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Abstract 

The aim of the study is prediction of regression model to forecast hematological profiles 

of Cyprinus carpio (common carp) using machine learning algorithm. The fish fed with 

control and probiotic Lactobacillus macrolides (LM) enriched feed (2 % LM, 4 % LM, 6 % 

LM, and 8 % LM pelletized feed) duration of 60 days. The blood samples were drawn and 

subjected to hematological profiles assessed post-experiment. The regression models like 

gradient booster regressor, random forest regressor, linear regression, and decision tree 

regressor were employed to determine the most accurate predictive model, followed by 

validated through voting regressor methods. Significant variations in hematological profiles 

were observed among the different feeding regimes. The gradient booster regressor emerged 

as the most effective model, achieving a coefficient of determination (R²) of 1.00, while the 

decision tree regressor exhibited R² values ranging from 0.99 to 1.00 across different 

hematological parameters except MCV and MCH. Notably, the voting regressor method 

confirmed the superiority of the gradient booster regressor, indicating a robust predictive 

capacity. These findings underscore the potential of machine learning techniques to enhance 

nutritional strategies in aquaculture by predicting fish health outcomes, thus contributing to 

more sustainable and effective aquaculture practices. For accuracy and predictive 

power, Gradient Boosting may be the best choice, while Random Forest offers a similarly 

strong alternative.  

Keywords: Machine Learning; Cyprinus carpio; Haematological Parameters; Blood serum; 

Regression model. 
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1. Introduction 

The global demand for fish and seafood is met largely by the aquaculture industry. As 

aquaculture operations have grown, the need for efficient, data-driven management 

approaches has become apparent. Machine learning (ML) techniques offer a promising 

solution for enhancing aquaculture productivity and sustainability. These algorithms have 

demonstrated effectiveness in various aspects of intelligent aquaculture, including fish 

biomass estimation, species identification and classification, behavior analysis, and water 

quality prediction. Probiotic feed usage in aquaculture has grown due to its potential 

benefits for fish health, growth, and disease resistance [1-3]. Understanding how probiotics 

affect fish physiology, particularly haematological and serum biochemical profiles, is 

crucial for optimizing their use [4]. Current research explores the potential of machine 

learning to predict these profiles in Cyprinus carpio (common carp) fed probiotic-

supplemented diets [3]. Hematological and serum biochemical markers serve as important 

indicators of fish health, reflecting immune function, nutritional status, and overall 

physiological condition [5]. Evaluating these parameters provides insights into the effects 

of dietary interventions, including probiotic supplements [6]. 

ML algorithms excel at analyzing complex data and identifying patterns, making them 

highly suitable for predicting biological responses [7]. By leveraging datasets of C. carpio 

haematological and serum biochemical characteristics following various probiotic dosages, 

ML models can uncover relationships between probiotic intake and physiological responses 

[8]. Several ML techniques, such as Random Forests, have shown success in classifying 

haematological data of C. carpio given different probiotic regimens, achieving high 

accuracy. This suggests Random Forests' ability to predict hematological profiles based on 

probiotic consumption [8]. Support Vector Machines (SVM) are proficient in classification 

and regression tasks [9]. While no specific studies on C. carpio and probiotics were 

identified, SVMs have been successfully applied in aquaculture to predict fish growth 

performance based on environmental factors, indicating their potential for predicting 

haematological and serum biochemical profiles [10]. Neural networks are adept at 

recognizing complex non-linear data relationships. Their application in predicting 

hematological and serum biochemical profiles of probiotic-fed C. carpio requires further 

investigation [11]. Developing accurate ML models for predicting these profiles in 

probiotic-fed C. carpio offers numerous benefits, including optimized probiotic dosing, the 

ability to forecast physiological responses to probiotics for determining ideal dosages to 

improve fish health and growth [4], early disease detection [12], and personalized feeding 

strategies [13]. The use of machine learning to predict hematological profiles of probiotic-

fed C. carpio represents a promising avenue for improving aquaculture practices. 

 

2. Materials and Methods   

 

2.1. Experimental design 
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The experiments were conducted in accordance with the guidelines and regulations 

established by the Committee for Control and Supervision of Experiments on Animals 

(CCSEA), Department of Animal Husbandry and Dairying, Ministry of Fisheries, Animal 

Husbandry and Dairying, Government of India and the experimental protocol was approved 

by Institutional Animal Ethical Committee (Karpaga Vinayaga Institute of Medical 

Sciences and Research Institute, Tamil Nadu, India) (No: 181GO/ERE/S/15/CPCSEA 

dated 04.12.2018). C. carpio (12.19 ± 1.12 cm and 25.93 ± 1.48 g) was obtained from a fish 

farm in Kolathur, Chennai, Tamil Nadu. They were promptly transferred to the laboratory, 

where they were adequately aerated and acclimatized to the laboratory conditions for 48 

hours with standard pelletized diet. Following acclimation, fish were categorized into five 

groups: Trial I (control feed), Trial II (2 % Lactobacillus macrolides (LM) probiotic feed), 

Trial III (4 % LM probiotic pelletized feed), Trial IV (6 % LM probiotic feed), and Trial V 

(8 % LM probiotic pelletized feed) for a duration of 60 days. The experiments were 

conducted in triplicate and each tank inoculated 10 fishes. Daily, the fish excrement and 

three-quarters of the aquarium's water were expelled and replaced with fresh water. 

Immunological parameters of C. carpio subjected to various feeding regimes were 

examined. They were sustained under standard culture conditions and provided with ad 

libitum access to the appropriate diet. 

 

2.2. Collection of blood 

 

At the end of the trial period, fish from each treatment group were anesthetized with 

benzocaine (50 μL/L). Blood was extracted from the caudal vein with a 1 ml syringe and a 

25-gauge needle that had been pre-rinsed with a 2.7 % ethylenediaminetetraacetic acid 

(EDTA) solution. Subsequently, the blood was promptly transferred to a test tube 

containing EDTA powder, utilized as an anticoagulant, and meticulously stirred to avert 

blood lysis. Blood was utilized for subsequent analysis. 

Hematological assays were conducted using the methodology [14]. Red blood cell 

(RBC, ×106 cells/µL) and white blood cell (WBC, ×103 cells/µL) counts were ascertained 

by adhering to a standardized methodology utilizing a Neubauer hemocytometer. The 

hematocrit (HCT, %) was assessed using the micro-hematocrit technique. Hemoglobin (Hb, 

g/dL) was measured using a UV-1800 spectrophotometer (Shimadzu, Japan) at a 

wavelength of 450 nm. The microhematocrit method was employed for HCT determination 

in fish blood analysis [15]. The derived haematometric indices were Mean Corpuscular 

Volume (MCV), Mean Corpuscular Hemoglobin (MCH), and Mean Corpuscular 

Hemoglobin Concentration (MCHC) [16]. 

 

2.3. Prediction of regression model using ML algorithm 

 

The dataset comprising RBC, WBC, Hb, PCV, HCT, MCV, MCH, and MCHC was 

preprocessed to eliminate noise, redundancy, incompleteness, and missing values, after 

which the refined data, 80 % and 20 % data was considered as training and test data, 



622 Haematological Parameters of Common Carp Cyprinus carpio 

 

respectively. The data was analyzed using a Decision tree regressor Gradient boosting 

regressor, Linear regressor, and Random Forest Regressor (Fig. 1). 

The Decision tree regressor is the most effective machine learning model for predicting 

target variables by segmenting them [17-19], and it assesses the adequacy of the data while 

pruning any overfitting. The gradient boosting regressor enhances prediction accuracy and 

efficiency in the proposed work through iterative verification and validation of the achieved 

and expected outcomes [20,21]. The linear regressor identifies the correlation between the 

dependent and independent variables and formulates a linear equation based on the trained 

data [22]. The Random Forest Regressor is an ensemble of decision trees used to predict 

continuous outcomes. The linear characteristics derived from the linear regressor are 

subsequently utilized as input for the Random Forest Regressor model to discern the 

nonlinear relationships among the target variables. This amalgamation of linear and 

nonlinear components yields exceptional predictive accuracy. 

 
Fig. 1. Data analysis flow chart for prediction of best regression model. 

 

To study the impact of probiotic alterations of L. macrolides on RBC count, WBC count, 

Hb, HCT, packed cell volume (PCV), MCV, MCH, and MCHC, a hybrid ML model was 

applied. It included different regression algorithms: Decision Tree Regressor, Gradient 

Booster Regressor, Linear Regression, Random Forest Regressor, and others. The data 

obtained from these models is processed by means of a Voting Regressor that chooses the 

Best Model for analyzing the effects of lipid meal concentration on the physiological 

parameters of C. carpio. 
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2.4. Voting regressor 

 

To enhance prediction accuracy, we utilized a voting regressor that amalgamates various 

machine learning models by the averaging of their predictions. This ensemble methodology 

relies on the premise that aggregating the predictions of multiple models generally yields 

superior generalization performance compared to any individual model's capabilities 

[10,23]. 

The voting regressor integrates basic models that separately excel in various facets of 

the data, thus mitigating the shortcomings of each model. This study used a Random Forest 

Regressor, Gradient boosting regressor, Linear regressor, and Decision tree regressor as the 

foundational models for the voting regressor. These algorithms were selected for their 

diversity in learning paradigms bagging, boosting, and kernel-based methods—thereby 

guaranteeing different decision bounds. Each model was trained autonomously on the 

training set, and their respective forecasts were averaged to generate the final prediction. 

The voting regressor employed a soft voting strategy, where each model's prediction 

contribution was proportional to its confidence level. We assessed the ensemble model's 

performance using standard regression metrics, including mean absolute error (MAE), and 

R-squared (R²) on the test set. Furthermore, to mitigate overfitting, 5-fold cross-validation 

was utilized throughout the training phase. The aggregated forecasts consistently produced 

reduced error metrics relative to the singular models, illustrating the efficacy of the 

ensemble approach. All models were executed with the scikit-learn toolkit in Python [24], 

and hyperparameters for each regressor were optimized through grid search. 

 

2.5. Statistical analysis  

 

The experimental data were reported as mean ± SD. All the experimental data such as 

haematological profile data were determined using one-way ANOVA (P<0.05) followed by 

Duncan Multiple Range Test (DMRT) performed. The data was analyzed using SPSS 22.0 

ver. 

 

3. Results and Discussion 

 

3.1. Hematology profile 

 

The hematological indices of Cyprinus carpio, namely RBC, WBC, Hb, PCV, HCT, MCV, 

MCH, and MCHC, exhibited substantial fluctuations in response to varying feeding 

regimes, especially with elevated concentrations of Lysinibacillus macroides (LM). The 

observed rise in RBC counts from 1.01 × 106 cells/mm in the control group to 2.94 × 106 

cells/mm in the 8 % LM group (Table 1) indicates a stimulatory effect of LM on 

erythropoiesis, aligning with findings in other fish species where dietary supplements have 

been demonstrated to enhance red blood cell production and overall hematological health 

[8,25]. The elevation in WBC counts suggests a possible augmentation of the 



624 Haematological Parameters of Common Carp Cyprinus carpio 

 

immunological response, as heightened leukocyte levels are frequently correlated with 

enhanced health and disease resistance in fish [26,27]. 

The increase in hemoglobin levels from 9.56 (g/dL) in the control group to 14.21 (g/dL) 

in the 8 % LM group (Table 1) indicates enhanced oxygen-carrying ability, essential for the 

metabolic requirements of the fish, especially under fluctuating environmental conditions 

[28]. This increase in hemoglobin concentration corresponds with research indicating that 

dietary factors affect hemoglobin levels, with certain nutrients or supplements resulting in 

notable enhancements in oxygen transport efficiency in aquatic organisms [29,30]. 

Moreover, elevations in PCV and HCT values indicate an augmented ratio of red blood 

cells, substantiating the assertion that LM supplementation beneficially influences the 

comprehensive blood profile of C. carpio. 

Fluctuations in MCV, MCH, and MCHC values signify changes in red blood cell shape 

and hemoglobin concentration per cell, attributable to the nutritional makeup of the diets 

[31,32]. Although MCH exhibited no significant difference between the 6 % and 8 % LM 

groups, the prevailing trend indicated that elevated LM concentrations may result in more 

marked alterations in red blood cell characteristics, a phenomenon frequently observed in 

fish subjected to diverse dietary regimes [33]. The statistical significance of these 

characteristics, demonstrated by the one-way ANOVA and subsequent DMRT test, showed 

a significant difference (P<0.05) between the different feeding regimes (Table 1). The 

reliability of these findings and their implications for aquaculture operations have focused 

on enhancing fish health through nutritional treatments [34]. 

 

Table 1. Hematological indices of C. carpio fed in the different feeding regimes. 
 

 
RBC 

(106 

cells/mm3) 

WBC 

(103 

cells/mm3) 

Hb 

(g/dL) 

PCV 

(%) 

HCT 

(%) 
MCV MCH MCHC 

Trai

l I 
1.01±0.07a 11.68±0.08a 9.56±0.07a 28.42±0.07a 32.36±0.07a 283.60±18.65a 95.32±5.79a 20.17±0.10a 

Trai

l II 
1.72±0.09b 12.03±0.70b 11.28±0.08b 35.15±0.08b 38.58±0.13b 205.41±10.05b 65.89±2.95b 19.25±0.09b 

Trai

l III 
1.99±0.10c 12.90±0.10c 12.01±0.10c 33.16±1.10c 37.27±1.84c 166.93±3.17c 60.52±2.57c 21.74±0.55c 

Trai

l IV 
2.27±0.35d 13.40±0.09d 13.02±0.09d 34.11±0.26d 38.85±0.09d 153.41±21.24d 58.52±7.99cd 22.89±0.12b 

Trai

l V 
2.94±0.08e 14.26±0.08e 14.21±0.31e 35.36±0.08b 39.93±0.05b 120.53±2.91e 48.43±1.10d 24.11±0.50d 

Values are represented as Mean ± SD; Anova followed by Duncan’s Multiple Range Test performed; Different 
alphabets in the same columns indicates a significant difference (P < 0.05) 

 

3.2. Regression models 

 

The regression models depicted several hematological parameters (RBC, WBC, Hb, PCV, 

HCT, MCV, MCH, and MCHC) in relation to the target variable. Every graphic features a 

fitted regression line accompanied by statistical metrics that assess the efficacy of the 

model. This value indicates the degree to which the regression line corresponds to data. It 

spans from -1 to 0 and from 0 to 1. This statistic quantifies the average magnitude of the 

mean absolute errors (MAE) in a series of predictions, disregarding their directionality. The 

reduced MAE values signify superior model performance. 
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3.2.1. Linear Regression 

 

Examination of blood parameters in C. carpio demonstrated substantial relationships with 

the goal variable, notably emphasizing the importance of Hb, PCV, and HCT. The Hb 

parameter had a robust correlation with the target variable, displaying an R² value of 0.97 

and a mean absolute error (MAE) of 0.38 (Fig. 2). This signifies a strong predictive ability, 

implying that Hb levels are a vital indicator of the physiological conditions in C. carpio. 

The elevated R² value indicates that fluctuations in Hb can account for a significant 

percentage of the variability in the target variable, corroborating prior research that has 

associated Hb levels with environmental stress and overall health in fish populations [33]. 

Conversely, both PCV and HCT exhibited moderate associations, with R² values of 0.50 

and MAE values of 1.62. These measures are crucial for evaluating the oxygen-carrying 

capacity and total blood volume in fish, which can be affected by multiple factors such as 

water quality and salinity [35]. The moderate connection indicates that, although PCV and 

HCT are significant, they may be more vulnerable to variations caused by environmental 

stresses or clinical states than Hb. This corresponds with the concept that blood parameters 

act as indices of health state, mirroring the physiological reactions of C. carpio's response 

to external stresses, including variations in salinity and exposure to pollutants [35,36]. MAE 

values offer an additional understanding of the forecasting precision of these factors. 

Reduced MAE values, especially for Hb, signify a more dependable model for clinical 

evaluation and decision-making in aquaculture and fisheries management. Accurate 

prediction of health outcomes from blood factors can improve care methods for C. carpio, 

particularly in settings where they encounter pollution or other stressors [37,38]. These 

findings emphasize the necessity of monitoring these blood parameters as an integral 

component of a complete health assessment plan for C. carpio, enhancing management 

methods in aquaculture, and conservation initiatives. 

 

3.2.2. Gradient Booster Regressor 

 

The utilization of Gradient Boosting regression analysis for forecasting the blood 

parameters of C. carpio exhibited significant predictive efficacy, as indicated by the 

attained R² value of 1.00 (Fig. 3). This signifies an optimal alignment of the model with the 

data, implying that the model can account for all variability of the target variable based on 

the chosen blood measurements. Elevated R² values signify a strong model, consistent with 

prior research demonstrating that gradient boosting surpasses conventional regression 

methods across multiple fields, including healthcare [39,40]. 
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Fig. 2. Hematological profile prediction and actual value of C. carpio fed with different feeding 

regimes using Linear Regression. This figure shows scatter plots of the relationship between the 

probiotic feed concentrations and the different hematological parameters of C. carpio that were 

measured. Each graph shows the relationship between the probiotic feed and the corresponding 

parameter of RBC, WBC, Hb, HCT, PCV, MCV, MCH, and MCHC (the value of R² describes how 

well the data fit a model of this form; larger values mean better fit. Mean Absolute Error (MAE) 

measures the average magnitude of the errors in a set of predictions, not the accuracy of the model.). 

 

The minimal MAE across all parameters further substantiated the trustworthiness of the 

model. The MAE is an essential metric in regression analysis because it measures the 

average magnitude of errors in a collection of predictions. A persistently low MAE signifies 

that the model's predictions closely align with the actual values, which is crucial for 

practical applications where accuracy is vital (Nepal and Ghimire 2023). In fish physiology, 

prediction accuracy is vital for evaluating the health and stress responses of fish populations 

because blood parameters serve as essential markers of physiological circumstances [41]. 

The graphical depiction of the model's predictions facilitates intuitive comprehension of 

the correlations between the blood parameters and the target variable. This is especially 

advantageous in scientific studies because intricate datasets can frequently conceal 

fundamental trends. The capacity to rapidly evaluate these associations improves the 

model's interpretability, facilitating academics and practitioners to extract actionable 

insights from the data [42]. The iterative process of gradient boosting, which amalgamates 

several weak learners to create a robust predictive model, enhances its efficacy in 

identifying intricate patterns within data [43]. 

The Gradient boosting regression analysis utilized on the blood parameters of C. carpio 

not only exhibited remarkable prediction efficacy, but also underscored the promise of 

machine learning methodologies in biological research. These results highlight the necessity 

of employing sophisticated statistical techniques to improve our comprehension of 

physiological metrics in aquatic organisms, facilitating future investigations into the 

ramifications of these forecasts in ecological and environmental frameworks [44]. 
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Fig. 3. Hematological profile prediction and actual value of C. carpio fed with different feeding 

regimes using Gradient Booster Regressor. The figure shows a series of scatter plots testing the 

correlation of the target variable with a number of physiological parameters of C. carpio. Each subplot 

corresponds to one particular parameter: RBC, WBC, Hb, HCT, PCV, MCV, MCH, and MCHC (R² 

Values represent the strength of linear association, which in between 0.88 to 0.99 signifies a generally 

strong association clearly visible for Hb (R² = 0.99). Mean Absolute Error (MAE) provides insight 

into accuracy in prediction, and the values range from 0.11 to 0.44, where lower MAE indicates 

superior model performance. 

 
3.2.3. Decision tree regressor 

 

Decision tree regression is a robust nonparametric supervised learning method that 

effectively predicts continuous values by segmenting the data into subsets according to the 

input feature values. This system is notably effective owing to its intuitive framework, 

wherein each node symbolizes a feature, branches indicate decision rules, and leaf nodes 

reflect the outcomes. Examination of many hematological markers of C. carpio, including 

RBC, WBC, Hb, HCT, MCV, MCH, and MCHC, via decision tree regression revealed 

predictive efficacy, as indicated by elevated R² values and minimal MAE metrics.  

The findings demonstrate that the model attained a R² value of 0.99 for RBC and a R² 

of 1.00 for WBC, Hb, HCT, MCV, MCH, and MCHC, with associated MAE values of 0.08 

and 0.00, respectively (Fig. 4). The metrics indicate that the model's predictions closely 

align with the actual observed values, underscoring the effectiveness of the decision tree 

regression in this situation. This result corresponds with prior research highlighting the 

efficacy of decision-tree techniques in regression tasks, demonstrating their capacity to 

manage intricate datasets and achieve high accuracy [45]. The elevated prediction accuracy 

shown in this investigation can be ascribed to the intrinsic properties of Decision Tree 

algorithms, which facilitate the examination of feature interactions and recognition of key 

predictors. The hierarchical organization of decision trees enhances the visualization of 

decision-making processes, rendering them interpretable and beneficial for subsequent 

study [46,47]. This interpretability is essential in biological situations, as understanding the 
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correlations among various blood indicators can yield insights into the health and 

physiology of C. carpio.  

The investigation indicated potential methods for improving model efficacy, including 

feature engineering and hyperparameter adjustment, along with robust predictive 

performance. These methodologies can enhance the decision tree's architecture and 

augment its generalization skills, as evidenced by the literature endorsing optimization 

tactics in machine learning models [48,49]. Investigating these strategies may enhance the 

accuracy and reliability of predictions, thus reinforcing decision tree regression as an 

essential instrument in biological data processing. The implementation of decision tree 

regression to forecast blood parameters in C. carpio has produced remarkable outcomes, as 

evidenced by the elevated R² values and low MAE. The results highlight the method's robust 

prediction powers and its promise for directing future investigations into feature interactions 

and model optimization techniques. 

 
Fig. 4. Hematological profile prediction and actual value of C. carpio fed with different feeding 

regimes using Decision Tree Regressor. The figure depicts the association between a probiotic 

concentrations and some hematological parameters: RBC, WBC, Hb, HCT, PCV, MCV, MCH, and 

MCHC. The graphs indicating the strength and direction of the association between the probiotic 

concentrations and each hematological parameter, as shown by the R² and MAE values. The high R² 

values of RBC, Hb, and MCHC indicate strong positive correlations, whereas the negative R² of MCV 

and MCH indicates inverse correlation with the target variable. 

 
3.2.4. Random forest regressor 

 

The Random Forest Regression analysis results demonstrated a predictive correlation 

between the different blood parameters of C. carpio and the target variable, as indicated by 

the elevated R² values. The associations identified between hemoglobin (Hb) and mean 

corpuscular hemoglobin concentration (MCHC) indicate that these parameters act as 

reliable predictors in this setting. The R² values of 1.00 for Hb and 0.97 for MCHC, coupled 

with mean absolute errors (MAE) of 0.00 and 0.03 respectively, highlight the dependability 

of these measures in forecasting the target variable (Fig. 5). 
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The importance of Hb as a predictor corresponds with findings from other studies that 

highlight the impact of hematological indicators in evaluating fish health and metabolic 

conditions. The hematological parameters are intricately connected to the metabolic levels 

related to fish size, with larger fish exhibiting elevated RBC and Hb values, potentially 

indicative of their heightened metabolic requirements [50]. The correlation between 

hematological parameters and metabolic activity, suggesting that larger fish typically 

exhibit elevated metabolic rates, thus elucidating the significant predictive capacity of 

hemoglobin in the present analysis [51]. Moreover, the seasonal fluctuations in blood 

parameters indicate that physiological alterations associated with reproduction and 

environmental conditions can markedly affect hematological indices, thereby reinforcing 

the significance of Hb and MCHC as indicators of fish health [52]. 

Furthermore, the results concerning MCHC align with the extensive literature on fish 

physiology, suggesting that changes in blood parameters may function as biomarkers of 

environmental stress and general health status. Erythrocyte indices for detecting anemia and 

evaluating the health of fish populations under various environmental conditions. This 

underscores that MCHC, in conjunction with Hb, is a vital metric for assessing the 

physiological condition of C. carpio [53]. 

The utilization of random forest regression in this investigation is particularly 

significant, as it has demonstrated superior accuracy and dependability compared with other 

modeling techniques. The capacity of this method to manage intricate variable interactions 

without significant preprocessing renders it an optimal selection for biological data analysis 

[54]. 

This is especially pertinent to fish blood parameters, as several factors can affect the 

results. The high accuracy of the RF model in predicting the target variable from blood 

parameters suggests its potential application in aquaculture and fisheries management, 

where monitoring fish health is essential for sustainable practices. 

The robust predictive correlations exhibited by the random forest regression analysis for 

Hb and MCHC in C. carpio emphasize the significance of these hematological indicators 

in evaluating fish health. The results are validated by the existing literature that highlights 

the metabolic and physiological importance of blood parameters in fish, indicating that they 

can function as dependable indicators for assessing the health and welfare of aquatic 

animals. 

 

3.3. Voting regressor 

 

Examination of hematological parameters in fish is essential for understanding their health 

and the influence of environmental factors. The outcome of the voting regressor analysis 

emphasizes the heterogeneity in the predictions generated by various regression models for 

these parameters, especially when the quantity of training data increases. This variability is 

substantial as it indicates the impact of multiple factors on fish health, which may be 

evaluated via their blood profiles. Environmental factors, including water quality, 

temperature, and pollution levels, have been demonstrated to influence hematological 
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parameters in fish species, rendering these parameters valuable indicators of their 

physiological condition and overall health [55-58]. 

 

 
Fig. 5. Hematological profile prediction and actual value of C. carpio fed with different feeding 

regimes using Random Forest Regressor. This set of scatter plots shows the correlations between a 

target variable and seven hematological parameters: RBC, WBC, Hb, HCT, PCV, MCV, MCH, and 

MCHC. A fitted linear regression line is added to each plot to show the correlation between the 

probiotic concentration and the corresponding parameters. The plots illustrate different levels of 

correlation between these parameters, with RBC, Hb, and MCHC having particularly high positive 

correlations, and MCV and MCH having strong negative correlations with the target variable. 

 
The voting regressor research indicated that models, such as the gradient boosting 

regressor and random forest regressor, yielded superior predicted values relative to the 

decision tree regressor (Fig. 6). This gap may be ascribed to the sophistication and flexibility 

of the more advanced models, which can capture the subtleties of the data more effectively. 

The significance of model selection in forecasting hematological parameters is highlighted 

by research indicating that various environmental stressors, including heavy metals and 

temperature variations, can result in substantial alterations in blood parameters such as 

hemoglobin concentration and red blood cell counts [45,59-61]. 

The anticipated values, spanning roughly 0.925 to 1.1, indicate variability in the models' 

outputs, consistent with research demonstrating that hematological parameters can vary due 

to multiple factors, such as stress, age, and environmental conditions [43,55,56,62]. 

Research indicates that exposure to pollutants such as lead and cadmium can result in 

anemia in fish, as evidenced by reduced red blood cell counts and hemoglobin levels 

[62,63]. Seasonal oscillations in temperature and water quality have been associated with 

alterations in hematological parameters, highlighting the necessity for comprehensive 

predictive models that can accommodate these variations [64,65]. The Gradient Boosting 

Regressor's performance indicates that it may be more proficient in managing the intricacies 

of fish hematological data.  



M. S. Rama et al., J. Sci. Res. 17 (2), 619-635 (2025) 631 

 

 
Fig. 6. Comparision of different machine learning prediction. The plot displays the predicted values 

from five different regression models applied to samples, alongside their average predictions. Each 

symbol represents a distinct regression model, facilitating comparisons between their predictions 

across various samples. Green Diamonds: Gradient Boosting Regressor; Blue Triangles: Random 

Forest Regressor; Yellow Squares: Linear Regression; Brown Diamonds: Decision Tree Regressor; 

Red Stars: Voting Regressor (average prediction). The red stars indicate the Voting Regressor, which 

consolidates predictions from all other models to produce a final averaged output. The plot illustrates 

that while most models track similarly, the Voting Regressor tends to stabilize predictions across the 

trading samples, suggesting its effectiveness in capturing an averaged performance. This visualization 

aids in assessing model performance and variability, guiding decision-making in selecting appropriate 

predictive models 

 
This corresponds with studies demonstrating that sophisticated machine-learning 

methodologies can proficiently predict biological data, encapsulating interactions among 

numerous variables that more simplistic models may neglect [58,66]. The capacity of these 

models to adjust to expanding training samples underscores the significance of possessing 

a thorough dataset that includes a diverse array of environmental conditions and fish 

species, as this variety can improve the predictive precision [55,56,66]. Furthermore, the 

results of the vote regressor analysis align with the extensive literature on fish health 

evaluations. Hematological parameters are essential biomarkers for assessing the 

physiological impact of environmental stress on fish populations. Research indicates that 

alterations in blood parameters can reflect the health status of fish in contaminated habitats, 

rendering them crucial for environmental monitoring and conservation initiatives 

[56,57,67]. The use of machine learning models in this domain may enhance the precision 

and promptness of fish health evaluations, thus improving management methods in 

aquaculture and natural ecosystems [21,66]. The voting regressor analysis offers significant 

insights into the prediction efficacy of several regression models regarding hematological 

characteristics of fish. The disparities in model efficacy underscore the intricacy of 

biological data and the impact of environmental variables on fish health. Advancements in 

aquatic biology necessitate the incorporation of sophisticated statistical approaches and 
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machine learning techniques to improve our understanding of fish physiology and the 

effects of environmental changes on aquatic ecosystems. 

These data indicate that elevated levels of L. macrolides positively influence the 

hematological parameters of C. carpio, improving both erythropoiesis and immunological 

responses. This study enhances the understanding of the strategic application of nutritional 

supplements to augment fish health and productivity in aquaculture environments. 
From these findings, it is clear that machine learning holds promise in predicting fish 

health and optimizing nutritional approaches in aquaculture. The analysis emphasizes the 

importance of predictive modeling for aquaculture practices that are both effective and 

sustainable. Although Gradient Boosting showed the highest accuracy, Random Forest 

performed well as a substitute. These results should and could be further investigated to 

justify the choice of specific regression models tailored for aquaculture. To increase the 

effectiveness of nutritional approaches in aquaculture, future research should pursue the 

following suggestions- The generalisability of the outcomes is limited due to the narrow 

range of conditions and fish populations. Environmental factors should be included in future 

studies to gain a clearer understanding of the interactions between diet and hematological 

parameters. Genomic, microbiome, and metabolomic data could enhance understanding of 

how dietary changes affect fish health. Broadening the scope to include other aquaculture 

species may shed more light on how different fish are treated nutritionally from a 

sustainability standpoint. 

 

4. Conclusion 

 

In conclusion, this analysis illustrates the strength of the Gradient boosting and Random 

forest models in predicting the target variable from blood parameters of C. carpio fed with 

different feed, as well as the importance of specific factors like Hb and MCHC. As a result, 

these models and metrics may be useful aids in fish physiological assessments and 

hematological decision-making processes. The Voting Regressor analysis explains why the 

predictive models behave differently. While the Gradient boosting and Random forest 

models provide the highest prediction accuracy, than the Decision tree appears to be less 

successful. The variability in predictions as training samples increase implies that model 

performance is influenced by sample size as well as data attributes. more investigation of 

feature relationships and potential model modifications using approaches like as 

hyperparameter tweaking may optimize predictive performance even more. 
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