x \alpha g(y)) \\
& =(f(x) \alpha y+f(y) \alpha x+x \alpha g(y)) \beta x+x \alpha y \beta g(x)+(\tau(x)-x) \beta(f(y) \alpha x+x \alpha g(y)) .
\end{aligned}
$$

That is for all $x, y \in M, \alpha, \beta \in \Gamma$,

$$
\begin{equation*}
(f(x) \alpha y+f(y) \alpha x+x \alpha g(y)) \beta x+x \alpha y \beta g(x)+(\tau(x)-x) \beta(f(y) \alpha x+x \alpha g(y))=0 \tag{24}
\end{equation*}
$$

By (23) and (24), we get

$$
\begin{aligned}
& 0=-y \alpha g(x) \beta x+x \alpha y \beta g(x)+(\tau(x)-x) \beta(f(y) \alpha x+\mathrm{x} \alpha g(y)) \\
& =-[y \beta g(x), x]_{\alpha}+(\tau(x)-x) \beta(f(y) \alpha x+x \alpha g(y)) .
\end{aligned}
$$

That is,

$$
\begin{equation*}
-[y \beta g(x), x]_{\alpha}+(\tau(x)-x) \beta(f(y) \alpha x+x \alpha g(y))=0 \text { for all } x, y \in M, \alpha, \beta \in \Gamma \tag{25}
\end{equation*}
$$

Let $z \in M$. Then by (25), we get

$$
\begin{aligned}
& 0=\left[[-y \beta g(x), x]_{\alpha}, z\right]_{\alpha}+[(\tau(x)-x) \beta(f(y) \alpha x+x \alpha g(y)), z]_{\alpha} \\
& =-\left[[y \beta g(x), x]_{\alpha}, z\right]_{\alpha}+(\tau(x)-x) \beta[f(y) \alpha x+x \alpha g(y), z]_{\alpha}+[\tau(x)-x, z]_{\alpha} \beta(f(y) \alpha x+x \alpha g(y)) .
\end{aligned}
$$

Using (22), we get

$$
\begin{equation*}
\left[[y \beta g(x), x]_{\alpha}, z\right]_{\alpha}=0 \quad \text { for all } x, y, z \in M, \alpha, \beta \in \Gamma \tag{26}
\end{equation*}
$$

From (26) we get $[y \beta g(x), x]_{\alpha} \in Z(M)$ for all $x, y \in M, \alpha, \beta \in \Gamma$ and, in particular,

$$
\begin{equation*}
\left[[y \beta g(x), x]_{\alpha}, x\right]_{\alpha}=0 \quad \text { for all } x, y \in M, \alpha, \beta \in \Gamma \tag{27}
\end{equation*}
$$

Replacing y by $z \alpha y$ in (27) we get for all $x, y \in M, \alpha, \beta \in \Gamma$,

$$
\begin{align*}
& {\left[[z \alpha y \beta g(x), x]_{\alpha}, x\right]_{\alpha}} \\
& =\left[z \alpha[y \beta g(x), x]_{\alpha}, x\right]_{\alpha}+[z, x]_{\alpha} \alpha[y \beta g(x), x]_{\alpha} \\
& =[z, x]_{\alpha} \alpha[y \beta g(x), x]_{\alpha}+z \alpha\left[y \beta[g(x), x]_{\alpha}, x\right]_{\alpha}+[z, x]_{\alpha} \alpha[y \beta g(x), x]_{\alpha} \\
& =2[z, x]_{\alpha} \alpha[y \beta g(x), x]_{\alpha}+z \alpha\left[[y \beta g(x), x]_{\alpha}, x\right]_{\alpha}=0 \tag{28}
\end{align*}
$$

Replacing z by $y \beta g(x)$ in (28) and using (27), we get $2[y \beta g(x), x]_{\alpha} \alpha[y \beta g(x), x]_{\alpha}=0$. Since M is 2-torsion free and, being semiprime, has no nonzero central nilpotents, we have,
$[y \beta g(x), x]_{\alpha}=0$ for all $x, y \in M, \alpha, \beta \in \Gamma$
Replacing y by z αy in (29), we get
$[z, x]_{\alpha} \alpha y \beta g(x)=0 \quad$ for all $x, y, z \in M, \alpha, \beta \in \Gamma$
Replacing y by $g(x) \beta y \gamma[z, x]_{\alpha}$ in (30), we get
$[z, x]_{\alpha} \alpha g(x) \beta y \gamma[z, x]_{\alpha} \beta g(x)=0$ for all $x, y, z \in M, \alpha, \beta, \gamma \in \Gamma$.
Since M is semiprime, we get
$[z, x]_{\alpha} \beta g(x)=0$ for all $x, z \in M, \alpha, \beta \in \Gamma$
Using (29) and (31), we get $y \beta[g(x), x]_{\alpha}=0$ for all $x, y \in M, \alpha, \beta \in \Gamma$ and hence by the semiprimeness of M, we have $[g(x), x]_{\alpha}=0$ for all $x \in M$. Thus g is a commuting (σ, τ) derivation of M. Hence, by Lemma 2.3, $g(x) \in Z(M)$ and $g(u) \beta[x, y]_{\alpha}=0$ for all $u, x, y \in M$, $\alpha, \beta \in \Gamma$. Also, $f(x) \in Z(M)$ and $f(u) \beta[x, y]_{\alpha}=0$ for all $u, x, y \in M, \alpha, \beta \in \Gamma$ follows analogously.

Theorem 2.6 Let M be a 2-torsion free semiprime Γ-ring satisfying the assumption (*). If f, g are derivations on M such that $f(x) \alpha x+x \alpha g(x)=0$ for all $x \in M, \alpha \in \Gamma$, then $f(u) \beta[x, y]_{\alpha}$ $=g(u) \beta[x, y]_{\alpha}=0$ for all $x, y, u \in M, \alpha, \beta \in \Gamma$, in particular, f, g map M into its center.

Proof

Since derivations are (1, 1)-derivations, it follows immediately from Theorem 2.5.

Corollary 2.7 Let M be a 2-torsion free prime Γ-ring satisfying the assumption (${ }^{*}$) and σ, τ-centralizing epimorphisms of M. Let f, g be (σ, τ)-derivations of M such that $f(x) \alpha x+$ $\operatorname{x\alpha g}(x)=0$ for all $x \in M, \alpha \in \Gamma$. Then either M is commutative or $f=g=0$.

Proof

Since the center of a prime Γ-ring contains no nonzero divisors of zero, this corollary is immediate from Theorem 2.5.

Theorem 2.8 Let M be a 2-torsion free semiprime Γ-ring satisfying the assumption (*) and σ, τ centralizing epimorphisms of M. Let f, g be (σ, τ)-derivations of M such that

$$
\begin{equation*}
f(x) \alpha x+x \alpha g(x) \in Z(M) \text { for all } x \in M, \alpha \in \Gamma \tag{32}
\end{equation*}
$$

Then (i) if $Z(M)=0$, then $f=g=0$, and
(ii) if $Z(M) \neq 0$, then $c \delta f(u) \beta[x, y]_{\alpha}=c \delta g(u) \beta[x, y]_{\alpha}=0$ and $c \delta f(x), c \delta g(x) \in Z(M)$ for all $x, y, u \in M, \alpha, \beta, \delta \in \Gamma$ and nonzero $c \in Z(M)$.

Proof

(i) Assume that $Z(M)=0$. Then, by hypothesis, $f(x) \alpha x+x \alpha g(x)=0$ for all $x \in M, \alpha \in \Gamma$ and hence by Theorem $2.5, f(x), g(x) \in Z(M)$. Since $Z(M)=0$, we have
$f(x)=g(x)=0$ for all $x \in M$. Thus $f=g=0$.
(ii) Let $Z(M) \neq 0$ and c be a nonzero element of $Z(M)$. Since σ, τ are centralizing epimorphisms, therefore, as in Theorem 2.5,

$$
\begin{equation*}
\sigma(u)-u \in Z(M), \sigma(u) \beta[x, y]_{\alpha}=u \beta[x, y]_{\alpha} \text { and }[x, y]_{\alpha} \beta \sigma(u)=[x, y]_{\alpha} \beta u \tag{33}
\end{equation*}
$$

And for all $u, x, y \in M, \alpha, \beta \in \Gamma$,

$$
\begin{equation*}
\tau(u)-u \in Z(M), \tau(u) \beta[x, y]_{\alpha}=u \beta[x, y]_{\alpha} \text { and }[x, y]_{\alpha} \beta \tau(u)=[x, y]_{\alpha} \beta u \tag{34}
\end{equation*}
$$

Moreover, since σ and τ are onto, therefore $\sigma(c)$ and $\tau(c) \in Z(M)$.
Linearizing (32), we get

$$
\begin{equation*}
f(x) \alpha y+f(y) \alpha x+x \alpha g(y)+y \alpha g(x) \in Z(M) \text { for all } x, y \in M, \alpha \in \Gamma \tag{35}
\end{equation*}
$$

Replacing y by c in (35), we get for all $x \in M, \alpha \in \Gamma$,

$$
\begin{equation*}
f(x) \alpha c+f(c) \alpha x+x \alpha g(c)+\operatorname{cog}(x) \in Z(M) \tag{36}
\end{equation*}
$$

Replacing y by $c \delta c$ in (35), we get

$$
\begin{aligned}
& f(x) \alpha c \delta c+f(c \delta c) \alpha x+x \alpha g(c \delta c)+c \delta c \alpha g(x) \\
& =c \delta(f(x) \alpha c+c \alpha g(x))+(\sigma(c)+\tau(c)) \delta(f(c) \alpha x+x \alpha g(c)) \\
& =c \delta(f(x) \alpha c+\operatorname{cog}(x)+f(c) \alpha x+x \alpha g(c))+(\sigma(c)+\tau(c)-c) \delta(f(c) \alpha x+x \alpha g(c))
\end{aligned}
$$

$$
\begin{aligned}
& =c \delta(f(x) \alpha c+\operatorname{cog}(x)+f(c) \alpha x+x \alpha g(c))+(\sigma(c)+\tau(c)-c) \delta(f(c) \alpha x+x \alpha g(c) \\
& +f(x) \alpha c+\operatorname{cog}(x))-(\sigma(c)+\tau(c)-c) \delta(f(x) \alpha c+\operatorname{cog}(x)) \in Z(M) .
\end{aligned}
$$

That is for all $x, c \in M, \alpha, \delta \in \Gamma$,

$$
\begin{align*}
& (\sigma(c)+\tau(c)) \delta(f(x) \alpha c+\operatorname{cog}(x)+f(c) \alpha x+x \alpha g(c)) \\
& -(\sigma(c)+\tau(c)-c) \delta(f(x) \alpha c+c \alpha g(x)) \in Z(M) \tag{37}
\end{align*}
$$

As $\sigma(c)+\tau(c) \in Z(M)$ and by (36) the first summand in (37) is in $Z(M)$, (37) implies

$$
\begin{aligned}
& (\sigma(c)+\tau(c)-c) \delta(f(x) \alpha c+\operatorname{c\alpha g}(x)) \\
& =(\sigma(c)+\tau(c)-c) \delta c \alpha(f(x)+g(x)) \in Z(M) \text { for all } x \in M, \alpha, \delta \in \Gamma .
\end{aligned}
$$

Thus

$$
\begin{equation*}
(\sigma(c)+\tau(c)-c) \delta c \alpha(f(x)+g(x)) \in Z(M) \text { for all } x \in M, \alpha, \delta \in \Gamma . \tag{38}
\end{equation*}
$$

Since $c,(\sigma(c)+\tau(c)-c) \delta c \in Z(M)$ and f, g are (σ, τ)-derivations, therefore
$((\sigma(c)+\tau(c)-c) \delta c) \alpha f,((\sigma(c)+\tau(c)-c) \delta c) \alpha g, c \delta f$ and $c \delta g$ are (σ, τ)-derivations. Thus $((\sigma(c)+\tau(c)-c) \delta c) \alpha(f+g)$ is an (σ, τ)-derivation and (38) implies that it is central and hence a commuting (σ, τ)-derivation. Thus by Lemma 2.4, we get

$$
\begin{equation*}
((\sigma(c)+\tau(c)-c) \delta c) \alpha(f+g)(u) \beta[x, y]_{\alpha}=0 \text { for all } u, x, y \in M, \alpha, \beta, \delta \in \Gamma \tag{39}
\end{equation*}
$$

Using (32) and (33), from (31) we get

$$
\begin{align*}
& 0=(f+g)(u) \beta(\sigma(c)+\tau(c)-c) \delta c \beta[x, y]_{\alpha} \\
& =(f+g)(u) \beta c \delta(\sigma(c)+\tau(c)-c) \beta[x, y]_{\alpha} \\
& =((f+g)(u) \beta c) \delta\left(\sigma(c) \beta[x, y]_{\alpha}+\tau(c) \beta[x, y]_{\alpha}-c \beta[x, y]_{\alpha}\right) \\
& =((f+g)(u) \beta c) \delta\left(c \beta[x, y]_{\alpha}+c \beta[x, y]_{\alpha}-c \beta[x, y]_{\alpha}=(f+g)(u) \beta c \delta c \beta[x, y]_{\alpha}\right. \\
& =c \beta c \delta(f+g)(u) \beta[x, y]_{\alpha} \text { for all } u, x, y \in M, \alpha, \beta \in \Gamma . \text { That is, } \\
& c \delta(c \beta f(u)+g(u)) \beta[x, y]_{\alpha}=0 \text { for all } u, x, y \in M, \alpha, \beta, \delta \in \Gamma \tag{40}
\end{align*}
$$

As $c \in Z(M)$ and M is semiprime, it follows from (30) that
$c \delta(f(u)+g(u)) \beta[x, y]_{\alpha}=0$ for all $u, x, y \in M, \alpha, \beta, \delta \in \Gamma$
Similarly, we have $[x, y]_{\alpha} \beta c \delta(f(u)+g(u))=0$. Thus, by Lemma 2.3 we get $c \delta f(u)+c \delta g(u) \in Z(M)$. Using this and (31), we get
$[(c \delta f(u)+c \delta g(u)) \beta u, y]_{\alpha}=(c \delta f(u)+c \delta g(u)) \beta[u, y]_{\alpha}+[c \delta f(u)+c \delta g(u), y]_{\alpha} \beta u=0$. That is,

$$
\begin{equation*}
[c \delta f(u) \beta u+c \delta g(u) \beta u, y]_{\alpha}=0 \text { for all } u, y \in M, \alpha, \beta, \delta \in \Gamma \tag{42}
\end{equation*}
$$

Since $c \in Z(M)$ and $f(u) \beta u+u \beta g(u) \in Z(M)$ (by 32)), we get $c \delta f(u) \beta u+c \delta u \beta g(u) \in Z(M)$. Thus

$$
\begin{equation*}
[c \delta f(u) \beta u+c \delta u \beta g(u), y]_{\alpha}=0 \text { for all } u, y \in M, \alpha, \beta, \delta \in \Gamma \tag{43}
\end{equation*}
$$

Subtracting (43) from (42), we get $[c \delta g(u) \beta u-c \delta u \beta g(u), y]_{\alpha}=0$. That is, $[c \delta(g(u) \beta u-$ $u \beta g(u)), y]_{\alpha}=\left[c \delta[g(\underline{u}), u]_{\beta}, y\right]_{\alpha}=\left[[c \delta g(u), u]_{\beta}, y\right]_{\alpha}=0$ for all $u, y \in M, \alpha, \beta, \delta \in \Gamma$, which implies $[c \delta g(u), u]_{\beta} \in Z(M)$. Thus $c \delta g$ is a centralizing (σ, τ)-derivation. We get that $c \delta g$ is a commuting (σ, τ)-derivation. By Lemma 2.3, we get $c \delta g(\underline{\mathrm{u}}) \in Z(M)$ and $c \delta g(u) \beta[x, y]_{\alpha}$ $=0$ for all $u, x, y \in M, \alpha, \beta, \delta \in \Gamma$. Since $c \delta f(u)+c \delta g(u) \in Z(M)$ and $c \delta g(u) \in Z(M)$, therefore $c \delta f(u) \in Z(M)$. Thus c $\delta \mathrm{f}$ is central and hence a commuting (σ, τ)-derivation. By Lemma 2.3, we get $c \delta f(u) \in Z(M)$ and $c \delta f(u) \beta[x, y]_{\alpha}=0$ for all $u, x, y \in M, \alpha, \beta, \delta \in \Gamma$.

References

1. M. A. Chaudhry and A. B. Thaheem, Aequations Math. 69, 224 (2005). http://dx.doi.org/10.1007/s00010-004-2763-5
2. W. E. Barnes, On the Г-rings of Nabusawa, Pacific J. Math. 18, 411 (1966).
3. M. A. Chaudhry and A. B. Thaheem, Demonstratio Math. 36, 283 (2003).
4. T. C. Chen, Riv. Mat. Univ. Parma 5, 109, (1996).
5. N. Nabusawa, Osaka J. Math. 1, 65 (1964).

[^0]: * Corresponding author: kkdmath@yahoo.com

